Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Agentive Permissions in Multiagent Systems

Qi Shi
University of Southampton
gi.shi@soton.ac.uk

Abstract

This paper proposes to distinguish four forms of
agentive permissions in multiagent settings. The
main technical results are the complexity analysis
of model checking, the semantic undefinability of
modalities that capture these forms of permissions
through each other, and a complete logical system
capturing the interplay between these modalities.

1 Introduction

Imagine a large factory being built in a city on a river. The
factory will dump a pollutant into the river. It is known that
a small factory located in another city higher up the river al-
ready exists and can dump up to 60g/day of the same pollu-
tant. Also, more than 100g/day of the pollutant dumped into
the river combined by the two factories will kill the fish.

Suppose that the large factory will dump 20g/day of the
pollutant. Then, the total dumped amount by both factories
will not exceed 80g/day no matter how much the other fac-
tory dumps and thus the fish in the river will survive for sure.
In other words, the action that dumping 20g/day ensures the
survival of the fish. On the contrary, if the large factory will
dump 60g/day of the pollutant, then the fish will be killed
once the other factory dumps more than 40g/day. That is to
say, the action that dumping 60g/day does not ensure the sur-
vival of the fish. However, it still leaves the possibility for the
fish to survive, e.g. when the other factory dumps no more
than 40g/day. In this situation, we say that the action that
dumping 60g/day admits of the survival of the fish.

To ensure and to admit show two different types of agency
of an action. The difference comes from that, in multiagent
or nondeterministic settings, the effect of an action of one
agent might be affected by the actions of other agents or the
nondeterminacy. It is worth noting that, admitting is the dual
of ensuring. To be specific, if an action of an agent ensures
an outcome, then the action does not admit of the opposite
outcome, and vice versa. It is easy to see that their meanings
coincide in single-agent deterministic settings.

In this paper, we consider the two types of agency together
with permissions. Let us come back to the large factory. Sup-

The full version of this paper includes an appendix, which can
be found at arXiv: 2404.17053.
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pose the city government passes a regulation:

The factory is permitted to dump any amount of the
pollutant as long as the fish is not killed.

This regulation can be interpreted in two ways corresponding
to two types of agency. The first could be

any dumping amount that admits of the survival of (SA)
the fish is permitted.

In this interpretation, the permitted dumping amount of the
factory is any amount no more than 100g/day. As long as
the factory follows this regulation, there is a chance for the
fish to survive if the other factory dumps so little that the to-
tal dumped amount does not exceed 100g/day. The second
interpretation of the regulation could be

any dumping amount that ensures the survival of the (SE)
fish is permitted.

In this interpretation, the factory should not dump any amount
over 40g/day and the fish cannot be killed as long as the fac-
tory follows the regulation, no matter how much of the pollu-
tant is dumped by the other factory.

The above two interpretations give the factory two different
permissions. It is worth noting that, either of the permissions
enables the factory to take any of the actions satisfying some
criteria. In this paper, we call such permissions “strong”.
Specifically, we refer to (SA) and (SE) as strong permission
to admit and strong permission to ensure, respectively.

Not all permissions are in the same form as strong per-
missions. Suppose that, instead of the city’s regulation, the
factory is under some contractual obligation. To satisfy this
obligation, the factory has to dump at least 30g/day of the
pollutant. In this case, not every amount that ensures/admits
of the survival of the fish (e.g. 20g/day) is contractually per-
mitted to be dumped. Nevertheless,

there is a permitted dumping amount that ensures
the survival of the fish.

For example, 35g/day is a contractually permitted dump-
ing amount that ensures the survival of the fish. Similarly,
if the contractual obligation forces the factory to dump at
least 50g/day of the pollutant, then no contractually permitted
dumping amount ensures the survival of the fish. However,

(WE)

there is a permitted dumping amount that admits of (WA)
the survival of the fish.
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In contrast to strong permissions, the above two permissions
express the capability of the factory to achieve some state-
ments with a permitted action. We call such permissions
“weak”. Specifically, we refer to (WE) and (WA) as weak per-
mission to ensure and weak permission to admit, respectively.

As shown in Section 2, the terms “strong permission” and
“weak permission” have already existed in the literature for
decades [Raz, 1975; Royakkers, 1997; Governatori et al.,
2013]. In Section 5, we show the consistency between how
these terms are used in our paper and in the literature. How-
ever, as far as we see, we are the first to make a clear distinc-
tion between “permission to ensure” and “permission to ad-
mit”, which are agentive permissions specific to multiagent
settings. We are also the first to cross-discuss both strong and
weak agentive permissions in multiagent settings.

In this paper, we discuss four forms of permissions in mul-
tiagent settings that generalise those expressed in statements
(SA), (SE), (WE), and (WA). Our contribution is three-fold.
First, we propose a formal semantics for the four correspond-
ing modalities in multiagent transition systems (Section 3).
We also consider the model-checking problem (Section 3.1)
and the reduction to STIT logic and ATL (Section 3.2). Sec-
ond, we prove these modalities are semantically undefinable
through each other (Section 4). This contrasts to the fact that,
when separated from permissions, ensuring and admitting are
dual to each other. Third, we give a sound and complete log-
ical system for the four modalities (Section 5 and Section 6).
This reveals the interplay between the four forms of permis-
sions and offers an efficient way for permission reasoning.

2 Literature Review and Notion Discussion

Deontic logic [McNamara and van de Putte, 2022] is an ap-
pealing approach to solving Al ethics problems by enabling
autonomous agents to comprehend and reason about their
obligation, permission, and prohibition. It aims at “translat-
ing” the deontic statements in natural languages into logical
propositions and building up a system for plausible deduc-
tion. Von Wright [1951] launched the active development of
symbolic deontic logic from the analogies between norma-
tive and alethic modalities. Several follow-up works [An-
derson, 1956; Prior, 1963] built up the Standard Deontic
Logic (SDL), taking obligation as the basic modality and
defining permission as the dual of obligation and prohibi-
tion as the obligation of the negation. Anderson [1967] and
Kanger [1971] reduced this system by defining a proposi-
tional constant d for “all (relative) normative demands are
met”. By this means, obligation (modality O) can be defined
as Oy := O(d — ), which is read as “it is necessary that ¢
is true when all normative demands are met”. As the dual of
obligation, permission (modality P) is defined as

Py :=O(d A g), €))
which is read as “it is possible that all normative demands are
met and ¢ is true”. In this way, the inference rule

¢ — Py

is valid. The notion of permission that satisfies statement (2)

is called weak permission. There are two well-known related
paradoxes about weak permission:
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(1) Ross’s paradox [Ross, 1944]. The formula
Po — P(p V1) 3)

is valid by statement (2). However, in common sense, for a
kid “it is permitted to eat an apple” is true but “it is permit-
ted to eat an apple or drink alcohol” should be false, which
contradicts statement (3).

(ii) The free choice permission paradox [von Wright, 1968;
Kamp, 1973]. According to linguistic intuition, if “it is per-
mitted to eat an apple or a banana”, then both “eating an ap-
ple” and “eating a banana” should be permitted. This shows
that disjunctive permission is treated as free choice permis-
sion, which means the formula

Pl V) = Pp APy 4)

should be valid. However, statement (4) is not derivable in
SDL. Free choice permission is a form of strong permis-
sion [Asher and Bonevac, 2005], satisfying the inference rule

o=
Psyp — Psg’

Following Anderson and Kanger’s way, van Benthem [1979]
captured the notion of strong permission as

PP =D(p — d), (6)

which is read as “it is necessary that if ¢ is true then all nor-
mative demands are met”. He then gave a complete axiom
system for obligation (O) and strong permission (P?).

Most researchers agree that both weak and strong permis-
sion makes sense. As discussed by Lewis [1979], no univer-
sal comprehension of permission seems to exist. In general,
weak permission is treated as the dual of obligation. Strong
permission, as well as free choice permission, is more in-
tractable and arouses more interesting discussions due to its
anti-monotonic inference property in statement (5). For in-
stance, Anglberger er al. [2015] adopted the notion of strong
permission and defined a notion of obligation as the weak-
est form of (strong) permission. Wang and Wang [2023]
axiomatised a logic of strong permission that satisfies some
commonly desirable logical properties. Strong permission is
also studied in defeasible logic [Asher and Bonevac, 2005;
Governatori ef al., 2013], which is believed to be able to cap-
ture the logical intuition about permission.

The above discussion of permission applies possible-world
semantics without specifically considering agents and their
agency. However, it is noticed that two kinds of normative
statements exist: the agentless norms that talk about states
(e.g. it is permitted to eat an apple) and the agentive norms
that talk about actions (e.g. John is permitted to eat an ap-
ple). The possible-world semantics cannot distinguish them.
To fill the gap, Chisholm [1964] proposed a transfer from any
agentive norm to an agentless norm. For instance, the state-
ment “agent a is permitted to do ” is transformed into “it is
permitted that agent a does . Some recent work [Kulicki
and Trypuz, 2017; Kulicki et al., 2023] aimed at integrating
the agentless and agentive norms in a unified logical frame.

Things become more complicated when agents and their
agency are incorporated. In the literature, STIT logic [Chel-
las, 1969; Belnap and Perloff, 1988; Belnap and Perloff,
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1992] is used to express the agency. Horty and Belnap [1995]
and Horty [2001, chapter 4] introduced a deontic STIT logic
for ought-to-be and ought-to-do semantics, respectively. The
former corresponds to the agentless obligations while the lat-
ter corresponds to the agentive obligations in STIT models.
Horty [2001, chapter 3] further showed that the transfer pro-
posed by Chisholm does not always work properly. Follow-
ing Horty, van de Putte [2017] briefly discussed the dual of
the ought-to-do obligation, which is the weak permission in
deontic STIT logic, and then defined a form of free choice
permission following statement (4). Although the agency is
considered in deontic STIT logic, the distinction between to
ensure and to admit is never discussed there.

In the field of Al, there is a rising interest in applying de-
ontic logic into agents’ planning: how to achieve a goal while
complying with the deontic constraints [PandZi¢ er al., 2022;
Areces et al., 2023]. There is also some discussion of agents’
comprehending and reasoning norms [Arkoudas er al., 20053;
Broersen and Ramirez Abarca, 2018]. However, to the best
of our knowledge, the agentive weak and strong permissions
have never been cross-discussed before.

In this paper, we consider both permission to ensure and
permission to admit in both weak and strong forms that follow
statements (1) and (6). In a word, we consider four forms of
permissions as illustrated in statements (SA), (SE), (WE), and
(WA). It is worth mentioning that, our formalisation has a con-
nection with Horty’s ought-to-do deontic STIT logic [Horty,
2001]. On the one hand, the notion “ensure” captures the
same idea as “see to it that” in STIT logic. On the other
hand, our formalisation can be seen as a reasonable reduc-
tion of Horty’s formalisation. Specifically, Horty’s approach
is to, first, define a preference over the outcomes (i.e. “histo-
ries” in STIT models) of actions in the model, then, apply the
dominance act utiliarianism to decide which actions are per-
mitted (i.e. “optimal” in his work) in semantics, and, finally,
define the ought-to-do obligation based on the permitted ac-
tions in semantics. In particular, an action in the STIT frame
is the set of outcomes that may follow from the action. An
action ““sees to it that” ¢ if and only if ¢ is true in all the
potential outcomes. Then, “do ¢” is interpreted as “seeing
to it that ¢”. In this paper, we combine the first two steps
of Horty’s approach, directly defining the deontic constraints
on actions in the model and then defining four forms of per-
missions in semantics. Note that, the definition of deontic
notions is independent of the process that combines the first
two steps in Horty’s approach. In other words, our work in
this paper can easily be transformed from action-based mod-
els into outcome-based models by recovering the step of de-
ciding permitted actions based on preference over outcomes
using dominance act utilitarianism. Moreover, we give a re-
duction of our semantics into STIT logic in Section 3.2.

3 Syntax and Semantics

In this section, we introduce the syntax and semantics of our
logical system. Throughout the paper, unless stated other-
wise, we assume a fixed set A of agents and a fixed nonempty
set of propositional variables.

Definition 1. A transition system is a tuple (S, A, D, M, 7):

3560

1. S is a (possibly empty) set of states;

2. A = {A}ses,aca Is the action space, where Af is a
nonempty set of actions available to agent a in state s;

3. D = {D:}scs.aca is the deontic constraints, where
D3 is a set of permitted actions and @ C D3 C A3,

4. M = {M}ses is the mechanism, where a relation
M, C [[aea A5 x S satisfies the continuity condition:
for each action profile 6 < ], 4 A} there is a state
t € S such that (6,t) € M,

5. w(p) C S for each propositional variable p.

The continuity condition in item 4 above requires the ex-
istence of a “next” state t. We say that a transition system is
deterministic if such state ¢ is always unique.

The language ® of our logical system is defined by the fol-
lowing grammar:

pi=plopeVe|WAp|[WEp|SE.p | SA.p,

where p is a propositional variable and a € A is an agent.
Intuitively, we interpret WA, as “there is a permitted action
of agent ¢ that admits of ”, WE,p as “there is a permitted
action of agent a that ensures ¢”, SE,p as “each action of
agent a that ensures ¢ is permitted”, and SA, ¢ as “each action
of agent a that admits of ¢ is permitted”. We assume that
conjunction A, implication —, and Boolean constants true T
and false L are defined in the usual way. Also, by A, ¢;
and \/, <, i We denote, respectively, the conjunction and the
disjunction of the formulae ¢4, ... @,. As usual, we assume
that the conjunction and the disjunction of an empty list are
T and L, respectively.

Definition 2. For each transition system (S, A, D, M, x),
each state s € S, and each formula ¢ € , the satisfaction
relation s |- @ is defined recursively as follows:

slkp, if s € w(p);

2. sk = if sl p;

3. slFoVa,ifslFporslk;

4. sIF WAL, if (s,1) v+ — for some i € DS,

5

6.

~

. sIEWELp, if (s,1) ~q @ for some i € D5;
. s SEqy, ifi € D2 for each i such that (s,i) ~4 ©;
7. sl SAup, ifi € D for each i such that (s,1) ¥q —,

where the notation (s,1) ~», @ means that, for each tuple
(0,t) € My, if 6, =i, then t I .

Items 4 - 7 above capture the generalised notions of permis-
sions in statements (WA), (WE), (SE), and (SA) in Section 1.
Informally, (s, i) ~, ¢ means that that action ¢ of agent a in
state s ensures that ¢ is true in the next state. Accordingly,
(s,1) ¥+, — means that action ¢ of agent a in state s admits
of the situation that ¢ is true in the next state. Observe that, if
a transition system is deterministic and has only one agent a,
then (s,4) ¥, — if and only if (s,4) ~, ¢. Then, the next
lemma follows from items 4 - 7 of Definition 2.

Lemma 1. [f set A contains only agent a, then for any for-
mula ¢ € ® and state s of a deterministic transition system,

1. sl- WA, if and only if s |- WE,p;
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2. sl SAyp if and only if s IF SEq .

Note that, in other cases (i.e. multiagent or nondeterministic
systems), these modalities are not only semantically inequiv-
alent but also undefinable through each other. We show this
in Section 4.

3.1 Model Checking

Following Definition 2, we consider the global model-
checking problem [Miiller-Olm et al., 1999] of language ®.
For a finite transition system and a formula ¢ € ®, the global
model checking determines the truth set [¢] that consists of
all states satisfying ¢ in the transition system. Formally, we
define the truth set of a formula as follows.

Definition 3. For any given transition system and any for-
mula ¢ € ®, the truth set [¢] is the set {s | s IF p}.

The global model checking of formula ¢ applies a trivial
recursive process on its structural complexity. The next the-
orem shows its time complexity. See Appendix A of the full
version [Shi, 2024] for a detailed analysis of the algorithm.
Theorem 1 (time complexity). For a finite transition system
(S,A,D,M,r) and a formula ¢ € P, the time complex-
ity of global model checking is O(|¢| - (|S|+|M|+|A])).
where || is the size of the formula, |S| is the number of
states, |M| = ) . | M| is the size of the mechanism, and
Al =D 0ca 2 scs |AS] is the size of the action space.

3.2 Reduction to Other Logics

Recall statements (1) and (6) in Section 2, which show the
way how Anderson and Kanger reduces SDL. Using a simi-
lar technique, we can translate our modalities into modalities
in STIT logic and ATL [Alur et al., 2002] after properly in-
terpreting the transition system in Definition 1.

Reduction to STIT Instead of being about the states, the
statements in STIT logic are about moment-history (m/h)
pairs. Due to this fact, there is no exact reduction of our
logic to STIT logic. However, we can interpret our modal-
ities in STIT models in the appearance of the necessity and
possibility modalities [] and O, In order to do this, we
first incorporate the deontic constraints into the models as
atomic propositions. To be specific, m/h I d, represents
that the action of agent @ at moment m that includes history
h is permitted. We use the modality XSTIT [Broersen, 2008;
Broersen, 2011]. Informally, m/h IF XSTIT,p could be in-
terpreted as “the action of agent a at moment m that includes
history h sees to it that ¢ is true at the next moment”. Then,
our four modalities can be translated as:

WA, := O(dg A =XSTIT,—ep);

WE,p := O(do A XSTIT,0);

SE.¢ :=O(XSTITap — dg);

SA.p :=O(=XSTIT,—¢ — dg).
Reduction to ATL.  Unlike in STIT logic, in ATL, the state-
ments are about states but there is no way to express the prop-

erties of actions. For this reason, we encode deontic con-
straints into the states. To do this, we expand each state in

'm/hIF Oy iff m/h'I- ¢ for each history k' such that m € h'.
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our original transition system into a set of states in the ATL
model. Specifically, each state s in our original transition
system corresponds to a set {(s, D) |D C A} of states in
the ATL model. Informally, the tuple (s, D) encodes the in-
formation that “state s is reached after the agents in set D
taking permitted actions and the others taking non-permitted
actions”. Then, (s,D) IF d, if and only if a € D. Also,
(s, D) Ik pif and only if s IF p in our original transition sys-
tem. Correspondingly, the transition ({s, x}), (¢, D)) exists in
the ATL model if there is a tuple (d,¢) € Mj in our original
transition system such that D = {a € A|J, € D:} and x* is
a wildcard. Note that, ATL requires the transitions to be de-
terministic. Thus, if needed, we incorporate a dummy agent
Nature into the agent set A to achieve determinacy. Then,
we can translate our modalities into standard ATL syntax as:

WA := (A)X(da A 9);
WE, ¢ == (a)X(da A ¢);
SEap := ~{(a)X~(p — do);
SAwp i= ~((ANX—(p — da),

where ((C)) Xy is informally interpreted as “the agents in set
C can cooperate to enforce ¢ in the next state” and {(a)) is the
abbreviation for {({a})).

4 Mutual Undefinability

As we define four modalities in the language, we would like
to figure out if all of them are necessary to express the corre-
sponding notions of permission. Specifically, if some of these
modalities are semantically definable through the others, then
the definable ones are not necessary for the language. As an
example, a well-known result in Boolean logic is De Mor-
gan’s laws, which say conjunction and disjunction are inter-
definable in the presence of negation. Therefore, to consider
a “minimal” system for propositional logic, it is not necessary
to include both conjunction and disjunction.

In this section, we consider the definability of modali-
ties in the same way as De Morgan’s laws (i.e. semantical
equivalence). For example, modality WA is definable through
modalities WE, SE, and SA if every formula in language ®
is semantically equivalent to a formula using only modalities
WE, SE, and SA. Formally, in the transition systems, we de-
fine semantical equivalence as follows.

Definition 4. Formulae ¢ and 1) are semantically equivalent
if [¢] = [¥] for each transition system.

We prove that none of the modalities WA, WE, SE, and
SA is definable through the other three. To do this, it suf-
fices to show that, for each modality ® of the four modalities,
there exists a formula ®¢p € ® and a transition system where
[®¢] # [v] for each formula 1) not using modality ®. In par-
ticular, we use the truth set algebra technique [Knight er al.,
2022]. This technique uses one model (i.e. transition system)
and shows that, in this model, the truth sets of all formulae v
not using modality ® form a proper subset of the family of all
truth sets in language ®, while the truth set of the formula ®¢
does not belong to this subset. We formally state the undefin-
ability results in the next theorem. A detailed explanation of
the technique and proof can be found in Appendix B of the
full version.
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Theorem 2 (undefinability of WA). The formula WA, p is not
semantically equivalent to any formula in language ® that
does not use modality WA.

The formal statements of the undefinability results for
modalities WE, SE, and SA are the same as Theorem 2 ex-
cept for using the corresponding modalities instead of WA,
see Theorem 5, Theorem 6, and Theorem 7 in Appendix B of
the full version.

Note that, all four undefinability results, as presented in
Appendix B of the full version, require that our language con-
tains at least two agents. In single-agent settings, if a transi-
tion system is nondeterministic, these undefinability results
still hold. This can be observed by modifying the two-agent
transition systems in the proofs into single-agent nondeter-
ministic transition systems by treating one of the agents as the
nondeterministic factor. If a single-agent transition system is
deterministic, then, as observed in Lemma 1, modalities WA
and WE are semantically equivalent, so as modalities SE and
SA. However, modalities WA (WE) and SA (SE) are not defin-
able through each other, see Appendix B.5 of the full version.

5 Axioms

In addition to the tautologies in language ®, our logical sys-
tem contains the following schemes of axioms for all agents
a,b € A and all formulae p, ¢ € ®:

Al. =WA,L;

A2. WE,T;

A3. SA,L;

A4. SE, T — SA,T;

AS5. WA, (p V) = WA,o VvV WA,

A6. SA o ASAY — SAL (o V Y);

AT. WE,o A =WE ) — WA, (p A —0);

A8. =SE,p ASE v — =SA.(p A —);

A9. =WA,p ASAY — —WA, (o A1) A SA(0 A ).

Axiom Al says agent a does not have a permitted action
that has no next state. This is true because of the continu-
ity property of the mechanism (item 4 of Definition 1). Ax-
iom A2 says agent a always has a permitted action that en-
sures a next state. This is true because of the continuity prop-
erty and the nonempty set of permitted actions (item 3 of Def-
inition 1). Axiom A3 says every action that may have no next
state is permitted. This is true because no such actions exist
again due to the continuity property. Axiom A4 is true be-
cause both SE, T and SA, T mean that every action of agent
a is permitted.

Axiom AS says, if agent a has a permitted action that ad-
mits of ¢ V 1, then agent a either has a permitted action that
admits of ¢ or has a permitted action that admits of . This is
true because the permitted action that admits of ¢ V ¢/ indeed
either admits of ¢ or admits of ¢ (item 3 of Definition 2).
Axiom A6 says, if every action of agent a that admits of ¢
is permitted and every action of agent a that admits of v is
permitted, then every action of agent a that admits of ¢ V 1) is
permitted. This is true because any action that admits of V)
either admits of ¢ or admits of v (item 3 of Definition 2).
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Axiom A7 says, if agent a has a permitted action that en-
sures ¢ and has no permitted action that ensures v/, then agent
a has a permitted action that admits of ¢ A —tp. This is true
because the permitted action ¢ that ensures  does not ensure
1. Hence, action 7 admits of —) while ¢ is ensured to hap-
pen. Axiom A8 says, if agent a has a non-permitted action
that ensures  and every action that ensures v is permitted,
then agent a has a non-permitted action that admits of @ A—1p.
This is true because the non-permitted action j that ensures ¢
does not ensure 1. Hence, action j admits of — while ¢ is
ensured to happen.

Axiom A9 says, if agent a has no permitted action that ad-
mits of ¢ and every action that admits of v is permitted, then
agent b has no permitted action that admits of ¢ A1) and every
action of agent b that admits of ¢ A 1) is permitted. This is
true because the antecedent means agent a’s permitted actions
ensure —¢ and non-permitted actions (if existing) ensure —).
Thus, every action of agent a ensures —p V — (item 3 of
Definition 2). Hence, —(p A 1)) is unavoidable in the next
state. This implies that agent b has no permitted action that
admits of ¢ A1), and any action of agent b that admits of @ A1)
is permitted because no such action of agent b exists.

We write - ¢ and say that formula ¢ is a theorem of our
logical system if it can be derived from the axioms using the
following four inference rules:

IR1. w
(

=9
" WAL — WA’
o=
" SA — SALp’

' WELL] Y1 JARERIAN WEamQOm — SEb1 ¢1 V.-V SEbnwn ’
where agents a1, . .., am, b1, ..., b, are distinct.

(Modus Ponens);

IR2

IR3

IR4

Rule IR2 is the monotonicity rule for modality WA. It is
valid because, in each state of each transition system, the per-
mitted action of agent a that admits of ¢ also admits of 1,
as ¢ — 1) is universally true. By this rule, modality WA rep-
resents a form of weak permission following statement (2).
Rule IR3 is the anti-monotonicity rule for modality SA. It is
valid because, in each state of each transition system, the set
of actions that admits of 1) is a superset of the set of actions
that admits of ¢, as o — 1 is universally true. Hence, as long
as the actions in the former set are all permitted, those in the
latter set are also permitted. This rule shows that modality
SA represents a form of strong permission following state-
ment (5). It can be derived that modality WE represents a
form of weak permission and modality SE represents a form
of strong permission, see Appendix C.1 of the full version.

Rule IR4 is a conflict-preventing rule following the no-
tion of “ensure” in semantics. The premise says, if every
one of 1,..., ., is true, then at least one of 91,...,9,
is false. The conclusion says, for a set of distinct agents
{a1,...,aQm,b1,...,bn} C A, if every agent a; has a per-
mitted action to ensure ;, then for at least one agent b;, ev-
ery action that ensures ; is permitted. This is valid because
there would be a conflict otherwise. To be specific, if there is
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a state s where the conclusion of the rule is false, then, each
agent a; has a permitted action k; that ensures ¢, and each
agent b; has a non-permitted action £; that ensures 1);. Con-
sider an action profile § such that é,, = k; foreach i < m
and 0, = ¢; for each j < n. By the continuity condition in
item 4 of Definition 1, there is a state ¢ such that (J,t) € Mj.
In such state ¢, each of the formulae o1, ..., 0m, Y1,..., Uy
is true. However, this conflicts with the premise of the rule.

We write X + ¢ if a formula ¢ can be derived from the
theorems of our logical system and an additional set of as-
sumptions X using only the Modus Ponens rule. Note that
statements & F ¢ and | ¢ are equivalent. We say that a set
of formulae X is consistent if X ¥ 1.

Lemma 2 (deduction). If X, p F 1, then X F ¢ — 1.
See the proof of Lemma 2 in Appendix C.2 of the full version.

Lemma 3 (Lindenbaum). Any consistent set of formulae can
be extended to a maximal consistent set of formulae.

The standard proof of this lemma can be found in [Mendel-
son, 2009, Proposition 2.14].

Lemma 4. - WE,p A =WA, b — WE, (o A ).
Lemma 5. - —SE o A SA,¢0 — —=SE, (¢ A ).

See the proofs of the above two lemmas in Appendix C.3 of
the full version. The next theorem follows from the above
discussion of the axioms and the inference rules.

Theorem 3 (soundness). If - , then s IF ¢ for each state s
of each transition system.

6 Completeness

In this section, we prove the strong completeness of our logi-
cal system. As usual, at the core of the completeness theorem
is the canonical model construction. In our case, it is a canon-
ical transition system.

6.1 Canonical Transition System

In this subsection, we define the canonical transition system
(S,A,D, M, ).

Definition 5. Ser S of states is the family of all maximal con-
sistent subsets of our language P.

For each formula ¢ € ®, we introduce two actions: a per-
mitted action " and a non-permitted action ~. Formally,
by ¢ and ¢~ we mean the pairs (¢, +) and (¢, —), respec-
tively. By item 7 of Definition 2, the formula SA, T expresses
that agent a is permitted to use every action. In other words,
if SA, T is true, then there are no non-permitted actions avail-
able to agent a in the current state. This explains the intuition
behind the following definition.

Definition 6. For each state s € S and each agent a € A,
ps = [T el if SA,T € s,
et o | pe @}, otherwise;
D; ={¢" | p e @}

The next definition is the key part of the canonical transi-
tion system construction. It specifies the mechanism of the
transition system. Recall that WA, means that agent a is

not permitted to use any action that admits of ¢. Hence, each
permitted action of @ must ensure —p. We capture this rule in
item 1 of the definition below. Recall that WE, means that
agent a has at least one permitted action that ensures . In the
canonical transition system, this action is defined to be ¢™.
The rule captured in item 2 below guarantees  in the next
state whenever agent a uses action ¢ ™. Next, ~SE, means
that agent a is not permitted to use at least one action that
ensures . We denote such action by ¢ . The rule captured
by item 3 stipulates that action ¢~ ensures ¢. Finally, SA,¢
means that agent a is permitted to use all actions that admit of
. In other words, SA,¢ means that all non-permitted actions
ensure . This is captured by item 4 below.

Definition 7. (6,t) € M, when for each agent a € A and
each formula ¢ € P,

1. ifd, € DS and WA, & s, then —p € t;

2. if6a = ¢ and WE, € s, then ¢ € t;

3. ifda = and SE,p ¢ s, then p € t;

4. if 6, € A2\ D: and SA,p € s, then —¢ € t.

Note that, each state s is a maximal consistent set by Defin-
tion 5. Hence, for item 1 above, the statement WA, ¢ s is
equivalent to “WA,p € s. The same goes for item 3.

Definition 8. 7(p) = {s € S | p € s} for each p.

This concludes the definition of the canonical transition
system (S, A, D, M, 7). Next, we show that it satisfies the
continuity condition in item 4 of Definition 1.

Lemma 6 (continuity). For each state s € S and each action

profile § € [],c 4 A, there is a state t such that (6,t) € M.

Proof. Consider a partition { A, B} of the set A of agents:
A={a€ A|d, € D}}; 7
B={be A|& € Aj\ D;}. (8)

Then, SA, T ¢ s for each agent b € B by Definitions 6.
Hence, —SA, T € s for each agent b € B because s is a max-
imal consistent set. Then, by the contrapositive of axiom A4,

—SE, T € s. )
Consider the set of formulae
X ={¢|Jdae A(-WA¥ € 5)}
U{o|3aec A(6, =0, WE,0 € 5)}
U{—x|3be B(SAyx € s)}
U{r|3be B (6 =7",-SEpT € 9)}.

Claim 1. Ser X is consistent.

(10)

Proof of Claim. Suppose the opposite. Then, by axiom A2,
statements (9) and (10), there are formulae

_|WAa1’(/J11, ceey _‘WAalqplkUWEalgl € s,
e (11
_‘WAam 1/Jm1, ey _‘WAam wmk’m y WEam 8m € s,

and R
SAy, x11,---,SAp, X10,, SEp, 71 € 5,

(12)
SAbn Xnly--- 7SAbn Xntl,, _'SEbn?n c s,
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where

A1y, Qm,b1,..., b, are distinct agents, (13)

5 _ Joi if 6o, = cr;r and WE,,0; € s,
‘ T, otherwise,

for each ¢ < m, and

ﬁ'\* _ Tiy
P =
T,

for each 7 < n, such that

A @A Avi) AN (Fn Aov) F Lo a4y

i<m i<k i<n J<e;

if 5171‘ = T; and ﬁSEbiTi € s,
otherwise,

By multiple application of the countrapositive of axiom AS
and propositional reasoning, statement (11) implies that

sk —|WAai( \/ 1/)1-]-) for each i < m. (15)
J<ki

Note that, in the specific case where k; = 0, statement (15)
follows directly from axiom Al. By Lemma 4, statement (15)
and the part WE,,,0; € s of statement (11) imply

sFWE,, (57— \/ vy ) foreachi <m.  (16)
J<k;

Meanwhile, by multiple application of Lemma 2 and propo-
sitional reasoning, statement (14) can be reformulated to

A @AV vs) o VoEA A ). an
i<m J<k; i<n J<t;
By statement (13) and rule IR4, statement (17) implies
- /\ WEm ((/J'\7 A= \/ Q/J,J) — \/ SE[h (5'\7 A /\ _‘X'Lj)-
i<m 3<ki i<n i<t
Then, by statement (16) and the Modus Ponens rule,
sk \/SEbi(ﬁ/\ﬁ \/ Xij). (18)
i<n J<t;
At the same time, by multiple application of axiom A6 and
propositional reasoning, statement (12) implies
sk SAbl.( \/ Xij) for each i < n. (19)
J<t;

Note that, in the specific case where ¢; = 0, statement (19)
follows directly from axiom A3. By Lemma 5, statement (19)
and the part =SE;,7; € s of statement (12) imply

s —SEy, (?Z A \/ Xij) for each 7 < n,
7<t;
which contradicts statement (18). =

Let ¢ be any maximal consistent extension of set X. By
Lemma 3, such ¢ must exist. Hence, ¢ € S by Definition 5.

Claim 2. (5,1) € M,.
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Proof of Claim. It suffices to verify that conditions 1 — 4 of
Definition 7 are satisfied for the tuple (d,¢) for each agent
x € A. Recall that sets A and B form a partition of the agent
set .A. Hence, it suffices to consider the following two cases.

Case 1: x € A. Condition 1 of Definition 7 follows from
line 1 of statement (10) because X C t¢. Condition 2 follows
from line 2 of statement (10). Conditions 3 and 4 trivially
follow from ¢, € D; by statement (7).

Case 2: © € B. Conditions 1 and 2 of Definition 7 trivially
follow from ¢, ¢ D; by statement (8). Condition 3 follows
from line 4 of statement (10) because X C t. Condition 4
follows from line 3 of statement (10). X

The statement of this lemma follows from Claim 2. O

6.2 Strong Completeness Theorem

As usual, at the core of the proof of completeness is a truth
lemma proven by induction on the structural complexity of a
formula. In our case, it is the Lemma 7. The completeness
result, as shown in Theorem 4, is proved with Lemma 7 in the
standard way. We put the formal proofs in Appendix D of the
full version.

Lemma 7. s Ik ¢ if and only if ¢ € s for each state s of the
canonical transition system and each formula p € P.

Theorem 4 (strong completeness). For each set of formulae
X C & and each formula ¢ € ® such that X ¥ , there is a
state s of a transition system such that s |- x for each x € X
and s ¥ .

7 Conclusion and Future Research

We are the first to classify the agentive permissions in multi-
agent settings into permissions to ensure and permissions to
admit and cross-discuss them in both weak and strong forms.
To do this, we propose and formalise four forms of agentive
permissions in multiagent transition systems, analyse the time
complexity of the model checking algorithm, prove their se-
mantical undefinability through each other, and give a sound
and complete logical system that reveals their interplay.
Future research could be in two directions. One is to extend
the deontic constraints from one-step actions to multi-step ac-
tions. Indeed, multi-step deontic constraints are commonly
seen in application scenarios. For example, if a child is per-
mitted to eat only one ice cream per day, then whether to eat
an ice cream in the morning affects whether she is permitted
to eat one in the afternoon. This is closely related to condi-
tional norms (e.g. conditional obligations) discussed in the
literature [van Fraassen, 1973; Chellas, 1974; DeCew, 1981;
Rulli, 2020] but is interpreted in multiagent transition sys-
tems instead of possible-world semantics. The other direction
could be the interaction between permission and responsibil-
ity in multiagent settings. It might have been noticed that our
introductory example about factories and fish is a variant of
[Halpern, 2015, Example 3.11] and [Halpern, 2016, Example
6.2.5], which talk about causality and responsibility in mul-
tiagent settings. Indeed, the connection between obligation
and responsibility in linguistic intuition has already been no-
ticed by philosophers [van de Poel, 2011]. However, a formal
investigation of the interaction among norm, causation, and
responsibility in multiagent settings is still lacking.
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