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Abstract
While there has been substantial progress in learning
suitable distance metrics, these techniques in gen-
eral lack transparency and decision reasoning, i.e.,
explaining why the input set of images is similar or
dissimilar. In this work, we solve this key problem
by proposing the first method to generate generic
visual similarity explanations with gradient-based
attention. We demonstrate that our technique is ag-
nostic to the specific similarity model type, e.g., we
show applicability to Siamese, triplet, and quadru-
plet models. Furthermore, we make our proposed
similarity attention a principled part of the learn-
ing process, resulting in a new paradigm for learn-
ing similarity functions. We demonstrate that our
learning mechanism results in more generalizable,
as well as explainable, similarity models. Finally,
we demonstrate the generality of our framework
by means of experiments on a variety of tasks, in-
cluding image retrieval, person re-identification, and
low-shot semantic segmentation.

1 Introduction
We consider the problem of learning similarity predictors for
metric learning and related applications. Given a query image
of an object, our task is to retrieve, from a set of reference
images, the object image that is most similar to the query
image. This problem finds applications in a variety of tasks,
including image retrieval [Chen and Deng, 2019], person re-
identification (re-id) [Zheng et al., 2019a], and even low-shot
learning [Shaban et al., 2017]. There has been substantial re-
cent progress in learning distance functions for these similarity
learning applications [Wang et al., 2019c].

Existing deep similarity predictors are trained in a distance
learning fashion so that the features of same-class data points
are close to each other in the learned embedding, while data
features from other classes are further away. Consequently,
most techniques distill this problem into optimizing a ranking
objective that respects the relative ordinality of pairs, triplets,
or even quadruplets [Law et al., 2013] of training examples.
These methods are characterized by the specificity of how
the similarity model is trained, e.g., data (pairs, triplets etc.)
sampling [Wu et al., 2017], sample weighting [Zheng et al.,
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Figure 1. Proposed visual similarity explanation and its applications.

2019b], and adaptive ranking [Rippel et al., 2016], among
others. However, a key limitation of these approaches is their
lack of decision reasoning, i.e., explanations for why the model
predicts the input set of images is similar or dissimilar. As we
demonstrate in this work, our method not only offers model
explainability, but such decision reasoning can also be infused
into the model training process, in turn helping bootstrap and
improve the generalizability of the trained similarity model.

Recent developments in CNN visualization have led to a
surge of interest in visual explainability. Some methods [Li et
al., 2018a; Wang et al., 2019b] enforce attention constraints
using gradient-based attention [Selvaraju et al., 2017], result-
ing in improved attention maps as well as downstream model
performance. These techniques essentially ask: where is the
object in the image? This limits their applicability to scenarios
involving object categorization. On the other hand, we ask
the question: what makes image A similar to image B but
dissimilar to image C? (see Fig. 1). While existing works can
explain classification models, their extensions to generating
such visual similarity explanations is not trivial. A principled
answer to this question will help explain models that predict
visual similarity, which is what we address in our work.

To this end, we propose a new technique to generate CNN
attention directly from similarity predictions. Note that this is
substantially different from GradCAM-inspired [Selvaraju et
al., 2017] existing work [Li et al., 2018a; Wang et al., 2019b;
Zheng et al., 2019a] where an extra classification module is
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needed to compute the network attention. Instead, our pro-
posed method generates visual attention from feature vectors
(produced by any CNN with fully-connected units) used to
compute similarity, thereby resulting in a flexible and generic
scheme that can be used in conjunction with any feature em-
bedding network. Furthermore, we show that the resulting
similarity attention can be modeled as the output of a differen-
tiable operation, thereby enabling its use in model training as
an explicit trainable constraint, which we empirically show im-
proves model generalizability. A key feature of our proposed
technique is its generality, evidenced by two characteristics we
demonstrate. First, our design is not limited to a particular type
of similarity learning architecture; we show applicability to
and results with three different types of architectures: Siamese,
triplet, and quadruplet. Next, we demonstrate the versatility of
our framework in addressing problems different from image
retrieval (e.g., low-shot semantic segmentation) by exploit-
ing its decision reasoning functionality to discover regions of
interest. To summarize, our key contributions include:

• We present the first gradient-based similarity attention,
to generate visual explanations from generic similarity
metrics, equipping similarity models with explainability.

• Our proposed method only requires feature vectors to
generate visual attention, thereby extensible to any fea-
ture embedding CNN model.

• We show how the proposed similarity attention can be for-
mulated into trainable constraints, resulting in a new sim-
ilarity mining learning objective and enabling similarity-
attention-driven learning mechanisms for training simi-
larity models with improved generalizability.

• We demonstrate the versatility of our proposed frame-
work by a diverse set of experiments on a variety of tasks
(e.g., image retrieval, person re-id and low-shot semantic
segmentation) and similarity model architectures.

2 Related Work
Our work is related to both the metric learning and visual
explainability literature. In this section, we briefly review
closely-related methods along these directions respectively.

Learning Distance Metrics. Metric learning approaches
attempt to learn a discriminative feature space to minimize
intra-class variations, while also maximizing the inter-class
variance. Traditionally, this translated to optimizing learning
objectives based on the Mahalanobis distance function or its
variants. Much recent progress with CNNs has focused on
developing novel objective functions or data sampling strate-
gies [Wu et al., 2017]. Substantial effort has also been ex-
pended in proposing new objective functions for learning the
distance metric [Sohn, 2016][Song et al., 2016], and proxy-
NCA [Movshovitz-Attias et al., 2017]. The goal of these and
related objective functions is essentially to explore ways to
penalize training data samples (pairs, triplets, quadtruplets, or
even distributions [Rippel et al., 2016]) so as to learn a discrim-
inative embedding. In this work, we take a different approach.
Instead of just optimizing a distance objective, we explicitly
consider and model network attention during training. This
leads to two key innovations over existing work. First, we

equip our trained model with decision reasoning functionality.
Second, by means of trainable attention, we guide the network
to discover local image regions that contribute the most to the
final decision, thereby improving model generalizability.

Learning Visual Explanations. Dramatic performance
improvements of vision algorithms driven by black-box CNNs
have led to a recent surge in attempts [Mahendran and Vedaldi,
2015; Zhou et al., 2016; Selvaraju et al., 2017] to interpret
model decisions. Most CNN visual explanation techniques
fall into either response-based or gradient-based categories.
Class Activation Map (CAM) [Zhou et al., 2016] used an ad-
ditional fully-connected unit on top of the original deep model
to generate attention maps, thereby requiring architectural
modification during inference. Grad-CAM [Selvaraju et al.,
2017] solved this problem by generating attention maps using
class-specific gradients of predictions. There has been works
took a step forward, e.g.[Li et al., 2018a; Wang et al., 2019b;
Zheng et al., 2019a] use the attention maps to enforce trainable
attention constraints, demonstrating improved model perfor-
mance. These aforementioned gradient-based techniques all
require a well-trained classifier for generating visual explana-
tions and reply on application-specific assumptions. A few
recent examples of attempts to visually explain similarity mod-
els include Plummer et al. [Plummer et al., 2020] and Chen
et al. [Chen et al., 2020]. While Plummer et al. [Plummer
et al., 2020] needs attribute labels coupled with an attribute
classification module and a saliency generator to generate
explanations, and Chen et al. [Chen et al., 2020] adopts a
two-stage pipeline which first generates gradients by sampling
training data tuples and then transfers gradient weight from
training to testing by nearest neighbor search, our method
is more generic that it does not need extra labels/additional
learning modules, or training data access and weights transfer.
Our proposed algorithm can generate similarity attention from
any similarity measure, and additionally, can enforce train-
able constraints using the generated similarity attention. Our
design leads to a flexible technique and generalizable model
that we show competitive results in areas ranging from metric
learning to low-shot semantic segmentation.

3 Proposed Method

Given a set of N labeled images {(xi, yi)}, i = 1, . . . , N each
belonging to one of k categories, where x ∈ RH×W×c, and
y ∈ {1, . . . , k}, we aim to learn a distance metric to measure
the similarity between two images x1 and x2. Our key inno-
vation includes the design of a flexible technique to produce
similarity model explanations by means of CNN attention,
which we show can be used to enforce trainable constraints
during model training. This leads to a model equipped with
similarity explanation capability as well as improved model
generalizability. In Section 3.1, we first briefly discuss the
basics of existing similarity learning architectures followed by
our proposed technique to learn similarity attention, and show
how it can be easily integrated with existing networks. In Sec-
tion 3.2, we discuss how the proposed mechanism facilitates
principled attentive training of similarity models with our new
similarity mining learning objective.
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3.1 Similarity Attention
Traditional similarity predictors such as Siamese or triplet
models are trained to respect the relative ordinality of dis-
tances between data points. For instance, given a training
set of triplets {(xa

i ,x
p
i ,x

n
i )}, where (xa

i ,x
p
i ) have the same

categorical label while (xa
i ,x

n
i ) belong to different classes,

a triplet similarity predictor learns a d−dimensional feature
embedding of the input x, f(x) ∈ Rd, such that the distance
between f(xa

i ) and f(xn
i ) is larger than that between f(xa

i )
and f(xp

i ) (within a predefined margin α).
Starting from such a baseline predictor (we choose the

triplet model for all discussion here, but later show variants
with Siamese and quadruplet models as well), our key insight
is that we can use the similarity scores from the predictor to
generate visual explanations, in the form of visual attention
maps [Selvaraju et al., 2017], for why the current input triplet
satisfies the triplet criterion w.r.t the learned feature embedding
f(x). As an example of our final result, see Fig. 1, where we
note our model is able to highlight common (cat) face region
in the anchor (A) and the positive (B) image, whereas we high-
light the corresponding face and ears region for the dog image
(negative, C), illustrating why this current triplet satisfies the
triplet criterion. This is what we refer to by similarity atten-
tion: the ability of the similarity predictor to automatically
discover local regions in the input that contribute the most to
the final decision (in this case, satisfying the triplet condition)
and visualize these regions by means of attention maps.

Note that our idea of generating network attention from the
similarity score is different from existing work [Selvaraju et
al., 2017; Zheng et al., 2019a], in which an extra classifica-
tion module and the classification probabilities are used to
obtain attention maps. In our case, we are not limited by this
requirement of needing a classification module. Instead, as
we discuss below, we compute a similarity score directly from
the feature vectors (e.g., f(xa

i ), f(x
p
i ), and f(xn

i )), which is
then used to compute gradients and obtain the attention map.
A crucial advantage with our method is that this results in
a flexible and generic scheme, that can be used to visually
explain virtually any feature embedding network.

An illustration of our proposed similarity attention gener-
ation technique is shown in Figure 2. Given a triplet sample
(xa,xp,xn), we first extract feature vectors fa, fp, and fn

respectively. All the feature vectors are normalized to have
l2 norm equal to 1. Ideally, a perfectly trained triplet similar-
ity model must result in fa, fp, and fn satisfying the triplet
criterion. Under this scenario, local differences between the
images in the image space will roughly correspond to propor-
tional differences in the feature space as well. Consequently,
there must exist some dimensions in the feature space that con-
tribute the most to this particular triplet satisfying the triplet
criterion, and we seek to identify these elements in order to
compute the attention maps. To this end, we compute the
absolute differences and construct the weight vectors wp and
wn as wp = 1− |fa − fp| and wn = |fa − fn|.

With wp, we seek to highlight the feature dimensions that
have a small absolute difference value (e.g., for those dimen-
sions t, wp

t will be closer to 1), whereas with wn we seek
to highlight the feature dimensions with large absolute differ-
ences. Given wp and wn, we construct a single weight vector

Figure 2. Similarity attention and similarity mining techniques.

w = wp ⊙wn (⊙ denotes element-wise product operation).
With w, we will obtain a higher weight with feature dimen-
sions that have a high value in both wp and wn. To further
understand this intuition, let us consider a simple example. If
the first feature dimension fa(1) = 0.80 and fp(1) = 0.78,
then this first dimension is important for the anchor to be close
to the positive. In this case, the first dimension of the corre-
sponding weight vector wp(1) = (1− |0.80− 0.78|) = 0.98,
which is a high value, quantifying the importance of this par-
ticular feature dimension for the anchor and positive to be
close. Given these high-value dimensions, we identify all
such important dimensions common across both wp and wn

with the single weight vector w. In other words, we focus on
elements that contribute the most to (a) the positive feature
pair being close, and (b) the negative feature pair being further
away. This way, we identify dimensions in the feature space
that contribute the most to fa, fp, and fn satisfying the triplet
criterion. We now use these feature dimensions to compute
network attention for the current image triplet (xa,xp,xn).

Given w, we compute the dot product of w with fa, fp,
and fn to get the sample scores sa = wT fa, sp = wT fp,
and sn = wT fn for each image (xa,xp,xn) respectively. We
then compute the gradients of these sample scores with respect
to the image’s convolutional feature maps to get the attention
map. Specifically, given a score si, i ∈ {a, p, n}, the attention
map Mi ∈ Rm×n is determined as:

Mi = ReLU

(∑
k

αkAk

)
(1)

where Ak ∈ Rm×n is the kth(k = 1, . . . , c) convolu-
tional feature channel (from one of the intermediate lay-
ers) of the convolutional feature map A ∈ Rm×n×c and
αk = GAP

(
∂si

∂Ak

)
. The GAP operation is the same global

average pooling operation described in [Selvaraju et al., 2017].

Extensions to other architectures
Our proposed technique to generate similarity attention is not
limited to triplet CNNs and is extensible to other architectures
as well. Here, we describe how to generate our proposed
similarity attention with Siamese and quadruplet models.

For a Siamese model, the inputs are pairs (x1,x2). Given
their feature vectors f1 and f2, we compute the weight vector
w in the same way as the triplet scenario. If x1 and x2 belong
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to the same class, w = 1− |f1 − f2|. If they belong to differ-
ent classes, w = |f1 − f2|. With w, we compute the sample
scores s1 = wT f1 and s2 = wT f2, and use Equation 1 to
compute attention maps M1 and M2 for x1 and x2 respec-
tively. For a quadruplet model, the inputs are quadruplets
(xa,xp,xn1,xn2), where xp is the positive sample and xn1

and xn2 are negative samples with respect to xa. Here, we
compute the three difference feature vectors f1 = |fa − fp|,
f2 = |fa − fn1|, and f3 = |fa − fn2|. Following the intu-
ition described in the triplet case, we get the difference weight
vectors as w1 = 1 − f1 for the positive pair and w2 = f2

and w3 = f3 for the two negative pairs. The overall weight
vector w is then computed as the element-wise product of the
three individual weight vectors: w = w1 ⊙w2 ⊙w3. Given
w, we compute the sample scores sa = wT fa, sp = wT fp,
sn1 = wT fn1, and sn2 = wT fn2, and use Equation 1 to
obtain the four attention maps Ma, Mp, Mn1, and Mn2.

3.2 Learning with Similarity Mining
With our proposed mechanism to compute similarity atten-
tion, one can generate attention maps, as illustrated in Fig. 1,
to explain why the similarity model predicted that the data
sample satisfies the similarity criterion. However, we note
all operations leading up to Equation 1, where we compute
the similarity attention, are differentiable and we can use the
generated attention maps to further bootstrap the training pro-
cess. As we show later, this helps improve downstream model
performance and generalizability. To this end, we describe a
new learning objective, similarity mining, that enables such
similarity-attention-driven training of similarity models.

The goal of similarity mining is to facilitate the complete
discovery of local image regions that the model deems nec-
essary to satisfy the similarity criterion. To this end, given
the three attention maps Mi, i ∈ {a, p, n} (triplet case), we
upsample them to be the same size as the input image and
perform soft-masking, producing masked images that exclude
pixels corresponding to high-response regions in the atten-
tion maps. This is realized as: x̂ = x ∗ (1 − Σ(M)), where
Σ(Z) = sigmoid(α(Z− β)) (all element-wise operations and
α and β are pre-set, by cross validation, constants). These
masked images are then fed back to the same encoder of
the triplet model to obtain the feature vectors f∗a, f∗p, and
f∗n. Our proposed similarity mining loss Lsm, can then be
expressed as:

Lsm =
∣∣∣∥f∗a − f∗p∥ − ∥f∗a − f∗n∥

∣∣∣ (2)

where ∥t∥ represents the Euclidean norm of the vector t. The
intuition here is that by minimizing Lsm, the model has dif-
ficulties in predicting whether the input triplet would satisfy
the triplet condition. This is because as Lsm gets smaller, the
model will have exhaustively discovered all possible local re-
gions in the triplet, and erasing these regions (via soft-masking
above) will leave no relevant features available for the model
to predict that the triplet satisfies the criterion.

Extensions to Other Architectures
Like similarity attention, similarity mining is also extensible to
other similarity learning architectures. For a Siamese similar-
ity model, we consider only the positive pairs when enforcing

the similarity mining objective. Given the two attention maps
M1 and M2, we perform the soft-masking operation described
above to obtain the masked images, resulting in corresponding
features f∗1 and f∗2. The similarity mining objective then
attempts to maximize the distance between f∗1 and f∗2, i.e.,
Lsm = −|f∗1 − f∗2|. Like the triplet case, the intuition of
Lsm here is that it seeks to get the model to a state where
after erasing, the model can no longer predict that the data pair
belongs to the same class. This is because as Lsm gets smaller,
the model will have exhaustively discovered all corresponding
regions that are responsible for the data pair to be predicted
as similar, i.e., low feature space distance), and erasing these
regions (via soft-masking) will result in a larger feature space
distance between the positive samples.

For a quadruplet similarity model, using the four attention
maps, we compute the feature vectors f∗a, f∗p, f∗n1, and f∗n2

using the same masking strategy above. We then consider the
two triplets T1 = (f∗a, f∗p, f∗n1) and T2 = (f∗a, f∗p, f∗n2) in
constructing the similarity mining objective as Lsm = LT1

sm +
LT2
sm, where LT1

sm and LT2
sm correspond to Equation 2 evaluated

for T1 and T2 respectively.

3.3 Overall Training Objective
We train similarity models with both the traditional similar-
ity/metric learning objective Lml (e.g., contrastive, triplet, etc.)
as well as our proposed similarity mining objective Lsm. Our
overall training objective L is:

L = Lml + γLsm (3)

where γ is a weight factor controlling the relative importance
of Lml and Lsm. Fig. 2 summarizes our training pipeline.

4 Experiments and Results
We conduct experiments on three different tasks: image re-
trieval (Sec. 4.1), person re-identification (Sec. 4.2), and one-
shot semantic segmentation (Sec. 4.3) to demonstrate the ef-
ficacy and generality of our proposed framework. We use a
pretrained ResNet50 as our base architecture and implement
all our code in Pytorch.

4.1 Image Retrieval
We conduct experiments on the CUB200 (“CUB”) [Wah et al.,
2011], Cars-196 (“Cars”)[Krause et al., 2013] and Stanford
Online Products (“SOP”) [Song et al., 2016] datasets, fol-
lowing the protocol of Wang et al. [Wang et al., 2019c], and
reporting performance using the standard Recall@K (R-K)
metric [Wang et al., 2019c]. We first show ablation results
to demonstrate performance gains achieved by the proposed
similarity attention and similarity mining techniques. Here,
we also empirically evaluate our proposed technique with
three different similarity learning architectures to demonstrate
its generality. In Table 1, we show both baseline (trained
only with Lml) and our results with the Siamese, triplet, and
quadruplet architectures (trained with Lml + γLsm). As can
be noted from these numbers, our method consistently im-
proves the baseline performance across all three architectures.
Since the triplet model gives the best performance among the
three architectures considered in Table 1, for all subsequent
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experiments, we only report results with the triplet variant. We
next compare the performance of our proposed method with
competing, state-of-the-art metric learning methods in Table 2.
We note our proposed method is quite competitive, with R-1
performance improvement of 2.6% on CUB, matching (with
DeML) R-1 and slightly better R-2 performance on Cars, and
very close R-1 and slightly better R-1k performance (w.r.t. MS
[Wang et al., 2019c]) on SOP.

Arch. Type R-1 R-2 R-4

Siamese Baseline 65.9 77.5 85.8
SAM 67.7 77.8 85.5

Triplet Baseline 66.4 78.1 85.6
SAM 68.3 78.9 86.5

Quadruplet Baseline 64.7 75.6 85.2
SAM 66.4 77.0 85.2

Table 1. Ablation study on CUB dataset. All numbers in %.

CUB Cars SOP
R-1 R-2 R-1 R-2 R-1 R-1k

Lifted [Song et al., 2016] 47.2 58.9 49.0 60.3 62.1 97.4
N-pair [Sohn, 2016] 51.0 63.3 71.1 79.7 67.7 97.8
P-NCA [Movshovitz-Attias et
al., 2017]

49.2 61.9 73.2 82.4 73.7 -

HDC [Yuan et al., 2017] 53.6 65.7 73.7 83.2 69.5 97.7
BIER [Opitz et al., 2017] 55.3 67.2 78.0 85.8 72.7 98.0
ABE [Kim et al., 2018] 58.6 69.9 82.7 88.8 74.7 98.0
MS [Wang et al., 2019c] 65.7 77.0 84.1 90.4 78.2 98.7
HDML [Zheng et al., 2019b] 53.7 65.7 79.1 89.7 68.7 -
DeML [Chen and Deng, 2019] 65.4 75.3 86.3 91.2 76.1 98.1
GroupLoss [Elezi et al., 2020] 66.9 77.1 88.0 92.5 76.3 -
MS+SFT [Zhu et al., 2020] 66.8 77.5 84.5 90.6 73.4 -
DRO-KLM [Qi et al., 2020] 67.7 78.0 86.4 91.9 - -
SAM 68.3 78.9 86.3 91.4 77.9 98.8

Table 2. Results on CUB, CARS, and SOP. All numbers in %.

In addition to obtaining superior quantitative performance,
another key difference between our method and competing
algorithms is explainability. With our proposed similarity
attention mechanism, we can now visualize, by means of
similarity attention maps, the model’s decision reasoning. In
Figures 4(a) and (b), we show examples of attention maps
generated with our method on CUB and Cars testing data
with both within- and cross-domain training data respectively.
As shown in these figures, our proposed method is generally
able to highlight intuitively satisfying correspondence regions
across the images in each triplet. For example, in Fig. 4(a) (left
1), the beak color is what makes the second bird image similar,
and the third bird image dissimilar, to the first (anchor) bird
image. In Figures 4(a) and (b) (right), we show inter-dataset
(cross-domain) results to demonstrate model generalizability.
We note that, despite not being trained on relevant data, our
model trained with similarity attention is able to discover local
regions contributing to the final decision.

While one may add a classification module to any similarity
CNN (e.g., Siamese), and then apply GradCAM [Selvaraju
et al., 2017] to generate class-specific visual explanations,
we argue that GradCAM is specifically designed for image
classification tasks, which would generate saliency maps for

each image (of the input pair) independently and does not
ensure faithful explanation of the underlying similarity of
the pair of images. Concretely, using GradCAM in such an
independent fashion may fail to find explicit correspondences
between the pair of input images as we shown in Figure 3,
since it is designed to highlight regions that contribute to that
individual image’s classification activations.

Why are they similar?

Input Grad-CAM Proposed

Why are they dissimilar?

Input Grad-CAM Proposed

Figure 3. GradCAM (on adapted similarity CNNs with classification
head) vs. proposed method. The proposed method is able to highlight
corresponding regions more clearly when compared to GradCAM.

4.2 Person Re-Identification

We conduct experiments on person re-id to further prove the
efficacy of our proposed framework. We evaluated on the
CUHK03-NP dataset (“CUHK”) [Zhong et al., 2017] and
DukeMTMC-reid (“Duke”) [Ristani et al., 2016] datasets,
following the protocol in Sun et al. [Sun et al., 2018].

We use the baseline architecture of Sun et al. [Sun et al.,
2018] and integrate our proposed similarity learning objective
of Equation 3. We set γ = 0.2 and train the model for 40
epochs with the Adam optimizer. We summarize our results
in Table 3, where we note our method results in about 3%
rank-1 performance improvement on CUHK and very close
performance (88.5% rank-1) to the best performing method
(MGN) on Duke. We note that some of these competing
methods have re-id specific design choices (e.g., upright pose
assumption for attention consistency in CASN [Zheng et al.,
2019a], hard attention in HA-CNN [Li et al., 2018b], attentive
feature refinement and alignment in DuATM [Si et al., 2018]).
On the other hand, we make no such assumptions, however, is
able to achieve competitive performance.

CUHK Duke
R-1 mAP R-1 mAP

SVDNet [Sun et al., 2017] 41.5 37.3 76.7 56.8
HA-CNN [Li et al., 2018b] 41.7 38.6 80.5 63.8
DuATM [Si et al., 2018] - - 81.8 64.6
PCB+RPP [Sun et al., 2018] 63.7 57.5 83.3 69.2
MGN [Wang et al., 2018] 66.8 66.0 88.7 78.4
CASN (PCB) [Zheng et al.,
2019a]

71.5 64.4 87.7 73.7

Proposed 74.5 67.5 88.5 75.8

Table 3. Re-Id results on CUHK and Duke (numbers in %).
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(a) Triplet attention maps on CUB dataset for model trained on CUB (left) and CARS (right).Anchor Positive Negative

Proposed: Trained with CUB (within-domain evaluation) Proposed: Trained with CARS (cross-domain evaluation)

Anchor Positive Negative Anchor Positive Negative Anchor Positive Negative Anchor Positive Negative Anchor Positive Negative

Anchor Positive Negative

Proposed: Trained with CARS (within-domain evaluation) Proposed: Trained with CUB (cross-domain evaluation)

Anchor Positive Negative Anchor Positive Negative Anchor Positive Negative Anchor Positive Negative Anchor Positive Negative

(b) Triplet attention maps on CARS dataset for model trained on CARS (left) and CUB (right).

Figure 4. Triplet attention maps on (a) CUB and (b) CARS with our proposed method for models trained with CUB and CARS.

4.3 Weakly Supervised One-Shot Semantic
Segmentation

In the one-shot semantic segmentation task, we are given a test
image and a pixel-level semantically labeled support image,
and we are to semantically segment the test image. Given
that we learn similarity predictors, we can use our model to
establish correspondences between the test and the support
images. With the explainability of our method, the resulting
similarity attention maps we generate can be used as cues
to perform semantic segmentation. We use the PASCAL−5i

dataset (“Pascal”) [Shaban et al., 2017] for all experiments,
following the same protocol as Shaban et al. [Shaban et al.,
2017]. A visualization of the proposed weakly-supervised
one-shot segmentation workflow is shown in Figure 5.

Query 
image

Input triplets

Anchor

Positive

Negative
(when N-way 
segmentation)

Support of 
Class 1

Support of 
Class 2

Similarity 
attention

Mask 
Generation

Why is Anchor
similar to Positive
but not Negative

Segmentation 
result for 
Class 1

Figure 5. Our weakly-supervised one-shot segmentation workflow.

Given a test image and the corresponding support image,
we first use our trained model to generate two similarity atten-
tion maps for each image. We then use the attention map for
the test image to generate the final segmentation mask using
the GrabCut [Rother et al., 2004] algorithm. We call this the
“1-way 1-shot” experiment. In the “2-way 1-shot” experiment,

Query (Q) Support (S) Attention on Q Attention on S Seg. Result Ground Truth

Figure 6. One-shot segmentation results from the PASCAL−5i.

the test image has two objects of different classes and we are
given two support images, image 1 and 2 from class 1 and 2
respectively. In this case, to generate results for object class 1,
we use the support image 1 as the positive image and support
image 2 as negative. Similarly, to generate results for object
class 2, we use support image 2 as the positive image and
support image 1 as negative. The “2-way 5-shot” experiment
is similar; the only difference is we now have five support
images for each of the two classes (instead of one image as
above). We first show some qualitative results in Fig. 6 and
7 (left to right: test image, support image, test attention map,
support image attention map, predicted segmentation mask,
ground truth mask). In the third row of Fig. 6, we see that,
in the test attention map, our method is able to capture the
“dog” region in the test image despite the presence of a “cat”
in the support image, helping generate the final segmentation
result. In Fig. 7 first row, we see we are able to segment out
both the person and the bike following the person and bike
categories present in the two support images, helping generate
a reasonably accurate final segmentation result. We also show
the 1-way and 2-way meanIOU results in Table 4 (following
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Figure 7. Qualitative one/five-shot segmentation results from the PASCAL−5i dataset.

the protocol of [Shaban et al., 2017]) and Table 5 (following
the protocol of [Dong and Xing, 2018]). Here, we highlight
several aspects. First, all these competing methods are specifi-
cally trained towards the one-shot segmentation task, whereas
our model is trained for metric learning. Second, they use the
support image label mask both during training and inference,
whereas our method does not use this label data. Finally, they
are trained on Pascal, i.e., relevant data, whereas our model
was trained on CUB and Cars, data that is irrelevant in this
context. Despite these seemingly disadvantageous factors,
our method performs better than others in some cases and for
the overall mean in the 1-way experiment and substantially
outperforms competing methods in the 5-way experiments.
Finally, we also substantially outperform the recently pub-
lished PAN-init [Wang et al., 2019a] which also does not
train on the Pascal data (so this is closer to our experimental
setup), while however using the support mask information
during inference. These results demonstrate the potential of
our proposed method in training similarity predictors that can
generalize to data unseen during training and also to tasks for
which the models were not originally trained.

Methods Label 50 51 52 53 Mean
OSVOS [Caelles et al., 2017] Yes 24.9 38.8 36.5 30.1 32.6
OSLSM [Shaban et al., 2017] Yes 33.6 55.3 40.9 33.5 40.8
co-FCN [Rakelly et al., 2018] Yes 36.7 50.6 44.9 32.4 41.1
PAN-init [Wang et al., 2019a] Yes 30.8 40.7 38.3 31.4 35.3

SAM No 37.9 50.3 44.4 33.8 41.6

Table 4. 1-way 1-shot binary-IOU results (%) on PASCAL−5i.

Methods Label 1-shot 5-shot
PL [Dong and Xing, 2018] Yes 39.7 40.3

PL+SEG [Dong and Xing, 2018] Yes 41.9 42.6
PL+SEG+PT [Dong and Xing, 2018] Yes 42.7 43.7

SAM No 56.9 60.1

Table 5. 2-way 1/5-shot binary-IOU results (%) on PASCAL−5i.

5 Summary and Future Work
We presented new techniques to explain and visualize, with
gradient-based attention, predictions of similarity models. We
showed our resulting similarity attention is generic and appli-
cable to many commonly used similarity architectures. We
presented a new paradigm for learning similarity functions
with our similarity mining learning objective, resulting in
improved downstream model performance. We also demon-
strated the versatility of our framework in learning models
for a variety of unrelated applications, e.g., image retrieval
(including re-id) and low-shot semantic segmentation, where
one can easily extend this approach to generate explanations
for set-to-set matching problems as well.
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