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Abstract
Semantic-descriptor-based Generalized Zero-Shot
Learning (GZSL) poses challenges in recognizing
novel classes in the test phase. The development
of generative models enables current GZSL tech-
niques to probe further into the semantic-visual
link, culminating in a two-stage form that includes
a generator and a classifier. However, existing
generation-based methods focus on enhancing the
generator’s effect while neglecting the improve-
ment of the classifier. In this paper, we first ana-
lyze of two properties of the generated pseudo un-
seen samples: bias and homogeneity. Then, we per-
form variational Bayesian inference to back-derive
the evaluation metrics, which reflects the balance
of the seen and unseen classes. As a consequence
of our derivation, the aforementioned two proper-
ties are incorporated into the classifier training as
seen-unseen priors via logit adjustment. The Zero-
Shot Logit Adjustment further puts semantic-based
classifiers into effect in generation-based GZSL.
Our experiments demonstrate that the proposed
technique achieves state-of-the-art when combined
with the basic generator, and it can improve various
generative Zero-Shot Learning frameworks. Our
codes are available on https://github.com/cdb342/
IJCAI-2022-ZLA.

1 Introduction
In recognition tasks, it is challenging when classes for train-
ing and test are different, known as Zero-Shot Learning (ZSL)
problems. The goal of ZSL is to correctly recognize unseen
samples with a classifier trained on seen classes. Bridging be-
tween training and test domains counts on the semantic class
priors, i.e., the human-annotated attribute [Lampert et al.,
2009] or the word embedding [Reed et al., 2016]. Through
similarities between the class semantic descriptors, ZSL can
transfer knowledge from seen to unseen classes without ac-
cessing the unseen class data.
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Figure 1: t-SNE visualization of the synthetic-real unseen data (left)
and the real train-test seen data (right) in AWA2, we sample the same
number for each class pair. The synthetic unseen data shows obvious
domain bias from real test unseen data, while the training domain of
the seen classes is consistent with the test domain.

Early ZSL works focus on end-to-end classifier learning,
particularly the embedding models [Lampert et al., 2013;
Li et al., 2019] which match visual features and semantic de-
scriptors in a shared embedding space. These methods appear
effective in ZSL but perform poorly in the more challenging
Generalized Zero-Shot Learning (GZSL) setting [Chao et al.,
2016; Xian et al., 2017]. More recent efforts [Xian et al.,
2018; Shen et al., 2020] aim to improve GZSL performance
by decomposing the learning process into generator learning
and classifier learning. Such a two-stage strategy compen-
sates for the feature expression of unseen classes during the
classifier learning by the generated samples. A typical family
of studies has focused on the improvement of the generator,
exploring alternative architectures, or introducing various in-
ductive biases. On the contrary, there is a scarcity of research
on classifiers under the generative paradigm.

A principled classifier design is required to uncap the per-
formance of the two-stage approach. The intuitive notion is
introducing semantic information to classifier learning. How-
ever, both semantic and visual embedding strategies learn the
same knowledge as generative models, i.e., semantic-visual
links. It implies that, by directly replacing the classifier, the
generated unseen samples can only serve to deliver the gen-
erator’s learned links to the classifier, with little effect. As a
result, classic ZSL classifiers perform worse than vanilla soft-
max classifiers in the generative setting [Xian et al., 2018].

To determine design direcions for the classifier, we first in-
vestigate the distribution of synthetic unseen data. As shown
in Figure 1, the sythetic unseen samples deviate severely from
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the real distribution. This bias is theoretically inevitable since
the domain shift problem [Fu et al., 2014], which leads to the
misalignment of training and test domains. Nevertheless, we
further explore the working mechanism of generated samples
in Table 1, finding that the information contained in various
synthetic unseen samples is quite homogenous for the clas-
sifier. Existing methods employ a large sampling size from
generated unseen distribution to magnify the influence of
modest valid information included in synthetic unseen sam-
ples on feature expression. However, such a resampling strat-
egy has been proven to result in overfitting of the classifier
on certain feature patterns (the biased generated unseen dis-
tribution in this setting) in other fields [Buda et al., 2018;
Menon et al., 2020], which harms the recognition of both
seen and unseen classes.

These findings imply that there is a need to restrict the
generation number of unseen samples. Can we directly
transmit class imbalance information to the classifier dur-
ing training rather than inefficiently increasing the expres-
sion of unseen classes by resampling? In this work, we re-
gard the bias and homogeneity of generated unseen samples
as special prior knowledge. In light of the success of loss
modification in class imbalance research [Lin et al., 2017;
Menon et al., 2020], we incorporate this seen-unseen prior
into the classifier training process in the form of logit adjust-
ment. Specifically, we establish the lower bound of the seen-
unseen balanced accuracy [Xian et al., 2017] with variational
Bayesian inference and obtain an adjusted posterior. Then the
prior takes part in training via adjusting the logits of vanilla
cross-entropy loss. This approach, termed Zero-Shot Logit
Adjustment (ZLA), allows for a lower number of generated
unseen samples while producing more balanced results. By
establishing a semantic-prototype mapping, we further intro-
duce the semantic information to the classifier. Notably, our
proposed ZLA allows the generated unseen samples to play
an adjustment role rather than supplying unseen class infor-
mation, which overcomes the embedding-based classifier’s
previous ineffectiveness in the generative scenario (see Sec.
4.5). Our contributions are summarized as follows:

• We mathematically derive the lower bound of the seen-
unseen balanced accuracy, allowing us to include gener-
ated unseen samples’s bias and homogeneity as a seen-
unseen prior in cross-entropy via logit adjustment.

• Based on ZLA, we break the previous classifier’s incon-
sistency in training objectives and test metrics and the
inability to exploit semantic priors in classifier learning.

• Our proposed classifier enables greatly reducing the gen-
eration number of unseen samples. It outperforms So-
TAs when combined with the base generator, and can be
a plug-in to augment various generation-based methods.

2 Related Work
2.1 Zero-Shot Learning
Zero-Shot Learning (ZSL) [Lampert et al., 2009; Farhadi et
al., 2009] has become a popular research area in recent years.
Classic ZSL excludes seen classes during the test, while
Generalized Zero-Shot Learning (GZSL) [Chao et al., 2016;

Xian et al., 2017] considers both seen and unseen classes, at-
tracting more current interest. The typical embedding-based
ZSL methods [Li et al., 2019; Skorokhodov and Elhoseiny,
2021] learn the semantic-visual links for classification, but
with little effectiveness in the GZSL scenario. The progress
of GZSL was once driven by the development of genera-
tive models [Kingma and Welling, 2013; Goodfellow et al.,
2014], which allowed converting the GZSL problem to com-
mon supervised classification using a generator-classifier ar-
chitecture. Until recently, research on generators [Shen et al.,
2020; Han et al., 2021] gradually saturated, whereas classi-
fier design is rarely examined in such a two-stage framework.
To break the bottleneck of generation-based approaches, the
principle design of a classifier is required.
2.2 Posterior Modification
Posterior modification, which has been deeply studied in class
imbalance learning [Lin et al., 2017; Menon et al., 2020],
aims at producing a class-balanced prediction. Post-hoc cor-
rection [Collell et al., 2016], loss re-weighting[Menon et al.,
2013], and logit adjustment [Menon et al., 2020] are its rep-
resentative strategies. A similar procedure has been adopted
in certain ZSL research. DCN [Liu et al., 2018] utilizes en-
tropy regularization to calibrate the predictions of seen and
unseen classes. The post-hoc correction, known as calibrated
stacking [Chao et al., 2016] in ZSL, is also employed. How-
ever, a more general strategy in generation-based GZSL is
to sample a large number of unseen class samples from the
generated distribution. Although the re-sampling technique
[Chawla et al., 2002] has been proven to produce overfitting
in long-tail learning [Collell et al., 2016], its shortcoming in
generation-based GZSL is a lack of exploration. In this paper,
we mathematically introduce the more advanced logit adjust-
ment strategy into GZSL for a better balance between seen
and unseen predictions.

3 Methodology
Considering two disjoint label sets, Ys and Yu, GZSL aims
at recognizing instances that belong to Ys ∪ Yu, while only
accessing samples with labels in Ys during training. De-
fine the visual space X ⊆ Rdx and the semantic set A =
{ay|y ∈ Ys ∪ Yu} ⊆ Rda , where dx and da are dimensions
of these two spaces. Then the goal of GZSL is to learn such
a classifier, i.e., fgzsl : X → Ys ∪ Yu given the training set
Dtr = {x, y|x ∈ X , y ∈ Ys} and the global semantic set A.

The two-stage framework typically processes this problem
with two main components: the generator G and the classifier
C . The generator G , defined as an arbitrary generative model
[Kingma and Welling, 2013; Goodfellow et al., 2014], is first
trained with the seen visual features and their corresponding
semantics for conditionally mapping the Gaussian noise to fit
the real visual distribution. The instances generated by un-
seen class semantics and the real seen instances are then fed
into the classifier C together to fit the posterior probability:

x̂ = G(z,a),z ∼ N (0, I),

p(y|x̃) := softmax[C (x̃)], x̃ ∈ X ∪ {x̂}, (1)

where x̂ denotes the synthetic instances, z represents ran-
dom Gaussian noises, and x̃ is either real or synthetic in-
stances. p(y|x̃) denotes the posterior probability derived from
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Method G.N. T1 AU AS AH

MSE 588 67.9 17.1 71.6 27.6
4000 67.5 57.1 59.7 58.4

VAE 588 68.0 25.8 67.6 37.3
4000 68.6 57.2 68.8 62.9

WGAN 588 68.7 20.9 83.2 33.5
4000 68.3 57.7 71.0 63.7

Table 1: ZSL (T1) and GZSL (AH ) results of the simple semantic-
visual mapping net (denoted as MSE) and two different generative
models, VAE and WGAN on AWA2. G.N. denotes the generation
number per unseen class (588 is the class averaged number of real
seen samples).

the classifier. Then the model predicts the class label by tak-
ing Cout = argmaxy(p(y|x̃)). In this work, we focus on the
design of the classifier under the GZSL setting.

3.1 Preliminary: Logit Adjustment
Logit adjustment strategy is commonly employed in class im-
balance tasks [Lin et al., 2017; Menon et al., 2020], which
weights the logit in softmax cross-entropy, i.e.,

LLA = log[1 +
∑
y′ ̸=y

δ(y, y′)exp(Cy′(x)− Cy(x))], (2)

where Cy′(·) is the logit corresponding to class y′, and
δ(y, y′) represents the adjustment weight. The larger δ(y, y′)
results in the network focusing more on optimizing the logit
of y′, allowing control of the prediction probabilities of dif-
ferent categories. Existing class imbalance works typically
associate the weights with the class prior of y or y′ [Cao et
al., 2019; Tan et al., 2020; Menon et al., 2020].

3.2 Empirical Analysis on Generated Samples
Regardless the bias problem (Figure 1) of generated unseen
samples, generation-based methods achieve a certain success
in GZSL. Thus, we empirically investigate the working mech-
anism of the generated unseen samples. As shown in Table 1,
we compare the single class center point (semantic to visual-
center mapping trained with MSE loss) resampling technique
with two generative models, i.e., VAE [Kingma and Welling,
2013] and WGAN [Gulrajani et al., 2017] (detailed in sup-
plementary material). Two phenomena can be intuitively ob-
served by comparing the results in Table 1: (1) the key suc-
cess of generation-based models in GZSL relies on unseen
class feature expression enhancement by a large number of
generated unseen samples; and (2) the more diversified sam-
ples (generated from generative models) produce a limited
performance improvement compared to replicating a single
point. We forego a deeper study due to its orthogonal nature
to our work, but these modest findings imply that the syn-
thetic unseen samples are rather homogenous than real ones.

Despite the difficulty of eliminating bias and homogeneity,
can we include them in classifier training as the seen-unseen
prior? Below, we’ll illustrate how, by changing the classi-
fier’s optimization target, we can integrate this prior into the
learning process in the form of the logit adjustment.

3.3 From the Statistical View
The nature of GZSL is an extreme case of class imbalance,
as measured by a class balanced metric AH (detailed in Sec.
4.1). Assuming the class space has been completed by a set
of pseudo unseen class samples generated by the trained gen-
erator, existing classifiers optimize the global accuracy AG

by modeling the base posterior probability (Eq. 1):

AG = Ex∼p(x)q(Cout = yx|x), (3)

where p(x) is defined as a uniform distribution over all data,
yx is the true label of x, and q(Cout = y|x) is the proba-
bility to predict class y with the classifier C. However, Eq.
3 neglects the imbalance between seen and unseen domains,
which is inconsistent with the test metric AH . To find bal-
anced results across classes, we in turn employ evaluation in-
dicators to guide the design of the classifier. Indeed, let A(y)
denote the accuracy in class y, we have [Collell et al., 2016]

A(y) = Ex∼p(x)
q(Cout = y|x)p(y|x)

p(y)
, (4)

where p(y) represents the statistics frequency of class y, and
p(y|x) denotes the real posterior probability. Then the aver-
age accuracy of seen classes is

AS =
1

|Ys|
∑
y∈Ys

A(y)

=
1

|Ys|
∑
y∈Ys

Ex∼p(x)
q(Cout = y|x)p(y|x)

p(y)

= Ey∈YsEx∼p(x)
q(Cout = y|x)p(y|x)
p(Ys)p(y|y ∈ Ys)

,

(5)

where p(y|y ∈ Ys) denotes the frequency of class y in Ys,
and p(Ys) is a theoretically derived data-independent proba-
bility which will be served as a hyperparameter. Analogously,
the average accuracy of unseen classes is

AU = Ey∈YuEx∼p(x)
q(Cout = y|x)p(y|x)
p(Yu)p(y|y ∈ Yu)

. (6)

Then we consider the harmonic mean, AH , which serves
the target of attaining high accuracy for both seen and unseen
classes, and empirically reaches its maximum when the ac-
curacy of seen and unseen classes is balanced [Xian et al.,
2017]. We have

AH = 2/(
1

AS
+

1

AU
). (7)

With the convexity of the inversely proportional function,
we have the upper bound of 1/AS with Jensen Inequality:

1

AS
= 1/Ey∈YsEx∼p(x)

q(Cout = y|x)p(y|x)
p(Ys)p(y|y ∈ Ys)

≤ Ey∈YsEx∼p(x)
p(Ys)p(y|y ∈ Ys)

q(Cout = y|x)p(y|x)
.

(8)

Analogously deriving AU , we get a lower bound of AH :

AH ≥ 2/Ey∈Ys∪YuEx∼p(x)
|Ys ∪ Yu|p(Y)p(y|y ∈ Y)

|Y|q(Cout = y|x)p(y|x)
, (9)

where Y is Ys (Yu) when y belongs to seen (unseen) classes.
To simplify the symbols, we designate |Ys ∪Yu|p(Y)/|Y| as
p0(Y) in the following.
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Figure 2: A seen (s) and unseen (u) class-prediction-probability ex-
ample of modeling the base and the adjusted posteriors. The unseen
class probabilities are suppressed when modeling the base poste-
rior p(y|x), while the adjusted posterior p(y|x)/[p0(Y)p(y|y ∈ Y)]
provides a more balanced distribution.

Despite the difficulty in determining the Bayesian optimal
of AH , maximizing its lower bound achieves an approximate
effect, which is equivalent to minimizing its reciprocal. Intu-
itively, the denominator term of Eq. 9 is minimized if

q(Cout = y|x) =
{

1, if y = argmaxi
p(i|x)

p0(Y)p(i|i∈Y)

0, otherwise
(10)

for each x in p(x). So, given a datum (x, yx), we change the
modeling objective in Eq. 1 to the adjusted posterior proba-
bility, i.e.,

p(yx|x)
p0(Y)p(yx|yx ∈ Y)

, (11)

where p0(Y) refers to the seen-unseen prior (Sec. 3.2) which
reflects the bias and homogeneity of pseudo unseen samples.
Eq. 11 theoretically gives a more balanced predicted proba-
bility distribution than the base posterior, as shown in Figure
2. Next, we will show the estimation of the adjusted posterior.

3.4 ZLA-Based Classifier
Adjusted Cross-Entropy. The base posterior probability in
Eq. 1 is typically estimated with the cross-entropy loss, i.e.,

LCE = log
∑
y′ ̸=y

[1 + exp(Cy′(x)− Cy(x))]. (12)

Referring to researches on class imbalance [Tan et al.,
2020; Menon et al., 2020], we directly model Eq. 11 with
C(·) and the posterior becomes

p(y|x) := p0(Y)p(y|y ∈ Y) · softmax[C(x)]. (13)

This enables integrating the conditional class prior p(y|y ∈
Y) and the seen-unseen prior p0(Y) into the softmax cross-
entropy in a logit adjustment manner. Then the weights in Eq.
2 are replaced with

δ(y, y′) :=
p0(Y ′)p(y′|y′ ∈ Y ′)

p0(Y)p(y|y ∈ Y)
. (14)

The final adjusted cross-entropy is

LZLA = log[1 +
∑
y′ ̸=y

p0(Y ′)p(y′|y′ ∈ Y ′)

p0(Y)p(y|y ∈ Y)
exp(Cy′(x)− Cy(x))]. (15)

In contrast to the standard cross-entropy form, we con-
sider the specific prior information in the generation-based
GZSL setting, which contributes to the balancing results
across classes. In practice, we make p0(Ys) much bigger
than p0(Yu). This is intuitively explainable from two per-
spectives: first, small p0(Yu)/p0(Ys) promotes seen sam-
ples to focus on learning decision boundaries between seen
classes; and second, large p0(Ys)/p0(Yu) encourages large
prediction probabilities for unseen classes, which serves the
same purpose as a large generation number of unseen samples
[Xian et al., 2018; Han et al., 2021].
Semantic Prior Inclusion. Embedding-based methods [Li
et al., 2019; Skorokhodov and Elhoseiny, 2021] work by
learning a semantic-visual direct link. In this case, an ex-
tra generator is hard to aid in embedder learning (see Sec.
4.5 for experimental results) because the overlap between the
knowledge (i.e., semantic-visual link) learned by the genera-
tor and the embedder results in semantic information crucial
for knowledge transfer not being fully exploited. The pro-
posed ZLA, in contrast, allows for supporting the learning of
the semantic-based classifier through an adjustment mecha-
nism. No longer teaching the net the semantic-visual link of
unseen classes, the pseudo unseen samples adjust the deci-
sion boundaries between seen and unseen classes by weight-
ing the logits, avoiding knowledge overlapping to an extent.
Specifically, we adopt a prototype learner P [Li et al., 2019;
Skorokhodov and Elhoseiny, 2021] to directly map semantics
to visual prototypes, and then the adjusted posterior probabil-
ity of a datum x is estimated through cosine similarity, i.e.,

C(x) := cos(x,P(a))/τ, (16)
where τ is the temperature [Hinton et al., 2015]. In the test
phase, the prediction class y∗ corresponds to the prototype
that achieves the maximum similarity.

y∗ = argmax
i

p(i|x)
p0(Y)p(i|i ∈ Y)

:= argmax
i

cos(x,P(ai)). (17)

4 Experiments
4.1 Datasets and Metrics
Benchmark Datasets. We study GZSL performed in An-
imals with Attributes 2 (AWA2) [Lampert et al., 2013],
Attribute Pascal and Yahoo (APY) [Farhadi et al., 2009],
Caltech-UCSD Birds-200-2011 (CUB) [Wah et al., 2011],
and SUN Attribute (SUN) [Patterson and Hays, 2012], fol-
lowing the common split (version 2) proposed in [Xian et al.,
2017]. AWA2 includes 50 animal species and 85 attribute
annotations, accounting 37,322 samples. APY contains 32
classes of 15,339 samples and 64 attributes. CUB consists
of 11,788 samples with 200 bird species, annotated by 312
attributes. SUN carries 14,340 images from 717 different
scenario-style with 102 attributes.
Visual Representations and Semantic Descriptors. We
follow [Xian et al., 2017] to represent images as the 2048-D
ResNet-101 [He et al., 2016] features. Moreover, we regard
the artificial attribute annotations that come with the datasets
as the semantic descriptors of AWA2, APY, and SUN, and the
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Method Reference AWA2 CUB SUN APY
AU AS AH AU AS AH AU AS AH AU AS AH

†
Li et al. ICCV [Li et al., 2019] 56.4 81.4 66.7 47.4 47.6 47.5 36.3 2.8 39.3 26.5 74.0 39.0
DVBE CVPR [Xu et al., 2020] 63.6 70.8 67.0 53.2 60.2 56.5 45.0 37.2 40.7 32.6 58.3 41.8
RGEN ECCV[Xie et al., 2020] 67.1 76.5 71.5 60.0 73.5 66.1 44.0 31.7 36.8 30.4 48.1 37.2
APN NeurIPS [Min et al., 2020] 56.5 78.0 65.5 65.3 69.3 67.2 41.9 34.0 37.6 - - -

‡

Li et al. AAAI [Li et al., 2021] 56.9 80.2 66.6 51.1 58.2 54.4 47.6 36.6 41.4 - - -
GCM-CF CVPR [Yue et al., 2021] 60.4 75.1 67.0 61.0 59.7 60.3 47.9 37.8 42.2 37.1 56.8 44.9
AGZSL ICLR [Chou et al., 2021] 65.1 78.9 71.3 41.4 49.7 45.2 29.9 40.2 34.3 35.1 65.5 45.7
FREE ICCV [Chen et al., 2021a] 60.4 75.4 67.1 55.7 59.9 57.7 47.4 37.2 41.7 - - -
SDGZSL ICCV [Chen et al., 2021b] 64.6 73.6 68.8 59.9 66.4 63.0 - - - 38.0 57.4 45.7

f-CLSWGAN CVPR [Xian et al., 2018] 57.7 71.0 63.7 59.4 63.3 61.3 46.2 35.2 40.0 32.5 57.2 41.5
WGAN+ZLAP Proposed 65.4 82.2 72.8 73.0 64.8 68.7 50.1 38.0 43.2 40.2 53.8 46.0

CE-GZSL CVPR [Han et al., 2021] 65.3 75.0 69.9 66.9 65.9 66.4 52.4 34.3 41.5 28.3 65.8 39.6
CE-GZSL+ZLAP Proposed 64.8 80.9 72.0 71.2 66.2 68.6 50.9 35.7 42.0 38.3 60.9 47.0

Table 2: GZSL performance comparisons with state-of-the-art methods. AU and AS denote the per-class accuracy (%) on unseen and seen
classes, respectively, and AH is their harmonic mean. The best results are bolded, and the underlines indicate the second-place results. † and
‡ represent whether a generator is employed to obtain the pseudo unseen samples, respectively (‡ indicates yes, and † is the opposite). ZLAP
is the proposed zero-shot logit adjustment prototype learner.

1024-dimensional character-based CNN-RNN features [Reed
et al., 2016] generated from textual descriptions as the seman-
tics of CUB.
Evaluation Protocol. We calculate the average per-class
top-1 accuracy for unseen and seen classes, respectively, de-
noted as AU and AS . Then the metric AH for GZSL is rep-
resented as their harmonic mean.[Xian et al., 2017].

4.2 Implementation Details
Since our work focuses on studying a plug-in classifier, we
test it on WGAN [Gulrajani et al., 2017], with the same
generator and discriminator structures as [Xian et al., 2018].
Our prototype learner P consists of a multi-layer percep-
tron (MLP) with a single 1024-D hidden layer activated by
LeakyReLU and no activation function in the output. The
Adam optimizer is employed with a learning rate of 1×10−3,
and the batch size is set at 512 for evaluating our design.
When plugging into CE-GZSL [Han et al., 2021], we em-
ploy a batch size of 256 in SUN and 512 in other datasets
instead of the default 4096 (due to device limitations) while
maintaining all other settings in the published paper.

4.3 Comparison with State-of-the-Arts
We apply the proposed classifier to the vanilla WGAN (com-
pare to f-CLSWGAN [Xian et al., 2018]) and the more ad-
vanced CE-GZSL [Han et al., 2021] to show its effect and
compatibility in different generative frameworks. The base-
line results are obtained from the official codes. As shown
in Table 2, the combination of the proposed classifier and
the basic generative framework (WGAN) outperforms So-
TAs, demonstrating the excellent class balancing capability
of ZLA. We note that the performance gain provided by our
module is not as significant in the highly fine-grained SUN
dataset as it is in other datasets. It is mainly due to the mi-
nor bias problem of generated unseen samples in the case of
multiple classes and modest feature variations that it takes
the limited strengths of our approach. Moreover, our classi-
fier improves the performance of both f-CLSWGAN and CE-

1 5 10 20 50 100
15

30

45

60

75

90

Num

#
A
cc

u
ra

cy
(%

)

AS

AU

AH

Figure 1: figure name

5.3 6 6.7 7.4 8.1 8.8
40

50

60

70

80

90

log σ

#
A
cc

u
ra

cy
(%

)

AS

AU

AH

Figure 2: figure name

1

0 1.4 2.8 4.2 5.6 7
0

15

30

45

60

72.8

log σ

#
A

H
(%

)

1
10
100
1000

Figure 3: figure name

2

Figure 3: Left: hyperparemeter analysis of σ (see 4.4 for its defi-
nition) on AWA2. Right: log σ varies w.r.t. generation number per
unseen class. Large generation number lowers the performance cap
(72.8 with 10 generated vs. 69.7 with 1000 generated).

GZSL, even though CE-GZSL has already produced decent
results, proving its plug-in ability in two-stage frameworks.

4.4 Hyperparameters
Three key factors are involved in our work, i.e., the genera-
tion number (per unseen class) Ng , p0(Y) in Eq. 11, and the
temperature τ in Eq. 16. Following [Skorokhodov and Elho-
seiny, 2021], τ is fixed at 0.04 for all experiments, since it has
a slight bearing on our study. We first examine p0(Y) in the
form of the ratio of p0(Ys) to p0(Yu), which more intuitively
reflects the seen-unseen dichotomy. The ratio is denoted as σ,
and its effect is plotted in Figure 3 (left), where a reverse vari-
ation of seen and unseen accuracy can be observed, demon-
strating ZLA’s capacity to moderate the prediction between
classes. Figure 3 (right) depicts the influence carried by Ng .
Although Ng also posses the ability to affect the accuracy,
a large generation number lowers the performance cap (72.8
with 10 generated vs. 69.7 with 1000 generated), indicating
the harm of re-sampling the biased samples. In the major ex-
periment (Table 2), we generate 10 samples per unseen class
for all datasets to contrast with f-CLSWGAN [Xian et al.,
2018], and the best results are obtained when σ is set to 1000,
30, 60, and 300 for AWA2, CUB, SUN, and APY, respec-
tively (better results are possible by trading off between Ng
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Method ReLU AWA2 CUB
AU AS AH AU AS AH

Non Gen. ✓ 55.1 82.0 65.9 68.3 54.8 60.8
× 24.6 89.9 38.6 60.5 66.6 63.4

Gen. ✓ 56.5 81.3 66.7 64.7 64.7 64.7
× 65.4 82.2 72.8 73.0 64.8 68.7

Table 3: Comparison of the pure prototype learner and the
generation-based ZLA prototype learner. Non Gen.: a latest pro-
posed pure prototype learner, implemented by the official code (with
the post-hoc correction removed for a fair comparison). Gen.:
WGAN-based zero-shot logit adjustment prototype learner.

and σ). In comparison to CE-GZSL [Han et al., 2021], we
keep the published generated number and take the value of σ
as 28, 9, 7, and 920 for the above datasets.

4.5 Ablation Study
In this section, we perform ablation studies to validate our
design and display the key elements in our implementation.

Function of ZLA. Figure 3 (right) shows the function of
ZLA, where log σ = 0 means p0(Ys) = p0(Yu), i.e., without
major adjustments. The effect of ZLA is reflected in the com-
parison of different σ values. Intuitively, an adequate σ value
produces considerable performance gains in varying genera-
tion numbers, especially when the number is minimal. Fur-
thermore, ZLA enables the prototype learner to be effective in
generative scenarios, as illustrated in Table 4 (second lines in
two baselines reflect previous ineffectiveness), which further
reduces the reliance on the generation number and thereby
resolving the previously discussed bias problem.

Beyond the Standard Prototype Learner. Existing pro-
totype leaners [Li et al., 2019; Skorokhodov and Elhoseiny,
2021] are simply established on the semantic-visual links of
seen classes, generalizing to unseen classes based on seman-
tic similarities. In this paper, we find the last ReLU layer
is crucial to these approaches’ hitherto unseen class perfor-
mances. To investigate the effect of the ReLU function, we
compare the latest pure prototype learner [Skorokhodov and
Elhoseiny, 2021] with the WGAN-based ZLAP in Table 3.
When the ReLU layer is removed, as shown in Table 3, the
seen accuracy improves in both baselines, whereas the unseen
accuracy decreases if pseudo unseen samples are not acces-
sible. Zeroing the negative output layer values intuitively af-
fects (seen class) prototype expression. However, it provides
a regularization which narrows the gap between the unseen
class prototypes and the instances when (pseudo) unseen in-
stances are unavailable in training, since the visual feature
components are likewise larger than or equal to zero [Xian et
al., 2017]. In this sense, our proposed ZLA allows the model
to remove the ReLU layer by adjusting the unseen class ex-
pression using the synthetic unseen instances, resulting in a
win-win situation for both seen and unseen class accuracy.

Beyond the Vanilla Softmax Classifier. In Table 4, we
compare the prototype-based classifier to the vanilla softmax
classifier to validate its necessity. Results reveal that the pro-
totype learner beats the vanilla softmax classifier thoroughly
when ZLA is employed. The explanations are as follows:

Classifier ZLA L.N. AWA2 CUB
AU AS AH AU AS AH

Vanilla
✓ × 40.2 82.5 54.1 61.4 52.3 56.5
× ✓ 57.7 71.0 63.7 59.4 63.3 61.3
✓ ✓ 61.2 74.6 67.3 66.8 63.5 65.1

Proto.
✓ × 65.4 82.2 72.8 73.0 64.8 68.7
× ✓ 50.7 75.8 60.8 60.0 63.4 61.4
✓ ✓ 64.1 73.1 68.3 72.4 63.0 67.4

Table 4: Vanilla softmax classifier vs. prototype learner, based
on WGAN, where L.N. represents a large generation number.

(1) the prototype learner enables further regularization on
unseen class prototypes by learning semantic-prototype rela-
tions with real-world data, whereas the vanilla softmax clas-
sifier learns to distinguish unseen classes solely by generated
samples; and (2) classifier weights mapped from semantics
focus more on category-distinctive information, i.e., seman-
tic information. Specifically, in coarse-grained datasets like
AWA2, the generated unseen class samples meet a more seri-
ous bias problem, causing the classifier to incorrectly detect
unseen classes. The prototype learner, on the other hand, can
provide supplemental information to unseen class weights by
comprehending the semantic-visual links in seen classes. In
fine-grained datasets such as CUB, samples from different
classes are relatively close together, making it challenging
to separate them correctly. The semantics-based classifier,
which contains intrinsically category-distinctive information,
aids in increased discrimination.

4.6 Time Complexity Analysis
We note that some recent generation-based methods [Han et
al., 2021; Chen et al., 2021b] also mine the semantic dis-
criminant information of samples. However, these methods
are typically built on class contrast during generator training,
which yields a time complexity of O(N |Ys|) in the train-
ing phase (N is the data size). In comparison, the proposed
classifier combined with the vanilla WGAN achieves a com-
parable result with O(N) time complexity. Moreover, the
proposed method allows for a much smaller (10 vs. 4000 in
AWA2) synthetic number in the classifier training phase, re-
sulting in further time savings.

5 Conclusion
In this work, we theoretically include the logit adjustment
tech in the generation-based GZSL. We begin by examining
the bias and homogeneity of the generated unseen samples,
which build the seen-unseen prior. Then we derive an ad-
justed posterior from the seen-unseen balanced metric, which
enables integrating the seen-unseen prior into the original
cross-entropy via logit adjustment. Considering the zero-shot
setting, we call our approach Zero-Shot Logit Adjustment.
Based on ZLA, we inject the semantic information into the
classifier, which always fails in existing two-stage methods.

Our work explores the underutilized potential of the
generation-based GZSL by breaking the previous inconsis-
tency between the classifier’s training objectives and testing
metrics. This approach allows for greatly fewer generated un-
seen samples, achieving SoTA with little time consumption.
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