
Simulating Sets in Answer Set Programming

Sarah Alice Gaggl1 , Philipp Hanisch2 and Markus Krötzsch2

1Logic Programming and Argumentation Group, TU Dresden, Germany
2Knowledge-Based Systems Group, TU Dresden, Germany

{sarah.gaggl, philipp.hanisch1, markus.kroetzsch}@tu-dresden.de

Abstract
We study the extension of non-monotonic disjunc-
tive logic programs with terms that represent sets
of constants, called DLP(S), under the stable model
semantics. This strictly increases expressive power,
but keeps reasoning decidable, though cautious en-
tailment is CONEXPTIMENP-complete, even for
data complexity. We present two new reasoning
methods for DLP(S): a semantics-preserving trans-
lation of DLP(S) to logic programming with func-
tion symbols, which can take advantage of lazy
grounding techniques, and a ground-and-solve ap-
proach that uses non-monotonic existential rules
in the grounding stage. Our evaluation considers
problems of ontological reasoning that are not in
scope for traditional ASP (unless EXPTIME = ΠP

2),
and we find that our new existential-rule ground-
ing performs well in comparison with native imple-
mentations of set terms in ASP.

1 Introduction
The success of answer set programming (ASP) is in no small
part due to its declarative approach to computation, which
allows users to encode complex problems in a clean, direct
manner [Brewka et al., 2011; Lifschitz, 2019]. Plain ASP can
express problems up to the second level of the polynomial
hierarchy [Dantsin et al., 2001], and highly optimised ASP
solvers often lead to efficient solutions in such cases. How-
ever, not all problems can be expressed in this way, and ASP
has therefore been extended with more complex terms that
support function symbols [Bonatti, 2004], list, and sets [Cal-
imeri et al., 2009].

The ability to encode sets (of constants) in terms is of par-
ticular interest here, since it preserves – in contrast to func-
tion symbols and lists – the decidability of reasoning. More-
over, sets and related predicates like ∈ and ⊆ support a very
declarative modelling style. For example, the rules in Fig-
ure 1 define maximal strongly connected components (scc)
on a graph described by edges e(X,Y) and vertices v(X).
The rules for c show how sets can be constructed iteratively
using suitable functions, while the last two rules provide an
elegant description of maximal sets. Such elegance presum-
ably was the main motivation for implementations of sets

e+(X,Y)← e(X,Y)

e+(X,Y)← e+(X,Z) ∧ e(Z, Y)

c({X})← v(X)

c(S U {Y })← c(S) ∧X ∈ S ∧ e+(X,Y) ∧ e+(Y,X)

subc(S1)← c(S1) ∧ c(S2) ∧ S1 ⊆ S2 ∧ notS2 ⊆ S1

scc(S)← c(S) ∧ not subc(S)

Figure 1: Strongly connected components in ASP with sets

in ASP solvers [Calimeri et al., 2009], but sets have fur-
ther computational advantages in boosting expressive power,
as noted already for the case of Datalog [Ortiz et al., 2010;
Carral et al., 2019b].

Surprisingly, the extension of ASP with sets remains
poorly understood, regarding both its theoretical properties
and its practical potential. Most notably, Calimeri et al.
[2008; 2009] discuss set terms in combination with functions
and lists, and provide a first implementation in DLV-complex.
However, to our knowledge, even the complexity of reason-
ing in ASP with sets has not been established yet, and its util-
ity for solving computationally hard problems has never been
discussed or evaluated. One may also wonder whether for-
malisms that are even more powerful, such as rules with func-
tion symbols or value invention, could be exploited to imple-
ment sets, but research on feasible implementation methods
is similarly scarce. Significant potential for using ASP and
related tools therefore remains unexplored.

To address this, we take a closer look at the extension
of ASP with set terms, investigate possible implementation
methods in theory, and evaluate their practical feasibility in
solving problems that are beyond the expressive power of
plain ASP. Our main contributions are:

• We define DLP(S), the extension of disjunctive logic
programs with set terms, and establish relevant reason-
ing complexities under the stable model semantics.

• We show how DLP(S) reasoning can be reduced to rea-
soning in disjunctive logic programs with function sym-
bols while still ensuring finite stable models.

• We show that existing lazy ASP solvers can handle these
programs, whereas traditional ASP engines will fail.

• We develop another alternative grounding approach

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2634

https://kbs.inf.tu-dresden.de

based on a technique for modelling sets in existential
rules [Carral et al., 2019b].

• We evaluate the ability of our new methods and the exist-
ing set implementation DLV-complex to solve complex
real-world problems from ontology engineering.

Full proofs, datasets, and source code for our prototype im-
plementations can be accessed through the online repository
https://github.com/knowsys/eval-2022-IJCAI-asp-with-sets.

2 ASP with Sets
We now introduce the extension of non-monotonic disjunc-
tive logic programs with finite sets (DLP(S)). This will allow
us to write rules as in Figure 1.

Syntax. Formally, we consider two sorts: a sort of objects
obj and a sort of sets set. A signature of DLP(S) is based
on countably infinite sets of object constants Cobj (typically
a, b, c), object variables Vobj (typically X , Y , Z), set vari-
ables Vset (typically S, U , V), and predicate names P in-
cluding special predicates {∈,⊆} ⊆ P. The signature of
a predicate symbol p is a tuple sig(p) = 〈S1, . . . ,Sn〉 of
sorts, and n is called its arity. We have sig(∈) = 〈obj, set〉
and sig(⊆) = 〈set, set〉. An object term is any object con-
stant or object variable. A set term is any set variable, the
special constant ∅, an expression {t} where t is an ob-
ject term, or, recursively, an expression (s1 U s2) where
s1, s2 are set terms. We use {t1, . . . , tn} as abbreviation for
({t1}U ({t2}U . . .U {tn} . . .)) and omit parentheses for U.
An term or formula is ground if it contains no variables.

An atom is an expression p(t1, . . . , tn) where p ∈ P with
sig(p) = 〈S1, . . . ,Sn〉 and ti is a term of sort Si. We write
∈(t, s) as t ∈ s, and ⊆(s1, s2) as s1 ⊆ s2. A literal is an atom
α or a negated atom notα. We sometimes treat conjunctions
or disjunctions of literals as sets of literals. For a formula F ,
preds(F) denotes the set of all predicates in F .

Definition 1. A DLP(S) rule is an expression r of the form
H ← B+ ∧B−, where the head H is a disjunction of atoms,
the positive body B+ is a conjunction of atoms, and the neg-
ative body B− is a conjunction of negated atoms, such that:

1. every object variable in r occurs in B+,

2. every set variable S in r occurs in B+ as an argument
ti = S (1 ≤ i ≤ n) of an atom p(t1, . . . , tn) ∈ B+ with
non-special predicate p ∈ P \ {∈,⊆}, and

3. the special predicates ∈ and ⊆ do not occur in H .

A fact is a disjunction-free rule with empty body, i.e., a
ground atom. A DLP(S) program P is a set of DLP(S) rules.
A rule, fact, or program is DLP if it contains only object
terms. We also consider the extension of DLP with arbitrary
(object) function symbols, which we will denote DLPf .

Some restrictions in Definition 1 could be relaxed without
fundamentally changing the properties of DLP(S). Our selec-
tion is also motivated by practical concerns, e.g., since a rule
q(S) ← p(S U T) (which violates condition 2) would pro-
duce exponentially many derivations in the size of any set R
for which p(R) holds.

A substitution σ is a sort-preserving partial mapping from
variables to terms. Fσ denotes the result of applying σ to all
variables in the formula or term F for which it is defined.

Semantics. We define a stable model semantics for DLP(S)
by interpreting set terms as finite sets over the (object) do-
main. Given a program P , let obj(P) be the set of all object
constants in P (including those used in set terms), and let
set(P) be a set of terms of the form {t1, . . . , tn} that bijec-
tively correspond to the powerset of obj(P). The grounding
ground(P) of P consists of all rules that can be obtained
from a rule r of P by (1) uniformly replacing object and
set variables in r by terms from obj(P) and set(P), respec-
tively; and (2) replacing each of the resulting set terms s by
the corresponding term from set(P) that represents the same
set under the usual interpretation of ∅, {·}, and U.

An interpretation I for P is a set of ground facts that only
uses terms from obj(P) and set(P), and that contains ex-
actly those facts c∈ t (resp. s⊆ t) for which c occurs in the
set term t (resp. for which all constants in s occur in t). I sat-
isfies (or is a model of) a ground atom α if α ∈ I. I satisfies a
ground conjunctionB (disjunctionH) ifB ⊆ I (H∩I 6= ∅),
and a positive ground ruleH ← B if it satisfiesH or does not
satisfy B. The reduct P I of P with respect to I is obtained
from ground(P) by (1) deleting every negated atom notα
with α /∈ I and (2) deleting every rule with a negated atom
notα with α ∈ I. I is a stable model of P if it is a subset-
minimal model of P I . A fact α is (cautiously) entailed by P
if every stable model of P contains the fact α′, obtained by
replacing set terms in α with their representative in set(P).

Since there are exponentially many sets over a given object
domain, groundings, reducts, and stable models can also be
exponential for DLP(S), even in the size of the data:

Theorem 1. Deciding whether P entails α is
CONEXPTIMENP-complete. If P does not contain ∨,
the problem is CONEXPTIME-complete. In either case,
hardness holds even if only facts are allowed to vary while
all other rules are fixed (data complexity).

Proof sketch. The data complexities of the considered prob-
lems are ΠP

2 -complete respectively CONP-complete for DLP
[Dantsin et al., 2001]. Hardness can be shown, e.g., by re-
ducing from the word problem of polynomial-time alternat-
ing Turing machines with one quantifier alternation. The
claims for DLP(S) follow by simulating an exponentially
time-bounded alternating Turing machine instead.

The encoding is standard once an exponentially long chain
(of time points or tape cells) is inferred. Given input facts
succ(1, 2), . . . , succ(`− 1, `), a chain of length 2` is charac-
terised by a predicate c, defined as follows:

succ+(X,Y)← succ(X,Y) (1)
succ+(X,Z)← succ+(X,Y) ∧ succ(Y,Z) (2)
n(∅,{1}, 1,∅)← (3)

n(U,{X} U V̀,X,V̀)← n(, U,X, Ù)∧n(Ù ,V̀,X̀,)

∧ succ+(X̀,X)
(4)

n(U,{Y }, Y,∅)← n(, U,X, Ù)∧n(Ù , ,X,)

∧ succ(X,Y)
(5)

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2635

https://github.com/knowsys/eval-2022-IJCAI-asp-with-sets

c(S, T)← n(S, T, ,) (6)

Here we use for anonymous variables. The encoding is
adapted from Carral et al. [2019b]. Predicates n(S, T,X, V)
express that (1) T is the successor of S if both sets are taken
as binary numbers with elements from {1, . . . , `} encoding
active digits, (2) X is the largest number (most significant
bit) in T , and (3) T \ {X} = V . With this in mind, (4) and
(5) increment numbers with the highest bit staying the same
or being increased by one, respectively.

Membership is also derived from known results by reduc-
ing the DLP(S) problems to propositional logic programming
problems via grounding, which incurs an exponential blow-
up in the presence of set terms.

3 Reducing DLP(S) to DLP
Answer Set Programming over DLP(S) could be imple-
mented by similar techniques as normal ASP, taking the se-
mantics of sets into account when applying rules (opera-
tional extension APIs like clingo’s @-terms or DLV’s exter-
nal atoms could be used). However, this is rarely done so far,
and we therefore explore alternative approaches. A first idea
is to reduce DLP(S) to DLP with arbitrary function symbols
(DLPf), which is known to be computationally very power-
ful [Bonatti, 2004; Eiter and Simkus, 2010]. In this section,
we show how this can be done and establish the correctness
of the translation. Its computational properties and possible
implementation in current solvers are discussed later.

We encode sets using a constant c∅ (the empty set) and
a function f∪, such that, e.g., f∪(a, f∪(b, c∅)) represents the
set {a, b}. However, we cannot generally represent {c} ∪ s
by f∪(c, s), since this would lead to redundant representa-
tions like f∪(a, f∪(a, c∅)). Instead, we use facts of the form
su(c, s, t) – where su stands for singleton union – to express
{c} ∪ s = t, where t might be different from f∪(c, s). In
particular, su(c, s, s) means c ∈ s, which we abbreviate by
in(c, s). Finally, to ensure that only necessary set encodings
are derived, we use facts get su(c, s) to express that a rep-
resentation of {c} ∪ s is needed. The following DLPf rules
implement these ideas:

su(X,S, f∪(X,S))← get su(X,S) ∧ not in(X,S) (7)
su(X,U,U)← su(X,S,U) (8)
su(Y,U, U)← su(X,S,U) ∧ in(Y, S) (9)

in(X,S)← su(X,S, S) (10)

We can exercise this machinery to define rules that compute
arbitrary unions using analogous predicates u and get u:

u(S, c∅, S)← get u(S, c∅) (11)
u(S, f∪(X,T),U)← get u(S, f∪(X,T)) ∧

su(X,S, Ś) ∧ u(Ś, T, U)
(12)

get su(X,S)← get u(S, f∪(X,T)) (13)
get u(Ś, T)← get u(S, f∪(X,T))∧ su(X,S, Ś) (14)

Here, (11) is the base and (12) the recursive case, and (13)
and (14) ensure the computation of necessary auxiliary facts.

We are now ready to transform a single DLP(S) rule r =
H ← B to a set of DLPf rules dlpf(r). For every DLP(S)

predicate p of arity n, let p̂ be a unique fresh predicate of arity
n and signature sig(p) = 〈obj, . . . ,obj〉, and for every set
term s, let Vs be a fresh object variable. We construct H ′ and
B′ from H and B, respectively, by replacing each atom t ∈ s
by in(t, s), each atom s ⊆ u by sub(s, u), every predicate
p by p̂, and every set term s by Vs. Moreover, let B+ be the
conjunction of positive literals in B′. Now let s1, . . . , sk be
a list of all terms and subterms in r of the form {t} or s U
u, ordered such that subterms occur before their superterms.
Then dlpf(r) consists of the following rules:

H ′ ← B′ ∧
∧k
i=1 β(si) (15)

α(sj+1)← B+ ∧
∧j
i=1 β(si) j ∈ {0, . . . , k − 1} (16)

where we define, for v = {t}, α(v) = get su(t, c∅)
and β(v) = su(t, c∅, Vv); and, for v = s U u, α(v) =
get u(Vs, Vu) and β(v) = u(Vs, Vu, Vv).
Example 1. Consider the DLP(S) rule r : p(S)← q(S, x) ∧
r(S U {x}) ∧ notx ∈ S. The required list of set terms is
s1 = {x}, s2 = S U {x}. We have H ′ = p̂(VS), B+ =
q̂(VS , x) ∧ r̂(VSU{x}), and B′ = B+ ∧ not in(x, VS). Now
dlpf(r) consists of the rules:

H ′ ← B′ ∧ su(x, c∅, V{x}) ∧ u(VS , V{x}, VSU{x})

get su(x, c∅)← B+

get u(VS , V{x})← B+ ∧ su(x, c∅, V{x})

Note how B+ is used to ensure that the auxiliary rules that
define only some of the variables Vs are safe in the sense of
Definition 1 (1).

As Example 1 suggests, we could sometimes use get su
and su instead of get u and u . This optimisation can be use-
ful in practice since it may make rules (11)–(12) obsolete, but
we omit it from our formal description for simplicity.

The transformation needs one more ingredient, since
our set representations are not unique. For example,
f∪(a, f∪(b, c∅)) and f∪(b, f∪(a, c∅)) both represent {a, b}. We
therefore explicitly compute equality of sets as follows:

sub(c∅, c∅)← (17)
sub(c∅, S)← in(X,S) (18)
sub(T, U)← su(X,S, T) ∧ sub(S,U) ∧ in(X,U) (19)
eq(S, T)← sub(S, T) ∧ sub(T, S) (20)

Definition 2. Given a DLP(S) program P , the DLPf program
dlpf(P) consists of the following rules:

• the rules (7)–(12) and (17)–(20);
• for every predicate p̂ in P of arity n, the rules

p̂(X1, · · ·, Xn)[Xi/Y]← p̂(X1, · · ·, Xn) ∧ eq(Xi, Y)

where [Xi/Y] is the substitution replacing Xi by Y ;
• for every rule r ∈ P , the rules dlpf(r).
The next result is a pre-condition for the practical utility of

our translation. It can be shown directly but also follows from
Theorem 5 below.
Theorem 2. All stable models of dlpf(P) are finite.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2636

We can convert ground terms s that contain c∅ or f∪ to
canonical set terms [s] ∈ set(P) in the obvious way: [c∅] = ∅
and [f∪(t, s)] is the representation of {t} U [s] in set(P).
Moreover, let [t] = t for other terms (not representing sets).
Then, for every stable model J of dlpf(P), we find an inter-
pretation [J] = {p([t1], · · · , [tn]) | p̂(t1, · · · , tn) ∈ J }.
Theorem 3. The set of stable models of a DLP(S) program
P is exactly the set {[J] | J is a stable model of dlpf(P)}.

4 Lazy Grounding
A popular approach towards reasoning in ASP is “ground &
solve”, where one first computes a set of ground instances of
rules that are then turned into a propositional logic problem
to which an ASP solver can be applied [Gebser et al., 2018;
Faber, 2020]. To ensure that the grounding stage produces
enough rule instances, it is common to disregard negative
body literals when applying rules during grounding. Optimi-
sations can further reduce the number of rule applications,
e.g., using predicate dependencies to compute a stratification.
A classical algorithm that combines several such ideas was
proposed by Calimeri et al. [2008], who defined FG as the
class of all DLPf programs on which their grounding is fi-
nite. However, although our programs dlpf(P) have finite sta-
ble models (Theorem 2), such classical grounding approaches
will usually not work for them:
Proposition 4. If P contains a fact p(∅) and a rule p(S U
{a})← p(S), then dlpf(P) /∈ FG.

Indeed, it can be verified in practice that grounders such as
gringo and iDLV do not terminate on dlpf(P) for programs
P as in Proposition 4. A challenge that grounders are facing
in this case is that negation in the rules (7)–(10) of dlpf(P)
is not stratified. To avoid groundings that are too small, most
classical grounders will therefore ignore the negated literal in
rule (7), which leads to a program that has no finite model.

Fortunately, this problem can be avoided by lazy ground-
ing approaches, which interleave grounding and solving to
produce rule instances only when relevant to the search for
a stable model. Notable systems of this type include Alpha
[Weinzierl, 2017; Taupe et al., 2019] and ASPeRiX [Lefèvre
et al., 2017]. We analyse the former to show that such ap-
proaches are applicable to our task:
Theorem 5. The algorithm of Alpha terminates on every pro-
gram of the form dlpf(P).

Alpha therefore produces a complete set of (necessarily fi-
nite) stable models of dlpf(P), which correspond to the sta-
ble models of P by Theorem 3. The essence of our proof of
this claim is the fact that Alpha eagerly applies a form of unit
propagation where it exhaustively applies rules (8)–(10) be-
fore considering further choice points obtained by grounding
rule (7). Since the propagation will derive facts for in , rule
(7) is only potentially applicable to values of X that are not
in the set represented by S, and sets can only be enlarged a
finite number of times before no such elements are left.

5 Grounding with Existential Rules
Instead of relying on lazy grounding, an alternative ap-
proach towards reasoning in DLP(S) is to develop a set-

aware grounder whose output can be combined with exist-
ing solvers. Since classical grounders are mostly Datalog en-
gines (with some support for stratified negation), we essen-
tially need an engine for Datalog(S), the extension of Datalog
with sets. To obtain this, we follow an approach by Carral et
al. [2019b] who used a reasoning algorithm from databases
(the standard chase) to simulate Datalog(S) reasoning, and
we argue that it can safely be combined with stratified nega-
tion, which is not immediate in this context.

We first explain grounding based on Datalog(S) with strat-
ified negation. Given a DLP(S) program P , a stratification s :
P → N maps rules to natural numbers such that, for all pairs
of rules r1, r2 ∈ P of form ri : Hi ← B+

i ∧B
−
i ∈ P , and all

p ∈ preds(H2): (1) if p ∈ preds(B+
1), then s(r1) ≥ s(r2),

and (2) if p ∈ preds(B−1), then s(r1) > s(r2). This induces a
partitioning P1, . . . , Pn of P such that Pi = {r ∈ P | s(r) =
i}. A program P is stratified if it has a stratification.

Now for any program P , let P ! ⊆ P be the largest
disjunction-free, stratified subset of P such that predicates in
heads of P \P ! do not occur in P !.1 A predicate is certain if it
occurs only in P !. The Datalog(S) program grnd(P) contains
all facts in P and, for each non-fact ruleH ← B+∧B− ∈ P ,
the rules

ruler(X)← B+ ∧B! (21)∧
α∈H α← ruler(X) (22)

where ruler is a dedicated fresh predicate for r, X is a
list of all variables in r, and B! =

∧
{notα ∈ B− |

the predicate of α is certain}. For a ground atom of the form
ruler(c), the ground rule r[c] is obtained by applying the sub-
stitution X 7→ c to r. We get a simple but correct grounding:
Proposition 6. For any DLP(S) program P , grnd(P) is
a stratified Datalog(S) program. If I is the (unique) sta-
ble model of grnd(P), then the stable models of {r[c] |
ruler(c) ∈ I} are exactly the stable models of P .

To compute the stable model of grnd(P), we simulate rea-
soning in stratified Datalog(S) by generalising an approach
for existential rules (also know as tuple-generating depen-
dencies), which we extend by negation (which will be strat-
ified in the same sense as defined above). Such rules have
the form ∃Y .H ← B+ ∧ B−, where H and B+ are con-
junctions of atoms, B− is a conjunction of negated atoms,
Y is a list of existentially quantified variables, and all other
(implicitly universally quantified) variables also occur in B+

(safety). Existential quantifiers may lead to new domain el-
ements, represented by named nulls, which play the role
of anonymous constants. We can apply an existential rule
∃Y .H ← B+ ∧ B− to a set I of facts (using constants and
possibly nulls) if (1) there is a substitution θ with B+θ ⊆ I
and B− ∩ I = ∅, and (2) the rule is not already satisfied un-
der θ, i.e., I 6|= ∃Y .(Hθ). If this holds, we apply the rule by
extending I withHθ′, where θ′ is an extension of θ that maps
each Y ∈ Y to a fresh null.

For existential rules without negation, a (standard) chase
is a possibly infinite set I obtained by exhaustive, fair ap-
plication of rules. For a set of existential rules with negation

1This can be viewed as a kind of split program in the sense of
Lifschitz and Turner [1994].

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2637

that has a stratification P1, . . . , Pn, the stratified chase I is⋃n
i=1 Ii, where I0 = ∅ and Ii (1 ≤ i ≤ n) is the pos-

sibly infinite set obtained by exhaustive, fair application of
rules Pi to Ii−1. Note that this only leads to a practical (and
overall fair) procedure if each Ii is finite, which may depend
on the chosen order of rule applications.2 We follow Carral
et al. [2019b] and require that, within each stratum Pi, rules
without existential variables are applied first (the so-called
Datalog-first chase). This assumption simplifies presentation
and is justified for the system used in our evaluation.
Example 2. Contrary to expectations in normal logic pro-
gramming, the stratified chase does not yield a unique result,
not even up to homomorphic renaming of nulls. Consider the
fact q(a) and the rules

r1 : r(X,X)← q(X)

r2 : ∃V.r(X,V)← q(X)

r3 : e(Y, Y)← r(X,Y)

r4 : p()← r(X,Y) ∧ r(X,Z) ∧ not e(Y, Z)

A stratification s must satisfy s(q(a)) ≤ s(r1) ≤
s(r3), s(q(a)) ≤ s(r2) ≤ s(r3), and s(r3) < s(r4).
A valid partitioning would be {q(a), r1}, {r2, r3}, {r4},
which yields a stratified chase {q(a), r(a, a), e(a, a)}.
Note that r2 is not applicable since r(a, a) is al-
ready derived before r2 is considered. However, if we
consider the partition {q(a), r2}, {r1, r3}, {r4}, which is
also a valid stratification, then the stratified chase is
{q(a), r(a, n), r(a, a), e(a, a), e(n, n), p()}, where n is a
named null introduced when applying r2 in the first stratum
(as it is not satisfied at this point).

Now we can simulate sets in a similar way as in Defini-
tion 2, but using existential rules and nulls instead of DLPf
rules and function terms. To this end, we replace rule (7) by

∃Y.su(X,S, Y)← get su(X,S) (23)

while all other auxiliary rules remain as before. The transla-
tion of Datalog(S) rules to existential rules likewise remains
the same as in Definition 2. This produces existential rules
with negation if the input rules contain negation but no dis-
junction. However, stratification can be lost if auxiliary predi-
cates like get su are needed in every stratum. To address this,
each stratum Pi will use distinct copies of each auxiliary rule,
using indexed predicates such as sui and get sui. The result-
ing set of existential rules with negation is denoted nex(Pi),
and for Datalog(S) program P with negation and stratification
P1, . . . , Pn, we define nex(P) = nex(P1)∪

⋃n
i=2 nex(Pi)∪

{sui(X,S,U) ← sui−1(X,S,U)}. Then nex(P) is strati-
fied. Since every null n that is introduced by a chase over
nex(P) first appears in a fact su(t, s, n), we can extend the
notation introduced before Theorem 3 and associate n with
the set [n] := [f∪(t, s)].
Theorem 7. If P is a stratified Datalog(S) program
with negation, then every stratified, Datalog-first chase
I of nex(P) is finite and [I] := {p([t1], · · · , [tn]) |
p̂(t1, · · · , tn) ∈ I} is the unique stable model of P .

2This is typical for the standard chase; Krötzsch et al. [2019]
give an introductory discussion.

same(C,C)← class(C)

ind(A,C)← sc(A,B) ∧ sc(B,C) ∧ not same(A,B)

∧ not same(B,C)

sc−(A,C)← sc(A,C) ∧ not ind(A,C)

∧ not same(A,C)

Figure 2: Rules for transitive reduction

same(C,C)← class(C)

in chain(C)← class(C) ∧ not out chain(C)

out chain(C)← class(C) ∧ not in chain(C)

comp(C)← class(C) ∧ sc(C,D) ∧ in chain(D)

∧ not same(C,D)

comp(D)← class(C) ∧ sc(C,D) ∧ in chain(C)

∧ not same(C,D)

← in chain(C) ∧ comp(C)

← out chain(C) ∧ not comp(C)

Figure 3: Rules for maximal antichains

The previous result is remarkable in the light of Example 2,
since it identifies a case where a classical stratification can
safely be applied to existential rules with negation.

This completes our approach of using existential rule rea-
soners for DLP(S)-reasoning: for a DLP(S) program P , we
conduct a stratified chase over nex(grnd(P)) to infer facts of
the form ruler(t) and in(c, n), from which we can construct
ground instances of DLP(S) rules as in Proposition 6.

6 Evaluation
To evaluate the practical feasibility of our approaches, we de-
veloped prototypical implementations of the necessary pro-
cedures and combined them with existing reasoning engines
to compute stable models. The first approach (LAZY) uses
the transformation dlpf(P) and the lazy ASP solver Alpha3

[Weinzierl, 2017]. The second approach (EXRULES) imple-
ments grounding with existential rules using the Rulewerk li-
brary with the VLog reasoner4 [Carral et al., 2019a] to pro-
duce a grounded file in aspif format, to which we apply the
ASP solver clasp v3.2.1 [Gebser et al., 2007]. Our prototype
code will be published as open source as soon as possible
(after double-blind review). As a third scenario DLVCOMP,
we use the native implementation of sets provided in DLV-
complex [Calimeri et al., 2009].

As a challenging task for set-based reasoning, we use a
rule-based reasoning method for the expressive description
logic Horn-ALC by Carral et al. [2019b]. Given an ontology
that is syntactically transformed into facts, the rules compute
the inferred subclass relationships that follow from the ontol-
ogy – a problem that is EXPTIME-complete in data complex-
ity. Following Carral et al., we omit auxiliary rules (11)–(20)

3https://github.com/alpha-asp/Alpha, master, 29 Aug 2021
4https://github.com/karmaresearch/vlog, master, 30 Aug 2021

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2638

https://github.com/alpha-asp/Alpha
https://github.com/karmaresearch/vlog

ID Name #Classes #scAx #scInf
00668 vaccine 6,481 6,090 94,605
00368 bp 16,298 25,626 187,379
00371 bp×cell 17,810 27,171 198,683
00541 mf×anatomy 18,955 23,592 168,338
00375 bp×cell. comp. 27,490 44,949 352,738
00395 bp×anatomy 36,752 55,022 437,770
00533 mf×ChEBI 52,726 61,148 911,856
00477 Gazetteer 150,976 10,606 11,031

Table 1: Ontologies used in experiments with their names (“mf”:
molecular function; “bp”: biological processes) and numbers of
class names, stated subclass relations, and inferred subclass relations

1

10

100

1000

00668 00368 00371 00541 00375 00395 00533 00477

(A) DLVcomp (B) DLVcomp (A) ExRules (B) ExRulessec

Figure 4: Evaluation results for DLVCOMP and EXRULES (time in
sec, log-scale; empty columns indicate timeouts).

from dlpf(P) and the corresponding existential rules version,
since they would not contribute new derivations here. The
rules define a binary predicate sc that represents the inferred
subclass hierarchy, and a unary predicate class that marks
class names in the ontology.

On top of this basic classification task, we specified two
tasks that require additional expressive power of DLP(S).
First, we compute the transitive reduction of the class hier-
archy, i.e., a directed graph that contains only direct subclass
relations without the transitive bridges (Task A). The addi-
tional rules in Figure 2 were used for this task. While Task
A is inherently non-monotonic, these rules are still stratified
and lead to a unique stable model.

As a second task, we compute maximal antichains (i.e.,
sets of incomparable classes) in the class hierarchy (Task B).
This task admits many solutions, each a stable model, and we
asked systems to compute five stable models in this case. The
rules we used are shown in Figure 3.

Experiments were executed with eight different ontologies
from the Oxford Ontology Repository5 as shown in Table 1.
In each case, we deleted axioms that are not supported in the
description logic Horn-ALC and normalised the remaining
axioms as required by the classification rules [Carral et al.,
2019b]. Our final evaluation data sets are provided in the aux-
iliary material. Our evaluation computer is a mid-end server
(Debian Linux 9.13; Intel Xeon CPU E5-2637v4@3.50GHz;
384GB RAM DDR4; 960GB SSD), though most experiments
did not use more than 8GB of RAM. A timeout of 15min was
used in all experiments. We report results of single runs, as
we observed almost no time variations across runs.

5https://www.cs.ox.ac.uk/isg/ontologies/

The results of scenarios DLVCOMP and EXRULES on both
tasks are shown in Figure 4, with missing values indicating a
timeout. Scenario LAZY is omitted from the figure since it
did not succeed in any of the tasks. The most difficult prob-
lem that we could solve with method LAZY was the basic
classification (without any of the additional rules for tasks A
or B) of the vaccine ontology 00668, which took 248sec (vs.
<4sec needed in the other approaches).

Overall, we find that ASP with set terms can be used to
solve complex problems on large real-world inputs. Both
the native implementation in DLV-complex and our new
existential-rule grounding performed well across a range of
inputs. Contrary to our expectations, the lazy grounding ap-
proach was much less effective. Since Alpha solved instances
of the base task, which already contains (7) as the only rule
that can create infinitely many domain elements, we specu-
late that the algorithm behaves correctly in principle but is
sometimes affected by additional optimisations or heuristics.

DLVCOMP and EXRULES often showed similar perfor-
mance on Task A, though we can see some differences, most
notably an order of magnitude advantage for VLog+clasp on
00395. Interestingly, EXRULES showed almost the same per-
formance on Task B, whereas times for DLVCOMP increased
such that only smaller problems could be solved. Again, this
might be caused by a particular weakness of the implemen-
tation that is not conceptual. For EXRULES, most of the
time was spent in the grounding phase, whereas solving the
grounded files was relatively quick. Overall, we see promise
in the performance of our existential grounding prototype, but
the absolute run times should not be considered the main out-
come of our experiments, given the diversity of the underly-
ing systems in terms of maturity and recency.

7 Conclusions
Set terms are a natural and intuitive modelling construct, and
clearly a useful addition to practical ASP tools. This seems
to be the first work, however, that highlights their expres-
sive advantages and puts them to concrete use on real-world
problems that (due to their computational complexity) can-
not be solved with plain ASP. Our work indicates that various
existing ASP systems can feasibly be applied to these new
kinds of tasks. The competitive performance of our prototyp-
ical existential-rule grounder encourage further research into
combinations of existential rules and ASP.

We were surprised by the weak performance of lazy
grounding approaches in our experiments, but we still con-
sider them promising. Our programs can serve as benchmarks
for further improving such implementations. An operational
alternative to DLV-complex would to implement own set
datatypes through extension points of modern ASP solvers,
such as clingo’s @-terms or DLV’s external atoms. Finally,
there is potential for investigating further uses of set terms
in ASP for improving performance or readability. Candidate
applications can be found, e.g., in the area of abstract argu-
mentation, where ASP has been successfully applied [Gaggl
et al., 2015]. Our experiments with description logics (DLs)
also suggest the use of sets for a native integration of DLs and
ASP, e.g., in the style of dl-programs [Eiter et al., 2004].

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2639

https://www.cs.ox.ac.uk/isg/ontologies/

Acknowledgments
We thank an anonymous reviewer of IJCAI’22 for pointing
out the potential utility of clingo @-terms and DLV external
atoms for implementing complex-value extensions of ASP.
This work was partly supported by Deutsche Forschungsge-
meinschaft (DFG) in project 389792660 (TRR 248, Center
for Perspicuous Systems), by the Bundesministerium für Bil-
dung und Forschung (BMBF) in projects 01IS20056 NAVAS
and ScaDS.AI (Center for Scalable Data Analytics and Artifi-
cial Intelligence), and by the Center for Advancing Electron-
ics Dresden (cfaed).

References
[Bonatti, 2004] Piero A. Bonatti. Reasoning with infinite sta-

ble models. Artif. Intell., 156(1):75–111, 2004.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

[Calimeri et al., 2008] Francesco Calimeri, Susanna Cozza,
Giovambattista Ianni, and Nicola Leone. Computable
functions in ASP: theory and implementation. In Proc.
24th Int. Conf. on Logic Programming (ICLP’08), volume
5366 of LNCS, pages 407–424. Springer, 2008.

[Calimeri et al., 2009] Francesco Calimeri, Susanna Cozza,
Giovambattista Ianni, and Nicola Leone. An ASP sys-
tem with functions, lists, and sets. In Proc. 10th Int.
Conf. on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’09), volume 5753 of LNCS, pages 483–489.
Springer, 2009.

[Carral et al., 2019a] David Carral, Irina Dragoste, Larry
González, Ceriel Jacobs, Markus Krötzsch, and Jacopo Ur-
bani. VLog: A rule engine for knowledge graphs. In Proc.
18th Int. Semantic Web Conf. (ISWC’19, Part II), volume
11779 of LNCS, pages 19–35. Springer, 2019.

[Carral et al., 2019b] David Carral, Irina Dragoste, Markus
Krötzsch, and Christian Lewe. Chasing sets: How to use
existential rules for expressive reasoning. In Proc. 28th
Int. Joint Conf. on Artificial Intelligence (IJCAI’19), pages
1624–1631. ijcai.org, 2019.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expressive
power of logic programming. ACM Computing Surveys,
33(3):374–425, 2001.

[Eiter and Simkus, 2010] Thomas Eiter and Mantas Simkus.
FDNC: decidable nonmonotonic disjunctive logic pro-
grams with function symbols. ACM Trans. Comput. Log.,
11(2):14:1–14:50, 2010.

[Eiter et al., 2004] Thomas Eiter, Thomas Lukasiewicz, Ro-
man Schindlauer, and Hans Tompits. Combining answer
set programming with description logics for the Semantic
Web. In Proc. 9th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’04), pages 141–151.
AAAI Press, 2004.

[Faber, 2020] Wolfgang Faber. An introduction to answer set
programming and some of its extensions. In Tutorial Lec-
tures 16th Int. Summer School on Reasoning Web. Declar-
ative Artificial Intelligence, volume 12258 of LNCS, pages
149–185. Springer, 2020.

[Gaggl et al., 2015] Sarah Alice Gaggl, Norbert Manthey,
Alessandro Ronca, Johannes Peter Wallner, and Stefan
Woltran. Improved answer-set programming encodings
for abstract argumentation. Theory Pract. Log. Program.,
15(4-5):434–448, 2015.

[Gebser et al., 2007] Martin Gebser, Benjamin Kaufmann,
André Neumann, and Torsten Schaub. clasp: A conflict-
driven answer set solver. In LPNMR, volume 4483 of Lec-
ture Notes in Computer Science, pages 260–265. Springer,
2007.

[Gebser et al., 2018] Martin Gebser, Nicola Leone, Marco
Maratea, Simona Perri, Francesco Ricca, and Torsten
Schaub. Evaluation techniques and systems for answer set
programming: a survey. In Proc. 27th Int. Conf. on Artifi-
cial Intelligence, (IJCAI’18), pages 5450–5456. ijcai.org,
2018.

[Krötzsch et al., 2019] Markus Krötzsch, Maximilian Marx,
and Sebastian Rudolph. The power of the terminating
chase. In Proc. 22nd Int. Conf. on Database Theory
(ICDT’19), volume 127 of LIPIcs, pages 3:1–3:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

[Lefèvre et al., 2017] Claire Lefèvre, Christopher Béatrix,
Igor Stéphan, and Laurent Garcia. Asperix, a first-order
forward chaining approach for answer set computing. The-
ory Pract. Log. Program., 17(3):266–310, 2017.

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson
Turner. Splitting a logic program. In Proc. 11th Int.
Conf. on Logic Programming (ICLP’94), pages 23–37.
MIT Press, 1994.

[Lifschitz, 2019] Vladimir Lifschitz. Answer Set Program-
ming. Springer, 2019.

[Ortiz et al., 2010] Magdalena Ortiz, Sebastian Rudolph,
and Mantas Simkus. Worst-case optimal reasoning for
the Horn-DL fragments of OWL 1 and 2. In Proc. 12th
Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’10), pages 269–279. AAAI Press, 2010.

[Taupe et al., 2019] Richard Taupe, Antonius Weinzierl, and
Gerhard Friedrich. Degrees of laziness in grounding – ef-
fects of lazy-grounding strategies on ASP solving. In Proc.
15th Int. Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR’19), volume 11481 of LNCS, pages
298–311. Springer, 2019.

[Weinzierl, 2017] Antonius Weinzierl. Blending lazy-
grounding and CDNL search for answer-set solving. In
Proc. 14th Int. Conf. on Logic Programming and Non-
monotonic Reasoning (LPNMR’17), volume 10377 of
LNCS, pages 191–204. Springer, 2017.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2640

https://www.perspicuous-computing.science/
https://www.perspicuous-computing.science/
https://www.scads.de
https://www.scads.de
https://cfaed.tu-dresden.de
https://cfaed.tu-dresden.de

