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Abstract

Point cloud segmentation plays an important role
in AI applications such as autonomous driving,
AR, and VR. However, previous point cloud seg-
mentation neural networks rarely pay attention to
the topological correctness of the segmentation re-
sults. In this paper, focusing on the perspective of
topology awareness. First, to optimize the distri-
bution of segmented predictions from the perspec-
tive of topology, we introduce the persistent ho-
mology theory in topology into a 3D point cloud
deep learning framework. Second, we propose a
topology-aware 3D point cloud segmentation mod-
ule, TopoSeg. Specifically, we design a topolog-
ical loss function embedded in TopoSeg module,
which imposes topological constraints on the seg-
mentation of 3D point clouds. Experiments show
that our proposed TopoSeg module can be easily
embedded into the point cloud segmentation net-
work and improve the segmentation performance.
In addition, based on the constructed topology loss
function, we propose a topology-aware point cloud
edge extraction algorithm, which is demonstrated
that has strong robustness.

1 Introduction

With the development of sensor technology and the rapid
growth of the amount of point cloud data, 3D point clouds
have been widely used in many Artificial Intelligence (AI)
fields, such as autonomous driving, indoor navigation, Aug-
mented Reality (AR), virtual reality (VR), etc. In these appli-
cations, point cloud segmentation is a fundamental and im-
portant task, which has received a lot of attention.

Since PointNet [Qi et al., 2017a] proposed the first neu-
ral network directly operating on unordered point sets, many
effective deep learning networks for point cloud segmenta-
tion have emerged. These networks mainly use the cross-
entropy loss as the loss function. However, although these
networks integrate local information when extracting fea-
tures, the cross-entropy loss still considers each point inde-
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Figure 1: Typical topological errors (red bounding boxes) in the seg-
mentation results of PointNet++. The first, second, third column
are the ground truth, the segmentation results by PointNet++, the
comparison between segmentation results and ground truth, respec-
tively. The red points indicate the correctly segmented point, and
blue points indicate the wrongly segmented point.

pendently without global topology constraints, which may
lead to some topological errors in the segmentation results,
as shown in Figure 1.

In recent years, Topological Data Analysis (TDA), a field
combining topology theory and data analysis, has developed
rapidly. TDA provides a set of tools to effectively capture
the topological information of high-dimensional data space
and better describe the shape of the data. Therefore, TDA
has been successfully applied in many fields such as point
cloud processing [Briiel-Gabrielsson et al., 2020], biomedi-
cal analysis [Offroy and Duponchel, 20161, complex network
analysis [Taylor ef al., 2015]. The combination of TDA and
deep learning can introduce topological information into the
neural networks for training, that provides a new perspective
for exploring the intrinsic characteristics of the data.

In this paper, we introduce explicit topological constraints
into the neural networks for point clouds to refine segmen-
tation results by using Persistent Homology (PH) in topol-
ogy. Subsequently, we propose a topology-aware 3D point
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cloud segmentation neural network module, named TopoSeg,
to constrain the global topology of the point cloud segmenta-
tion results. In addition, we design a topological loss function
embedded into the TopoSeg module, so that the deep neural
network and TDA promote each other.

Specifically, using deep neural network alone is difficult to
capture the topological information of the point cloud. The
addition of topological loss enables the network to obtain the
segmentation results with the correct topology while captur-
ing the geometric features of the point clouds. Thus, we use
the output of the neural networks as the observed data for
TDA makes the original data rich in semantic information,
which helps to better capture the relationships of more com-
plex data.

The experiments show that the proposed TopoSeg module
and topological loss effectively reduce the topological errors
and improve the performance of baseline networks. Besides,
we apply the proposed topology-aware point cloud segmen-
tation network to the edge point detection task. The results
show that using topological loss improves the accuracy of
edge point detection, and the detected edge points have more
reasonable topological structures, which provide a better can-
didate point set as basis for the following line segment fitting.

The main contributions of our work are as follows:

e We propose a topology-aware 3D point cloud segmen-
tation neural network module, TopoSeg, to constrain the
global topology of the point cloud segmentation results.

e We construct a topological loss function, embedded into
the TopoSeg module, for point cloud segmentation based
on persistent homology, so that making the segmentation
results more reasonable in topological structures.

e We design a strategy to embed the proposed TopoSeg
module and topological loss function into the existing
point cloud segmentation networks for end-to-end train-
ing, which makes the segmentation results have the sim-
ilar topological structures with the ground truth.

e We apply the proposed TopoSeg module to the edge
point detection task, which improves the accuracy of
edge point detection.

2 Related Work

2.1 Persistent Homology and Machine Learning

Topological Data Analysis (TDA) is a rapidly developing
field combining data science and topology theory, that pro-
vides a set of powerful tools to measure the intrinsic shape
of data. In the field of TDA, Persistence Homology (PH) is
a well-established method to track the changes of topologi-
cal features across multiple scales and find more persistent
topological patterns of the underlying data space. Due to the
differentiable properties, topological information can be inte-
grated into machine and deep learning methods through PH
to improve performance. According to the application of PH
in machine and deep learning, previous work can be roughly
divided into two categories: feature-engineering-based meth-
ods and topology-loss-based methods.
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Feature-engineering-based Methods

In feature-engineering-based methods, the topological infor-
mation obtained by PH is integrated into machine and deep
learning models as fixed predefined features. This kind of
methods tackle classification or distance calculation tasks ac-
cording to topological features. However, the distribution of
the input data can not be adjusted to approximate some spe-
cific topological structure.

[Hofer et al., 2017] proposed a CNN-based classifier with
topological signatures extracted from image, shape or graph
as input. This method exploited a novel topological input
layer learning a parameterized projection of topological in-
formation as feature descriptors, and improved the perfor-
mance of 2D object shapes and social network graphs clas-
sification tasks. [Xie et al., 2014] proposed a fast method
for 3D shape segmentation and labeling via extreme learning
machine, which reduced the training time by approximately
two orders of magnitude, both for face-level and super-face-
level. [Zhang et al., 2020] proposed a fusion-aware 3D
point convolution which operates directly over the progres-
sively acquired and online reconstructed scene surface. This
method used geodesic distance to capture the underlying ge-
ometry and topology of 3D surfaces, and achieved online seg-
mentation at close-to-interactive frame-rate. Other methods
[Carriere er al., 2015; Adams et al., 2017] proposed some
strategies to vectorize persistence diagrams, which can be
used in kernel based classifiers. These strategies were in-
tegrated into a general neural network framework for graph
classification [Carriere et al., 2019]. In addition, the topolog-
ical features extracted by PH can be used for deep learning
interpretability [Gabrielsson and Carlsson, 2019], adversar-
ial attacks [Gebhart and Schrater, 2017], automated architec-
ture design [Carlsson and Gabrielsson, 2020] and complexity
measures [Guss and Salakhutdinov, 2018; Rieck et al., 2018]
for neural networks.

Topology-loss-based Methods

The differentiability of PH makes it possible to optimize the
data distribution via topology loss function. This kind of
methods take the parameters and outputs of neural networks
as input to compute PH, and allow gradient-based optimiza-
tion algorithms to push the topology of input to the desired
structure.

[Hofer et al., 2019] applied PH to the latent vectors learned
from the encoder, and designed a differentiable topological
loss term to promote the extracted features to have certain
topological structures or connectivity properties. In previous
works [Hu et al., 2019; Clough et al., 2020], the topology loss
functions were designed for end-to-end neural networks to
guide the image semantic segmentation results to have speci-
fied topological structures. [Gabrielsson et al., 2020] used PH
on the weights of neural networks for regularization, allowing
the weights to tend to form a small number of clusters.

3 Method

Similar to other baseline networks, our point cloud segmenta-
tion network uses cross-entropy loss to achieve per-point la-
bel accuracy. On this basis, we embed a topological loss term
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Figure 2: Point cloud segmentation network architecture embedded with the proposed TopoSeg module and topological loss. The upper
branch is the Point cloud segmentation network, and the bottom branch is the TopoSeg module.

based on PH into the proposed TopoSeg module to refine the
topology of the segmentation results, as shown in Figure 2.

3.1 Topological Loss

Persistent Homology

The study object of PH is an increasing nested sequence of
simplicial complexes, called filtration. An abstract simpl-
cial complex K is a finite collection of simplices (i.e., k-
dimensional polytopes like points, lines, triangles, tetrahe-
dron) which is closed under taking subsets. Defining a real-
valued monotonic function f : £ — R on a simplicial com-
plex K and the level sub-complexes K(a) = f~!(—o0, ],
we can obtain the super-level set filtration of X by decreasing
the parameter o,

@CK(OK()) CIC(Oél) C"'CK(OKL):K:,
g > o1 >0 > 0.

ey

PH studies the topology of the underlying space by track-
ing the appearance and disappearance of topological features
at different scales. The importance of topological features is
reflected by the length of their lifetime. The persistent topo-
logical features which survive on a wide range of scales are
considered to be stable features, while the short-lived features
are considered to be caused by noise or specific parameter se-
lection. PH describes the lifetime of a topological feature by
the birth and death time (scale parameter) concisely. There
are many summary representations of PH, among which per-
sistence diagram is a common and popular topological sig-
nature. A persistence diagram PDy(f) C R? is a multiset
of k-dimensional features’ (birth, death) tuples, which can be
regarded as a mapping from filtration to a point set,

PDy : (K, f) — {bi,di}, ()

where each point {b;,d;} € PDjy, corresponds to a topologi-
cal feature that born at b; and died at d;.

The advantage of using PH to analyze the topology is that
it can better reflect more stable topological characteristics of
data space and is robust to certain data perturbations.

Topological Loss Definition
In our method, we use super-level set filtration based on a
fixed simplicial complex to construct topological loss. For
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simplicity, we first consider binary classification task for a
certain category. For a point cloud, which is defined as a fi-
nite points in Euclidean space, the Vietoris-Rips complex is
a natural choice to approximate the topology of the underly-
ing space for homology computation. Given a set of points in
n-dimensional Euclidean space P = {po,p1,...,pm € R"}
and a fixed radius scale ¢, the Vietoris—Rips complex VR (P)
contains simplices in which the distances of any pair of points
are less than e. The formal definition of the Vietoris—Rips
complex is as below,

VRe(P) = {U g P(P)|d(pmp]) S Eavpiapj € 0}7 (3)
where P(P) is the power set of P, and d(-, -) is the Euclidean
distance.

Then we define a function on the simplicial complex
VR (P) for filtration f : VR.(P) — R, where the func-
tion value at each point f(p;) is the prediction obtained by
the neural network, and the function value of each simplex
o is the smallest function value of each point in the simplex.
Thus we build a mapping from the simplex o to the point
w(o) = argminpes f(p). We construct a super-level set fil-
tration and calculate the persistence diagrams PDy(f) and
PDy(g) corresponding to the network predictions and the
ground truth respectively. Notice that as the filter value de-
creases, the existing topological features will be merged and
die, which means that all points in the persistence diagram
PDy,(-) are below the diagonal of the first quadrant. Because
the function value is non-negative, the death time of topolog-
ical features that survive to the end can be recorded as O.

In particular, for the ground truth, the function value at
each point is either O or 1. All meaningful topological fea-
tures are born at f = 1 and die at f = 0, thus all persistence
points in PDy,(g) are at (1,0). As mentioned before, it is usu-
ally considered that the long-lived features represent the real
and stable topology of the data, that is, the persistence points
far away from the diagonal are corresponding to the stable
topological features and contain more crucial information.

Since PDy,(f) and PDy,(g) are point sets in R?, the Earth
Mover’s Distance (EMD) is a appropriate metric to measure
the similarity of two point sets. The EMD between the point
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set S7 and S; is shown as below

EMD(S),$3) = | min_ Z |z — @(z)|?, @)
av Sl

where ® : S; — S5 is a bijection. To calculate the EMD
between two point sets, we need to find an optimal match be-
tween Sp and Sy. Because the number of points in PDy(f)
and PDy(g), denoted as |PDy(f)|,|PDg(g)|, may be dif-
ferent, we design the following matching strategy to calculate
the EMD:

o If |PDy(f)| > |PDy(g)|, then the top-| PDy(g)| points
in PDy(f) closest to (1,0) are matched with (1,0), and
the remaining unmatched points in P Dy (f) are matched
to the diagonal.

o If |[PDy(f)| <= |PDx(g)|, then all points in PDy(f)
are matched with (1, 0), the remaining unmatched points
in PDy,(g) are matched to the diagonal.

This matching strategy is more efficient than the optimal
matching algorithm of two arbitrary point sets. It only needs
to sort the distances from the points in PDy(f) to (0,1), and
the time complexity is O(nlogn). Thus, for i — th category,
the topological loss Li,p0—; 1s as follows

Ltopofi(fivgi) = ZEMD(PDk(fZ)7PDk(gl))
k

=2 2

k pePDy(f:)

For the multi-class segmentation task, it can be regarded as
multiple binary classification problems and the total topolog-
ical loss Ly,p, can be the average and sum of the 10ss Lyqpo,
for each category. Thus, the total loss function of the network
is defined as follows

L(fa g) = Lce(fseg7g) + )\Ltopo(ftopoag)

c
1
= 5 Z Ltopo—'i (ftopo—??v gi)’
=1

5)
llp = o1 @)II*.

(6)
Ltopo (ftopoa g)

where g denotes the ground truth, fseq, fiopo are the output
of the network (as shown in Figure 2). fs.4 is the output for
multi-class segmentation task, where each dimension of the
output corresponding to the probability of a category is mu-
tually exclusive, while f;,), is the binary classification out-
put for all C' categories, which is non-exclusive. In Figure 2,
Softmax makes the sum of the outputs of all classes equal
to 1, while Sigmoid calculates the output of each class sep-
arately, i.e., the output value of one class does not affect the
output value of another, which is non-exclusive. The def-
inition of f;op, is non-exclusive refers to the non-exclusive
characteristic of Sigmoid. L, Liop, denotes cross-entropy
loss and topological loss respectively, A is the weight of the
topological loss.

It should be noted that the point cloud segmentation net-
work is still mainly constrained by the cross-entropy loss.
The topological loss cannot work alone, which is mainly to
refine a relatively reasonable probability mapping to get a bet-
ter segmentation result with more precise topological struc-
tures, rather than infer topology directly from unreasonable
probability output.
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Topology Loss Optimization

To introduce topological loss into the deep learning frame-
work for optimization, we need to calculate the gradient of
the topological loss. From Eq.(5), it can be viewed that points
in persistence diagrams that participate in the loss calcula-
tion depend on some specific function values (thresholds),
at which the topological features appear or disappear. Ac-
cording to the chain rule, we need to define a mapping from
the points in the persistence diagram P Dy (f) to the points
in the original point cloud. From the calculation of PH, it
can be seen that each persistent point in PDy(f) represents
the threshold corresponding to a topological feature’s birth
and death. And according to the definition of the function
f: VR (P) — R, the function value is exactly the output of
the neural network at points in original point cloud. Consider-
ing the construction of the super-level set filtration, when the
threshold drops to «;, some new points {p € P|f(p) = «;}
will join in the construction of the level sub-complexes. This
will lead to the birth of new topological features or the death
of original topological features, and the persistence diagram
will record these events in the form of (birth, death) tuples.
Thus we define a mapping hy,

k2 {bi, di} — (ep(ow), ep(oa)), @)

where {b;, d; } is the persistence point in PDy(f), op and o4
are the key simplexes leading to the birth and death of the
corresponding topological feature, respectively. ¢p(o) is the
key point in original point cloud to determine the value of the
simplex o. Here, we use the super-level set filtration, and the
corresponding ¢p(c) is the point with the smallest function
value in the simplex o.

In this way, we establish the relationship between the per-
sistence points and the key points in the original point cloud.
Then we calculate the gradient of topological loss at each per-
sistence point {b;,d;} € PDy(f), and the gradients are as-
signed to the corresponding key points cp(oy), cp(og) during
backpropagation. The gradient of topological loss (Eq.(9)) is

defined as follows,
> >

\Y% Ltopo i flagz
k pePDy(fi)

2[p - ¢x(p)]

=D D 2Af(r) - birth(qb;;(p))}%i(p))
K pePDL(f)
2(f(cd(p)) — death((p,*c(p))]W’
®)

where cb(p) and cd(p) represent the birth and death key
points in original point cloud corresponding to the persistence
point p. The output of the network and the weights of the net-
work are denoted by f(-) and w, respectively.

3.2 Network Architecture

Considering that the main constraint of the network is still
the cross-entropy loss, and the topological loss term is used
to refine the results from the perspective of topological struc-
ture. Thus, as shown in Figure 2, we design a general strategy
to incorporate the proposed TopoSeg module and topological
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mean | aero  bag cap car chair El(li(l;ne guitar knife lamp laptop motor mug  pistol rocket E:;:;Z table

PointNet++ 84.97 | 8440 81.81 70.69 84.85 8485 83.65 9427 86.77 7629 9646 7638 7591 91.75 63.74 9339 86.73
PointNet++ + TopoSeg | 85.99 | 85.20 82.06 83.67 83.86 87.26 87.79 93.62 90.06 7821 96.53 7492 79.63 9194 6515 9333 86.71
DGCNN 91.33 | 89.30 93.69 90.11 87.53 9345 76.80 94.98 88.69 87.53 97.70 82.06 98.73 90.76 80.40 94.99 91.80
DGCNN + TopoSeg ‘ 91.54 ‘ 88.75 9412 9335 87.92 93.06 79.65 9491 9135 89.02 97.69 80.65 98.67 92.68 78.01 94.67 92.22
CurveNet 91.27 | 88.70 94.06 88.24 86.11 93.63 8451 9542 90.87 8890 97.62 81.02 98.77 94.06 7893 9325 OI.10
CurveNet + TopoSeg ‘ 91.43 ‘ 88.56 9559 9091 87.27 9353 85.69 9558 91.25 89.13 98.00 78.09 99.32 9328 7820 9343 91.39

Table 1: Part segmentation results on ShapeNet. Metric is Accuracy(%).

loss into point cloud segmentation networks. This network
extracts per point features via the backbone network, and con-
tains two branches. The first branch is the topologically con-
strained branch, which further extracts features through mul-
tiple MLP layers, and uses a sigmoid layer to predict the prob-
abilities of each point belonging to each category. The output
of this branch f,, participates in the calculation of topologi-
cal loss. The second branch applies multiple MLP layers, and
the output is multiplied by the weight, which is the output of
the first branch. Then a softmax layer is used to obtain per
point scores fs.4 for the calculation of cross-entropy loss.

In summary, the topological loss can be simply incorpo-
rated into any existing segmentation networks that provides
per point predictions. The topological loss function can help
adjust the weights of the neural network, and ultimately make
the topological structure of the network output similar to the
ground truth.

4 Experiment

Our proposed TopoSeg module can be embedded into many
point cloud segmentation backbone networks to improve the
topology performance of the outputs. To evaluate the ef-
fectiveness of the proposed TopoSeg module and topological
loss, we mainly designed two groups of experiments, 3D ob-
ject part segmentation (Section 4.1) and edge point detection
(Section 4.2). In this work, all the experiments are conducted
in Linux with a Geforce RTX 3090 GPU. The network is built
based on the Pytorch framework, and the Dionysus package
is used for the calculation of PH.

4.1 3D Object Part Segmentation

In this part, we aim at the task of 3D object part segmen-
tation. Considering that objects of the same category often
have similar components, while the component structures of
objects belonging to different categories are more likely to
be different, the network can better learn the topology of the
components corresponding to a specific object category.

Dataset and Implement Details
This group of experiments are conducted on the large-scale
public dataset of 3D shapes, ShapeNet [Chang et al., 2015],
which is co-established by the researchers at Princeton, Stan-
ford and TTIC. ShapeNet contains 16,881 3D shapes from 16
main object categories and 50 part categories, and most ob-
jects consist of 2-5 parts. We select 512 points by random
sampling for each training sample.

As for the PH calculation settings, according to the data
distribution, we set the fixed radius scale ¢ = 0.05 to con-
struct the Vietoris—Rips complex VR (P), and we calculate
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0-2 dimensional persistence diagrams. For the sake of com-
putational efficiency, we set the maximum number of persis-
tence points to 300, and ignore the points exceeding the max-
imum number. Thus the dimension of the diagram for each
point cloud is [50, 3, 300, 2].

As for the network and training settings, Adam optimizer
with initial learning rate of 0.001 is used for training, and the
learning rate is reduced by half every 20 epochs. The batch
size and total training epochs is set to 64 and 200, respec-
tively. In the loss function Eq.(6), the weight of topology loss
Ais setto 0.001.

Comparison Results of 3D Object Part Segmentation

To evaluate the effectiveness of the topological loss, in this
paper, we corporate the topological loss into the baseline net-
works (PointNet++ [Qi et al., 2017b], DGCNN [Wang et al.,
2019] and CurveNet [Xiang et al., 2021]) for comparison and
show the qualitative and visualization results to illustrate the
improvement of our method. We take the accuracy as the
evaluation metric. It should be noted that due to the limita-
tion of computing resources, only part of the data is used for
training. Therefore, under the same experiment environment,
we retrain the original baseline networks with the same set-
tings in the original paper, and compare the results with our
method, shown in Table 1. Table 1 demonstrates that when
our proposed TopoSeg module is embedded into an existing
point cloud segmentation network, the segmentation accuracy
of about half of the objects is improved.

In Table 1, the proposed TopoSeg model decreases consid-
erably the accuraccy for class “motor’. We consider the rea-
sons is that the label of motor is not detailed enough, resulting
in a large number of rings or other complex topological struc-
tures in the samples, thus leading to some negative effects of
our module.

It should be noted that, for one thing, the proposed
TopoSeg module aims to improve the segmentation accuracy
for the result. On the other side, which is more important,
TopoSeg is design to improve the topology of the outputs.
However, in the experimental results, we find that both accu-
racy and mean IoU are hard to evaluate the topological struc-
ture. Actually, the results of applying mean IoU and accu-
racy are similar. Thus, we only list accuracy as the metric
in the manuscript. In addition, we find current metrics focus
mainly on the segmentation performance, while hard to eval-
uate the topological structure, maybe that is the reason why
the improvement on part segmentation seems to be marginal
in Table 1. Thus, we also provide plenty of visualized results
to assist evaluate the effectiveness of the proposed approach
(Figure 3).
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Figure 3: Visualization of typical samples on ShapeNet by embedding our proposed TopoSeg module and topological loss. The red points
indicate the correctly segmented point, and blue points indicate the wrongly segmented point.

Figure 3 shows the visualization results of some typical
samples. To show the comparison results more intuitively,
we use red and blue points to indicate correct predictions and
wrong predictions, respectively. Each line from left to right
are the results of baseline networks, baseline networks with
TopoSeg module and the ground truth (GT). As can be seen
from Figure 3, after adding the proposed TopoSeg module
and topological loss, the segmented components are relatively
more complete and some topological errors such as fractures
and holes can be corrected.

4.2 Edge Point Detection

For 3D edge line structure extraction, edge-point-based meth-
ods are commonly used, which detect potential edge points
first and then fitting 3D line segments by least square fitting,
region growing etc. Edge-point-based methods extract sharp
edges and retain more details, but the performance depends
on the accuracy of edge point detection.

In this part, we consider the edge point detection task as
the binary-class segmentation task, that is, given a point cloud
P = {pili =1,..., N}, we assign a edge or not edge label
to each point in P.

Dataset and Implement Details

This group of experiments are conducted on the dataset es-
tablished in [Yu et al., 20181, which contains 24 CAD mod-
els and 12 daily object models with sharp edges. The training
data are obtained by virtual scanning of CAD models, and
we sample around the annotated edge line segments to obtain
edge points. Here, the point whose shortest distance from the
edge is less than 0.01 is selected as the edge point.

As for the PH calculation settings, the fixed radius scale e
is set to 0.01, and we calculate 0-2 dimensional persistence
diagrams with up to 300 persistence points. With the net-
work and training settings, we use Adam optimizer with ini-
tial learning rate of 0.001, and the learning rate is reduced by
half every 10 epochs. The batch size, total training epochs
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accuracy | F1 score
PointNet++ [Qi ez al., 2017b] 0.9034 0.6267
PointNet++ + TopoSeg (Ours) | 0.9118 0.6386

Table 2: Results of edge point detection.

and the weight of topology loss A are set to 64, 200 and
0.0005, respectively. The segment fitting algorithm used in
this paper is the method in the previous work of [Lin et al.,
20171, which is a robust line segment grouping method with
false alarm filtering.

Comparison Results of Edge Point Detection

For edge point detection task, we use accuracy and F1 value
as evaluation metrics, and we select PointNet++ as baseline
to compare with the topology-aware network proposed in this
paper. The results are shown in Table 2. It can be seen that
the accuracy of the network with topological constraints reach
0.9118, exceeding PointNet++ by 0.84%. It indicates that
the proposed topology-aware network performs well in edge
point detection task, which provide more reliable candidate
points for the next line segment fitting stage.

Figure 4 shows some visualization results of edge point de-
tection. The first column is the input point cloud and ground
truth, and the second column is the detected points of Point-
Net++. In order to show the results more intuitively, we cal-
culate the distance from the detected edge point to the true
edges and map it to different colors, shown in the third col-
umn, where blue indicates short distance and red indicates
long distance. And the fourth and fifth column is the results
of our topology aware network. As can be seen from Figure 4,
compared with PointNet++ [Qi ef al., 2017b], the potential
edge points detected by our method are more distributed near
the edges, and less distributed on the surface of the object or
far away from the edges, which are more accurate in topolog-
ical structure.
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Figure 4: Visualization results of edge point detection.

The result of line fitting for detected edge points is shown
in Figure 5, where from left to right are the input point cloud,
the results of line fitting on the edge points extracted by Point-
Net++ and our network. From the fitting results we can see
that the edge point detected by our network are more reason-
able and the fitting lines are closer to the real edges. And due
to fewer false detected points, there are fewer false lines dis-
tributed on the surface of the object in the final fitting results.

5 Discussion

During the training phase, embedding the TopoSeg module
will increase the training time by about 2-3 times, compare
to the original network. During the testing phase, the effect
of the TopoSeg module has been reflected in the parameters
of the network through the topology loss. Moreover, it does
not participate in the calculation during testing, so it will not
bring extra the computational time in the testing phase. For
the memory, there is almost no extra cost during both training
and testing phases.

Our TopoSeg module is not learning based, but to constrain
the network by utilizing the topology information. For the
sparse point clouds, they provide less information for the seg-
mentation network to learn. So after embedding our TopoSeg
module, the outputs are improved more significantly. While,
for dense point clouds, the performance still improve, but not
that significantly. Thus, the network indeed gets benefit from
the TopoSeg module, while the point sampling will affect im-
provement degree. Furthermore, for the noised case, as with
the vanilla segmentation network, there is a drop in segmen-
tation accuracy, but our outputs are still better.

6 Conclusion

In this paper, we introduce the persistent homology theory
in topology into the deep learning frameworks in the form
of topological loss, to optimize the distribution of predic-
tions from the perspective of topology. Then, we propose a
topology-aware 3D point cloud segmentation neural network
module, TopoSeg, to constrain the global topology of the
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Input point cloud  p . Ner i+
TopoSeg

Edge ground truth

Figure 5: Visualization results of line segment fitting.

point cloud segmentation results. Besides, we design a gen-
eral strategy to simply embed the topology loss function into
the existing point cloud segmentation networks, to improve
the performance of the original networks. We demonstrate the
effectiveness of our proposed topology loss by two groups of
experiments: 3D object part segmentation and edge point de-
tection. The experiments show that the proposed topological
loss can effectively reduce the topological errors and improve
the performance of baseline networks.

The limitation of our method is the difficulty of extending
to large-scale real scene data. The computational complexity
of persistent homology is related to the scale of complex. For
large-scale data, the computation of persistent homology is
very time-consuming, so we only experiment on simple data
for the time being. In the future, we consider simplifying the
complex to improve the efficiency of the algorithm.
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