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Abstract

This paper addresses the anytime sorting problem,
aiming to develop algorithms providing tentative
estimates of the sorted list at each execution step.
Comparisons are treated as steps, and the Spear-
man’s footrule metric evaluates estimation accuracy.
We propose a general approach for making any sort-
ing algorithm anytime and introduce two new al-
gorithms: multizip sort and Corsort. Simulations
showcase the superior performance of both algo-
rithms compared to existing methods. Multizip sort
keeps a low global complexity, while Corsort pro-
duces intermediate estimates surpassing previous
algorithms.

1 Introduction

Motivation. The objective of anytime sorting algorithms
is to yield accurate estimates of a list’s sorted order with
a limited number of comparisons. This problem emerges
particularly when the cost of comparing two items outweighs
other computational operations.

For example, in scenarios involving human interaction, as-
signing a utility to each element of the list is not a reliable tech-
nique and it is better to proceed by comparing pairs [Giesen
et al., 2009]. To illustrate this, consider a supervised learning
based on sorted lists (e.g. learning to assert the quality of trans-
lations). Providing sorted lists instead of scores is relevant
because humans are not good at grading many items, whereas
pairwise comparisons are relatively accurate. However, hu-
man comparisons are considerably more time-consuming than
the other operations, which are performed by computers. To
optimize efficiency, it is then crucial to distinguish comparison
complexity from global complexity. In this context, anytime
sorting has two main applications: instead of performing exact
sorting on a small part of the raw input, one may wish to sort
approximately more inputs. Uncertainty on the input and pro-
cessing rates make it desirable to have an anytime approach.
Also, users may be worn out after a certain amount of ques-
tions and want to stop the sorting process prematurely, so it is
essential for the algorithm to generate accurate intermediate
estimates that closely approximate the final sorted list.

Similar problems arise in situations where the considered
items involve massive datasets requiring data transfers for each
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comparison [Mesrikhani and Farshi, 2018]. The expense as-
sociated with each comparison necessitates the exploration of
efficient algorithms that minimize the number of comparisons.
Furthermore, practical constraints may require the sorting pro-
cess to be interrupted before the algorithm’s termination, so
we need a reliable and accurate estimate of the sorted order
based on the progress made thus far.

Related work. Limiting the number of comparisons when
sorting is a well-known problem [Cormen e al., 2009].
Among many famous algorithms such as quicksort, mergesort,
heapsort, binary insertion sort and Shellsort, the Ford-Johnson
algorithm [Ford and Johnson, 1959] stands out as very close
to the theoretical limit in number of comparisons, and even
optimal for certain values [Peczarski, 2004]. These algorithms
do not consider a possible premature interruption.

A related problem is that of sorting under partial informa-
tion. This problem entails determining a total order that is
partially known, in the sense that a compatible partial order is
available [Cardinal er al., 2010]. Many variants of the sorting
problem can be found within the realm of partial information,
including scenarios such as ranking the & best values [Dushkin
and Milo, 2018]. While the partial information framework
does not consider intermediate estimates, similarities with our
contributions exist as we propose an algorithm that exploits
the partial information extracted so far to determine the next
comparison. Furthermore, partial information relates to classi-
cal sorts when considering empty information. For example,
initializing Algorithm 1 in [Cardinal er al., 2010] with no
prior amounts to the classical binary insertion sort, and their
Algorithms 2 and 3 are both equivalent to mergesort (in its
bottom-up version, which we discuss further in this paper).

Sorting when the probabilistic distribution of the inputs is
known is another relevant problem to consider. In [Moran and
Yehudayoff, 2016], a variant of insertion sort is proposed as a
solution, which has also been employed in [Peters and Procac-
cia, 2021] for sorting with human comparisons. However, our
approach differs in two main aspects. Firstly, our algorithms
focus on providing good intermediate estimates throughout
the sorting process. Secondly, we assume equal probabilities
for all input permutations. In that case, their algorithm is
equivalent to binary insertion sort.

The potential interruption in the sorting process places us
within the domain of anytime algorithms, which maintain re-
sult estimates at all times. Surprisingly, sorting has received
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limited attention in this literature, with studies focusing on
specific algorithms like selection sort, Shellsort, and quick-
sort [Grass and Zilberstein, 1996; Horvitz, 1988]. However,
the metrics used to measure the estimation error are not al-
ways true distances. In our benchmark, we exclude selection
sort due to its O(n?) comparison complexity, while including
Shellsort and quicksort for evaluation.

Among related problems, progressive algorithms can also
be interrupted at any time, but the focus is on provable bounds
for worst-case performance rather than on empirical average
efficiency [Alewijnse et al., 2014]. Contract-based algorithms
also make a trade-off between time and accuracy, but assume
that the available time is known in advance [Zilberstein, 1995;
Zilberstein, 1996].

One of the most closely related studies is the work by
[Giesen et al., 20091, which delves into the link between the
number of comparisons performed and the estimation error.
Using Spearman’s footrule metric to evaluate the error, they
show that, for a list of size n, the error after k < n(In(n) — 6)
comparisons is at least n2e=*/7=6 in the worst case. Con-
versely, they introduce ASort, an anytime algorithm with guar-
antee that the error is less than n2e~*/6"+1 While these
results show that ASort is asymptotically optimal in some
sense, the ratio between the two bounds above (e5k/ 6n+7) is at
least ¢” > 1000 and potentially unbounded. This means that
the practical performance of ASort remains to be investigated.
One of the goals of our work is to provide a practical bench-
mark for ASort while also introducing new algorithms with
superior empirical performance.

Contributions. In this paper, we make the following contri-
butions to the field of anytime sorting:

1. We generalize the work on ASort by [Giesen ef al., 2009]
under the anytime framework and propose the anytime sort-
ing problem, where the performance profile of an algorithm
is measured by the Spearman’s footrule metric between its
tentative estimates and the perfectly sorted list, as a function
of the number of comparisons already performed.

2. We reexamine classical sorting algorithms from the per-
spective of anytime sorting.

3. We propose simple heuristics called estimators, which
leverage the available partial information at each step to
approximate the final sorted result.

4. We present an enhanced version of the traditional merge-
sort algorithm called multizip sort. This algorithm is specif-
ically designed to improve the anytime sorting capabilities.
5. We introduce the Corsort family of anytime sorting al-
gorithms, which rely on estimators to determine the next
comparison to perform.

6. Using extensive simulations, we analyze the perfor-
mance of Corsort, multizip, and ASort.

* Corsort has a quasi-optimal comparison complexity
and provides superior intermediate estimates compared
to existing state-of-the-art sorting algorithms. Its main
drawback is its global complexity.

» Multizip sort has a better comparison complexity. It
maintains in most cases the second-best intermediate
results. Its main drawback is its interruption cost.
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* ASort has less optimal comparison complexity and
performance profile. Its main benefits are low global
complexity and absence of interruption cost.

A comprehensive summary of the computational complexities
is provided in Table 1.

Limitations. The anytime sorting algorithms we propose
are designed to address specific scenarios, and their suitability
depends on the following assumptions:

1. Itis impractical or unreliable to assign numerical utilities
to the items to sort.

2. The sorting process may be interrupted due to tight time
constraints or resource limitations.

3. An approximate ranking is acceptable, although the ap-
proximation error does matter.

4. Good empirical performance is required, possibly at the
expense of formal guarantees.

5. The cost of comparisons is orders of magnitude higher
than other computing operations.

6. Worse case scenarios and non-uniform dataset/inputs are
not the point of the study.

If these assumptions do not hold, alternative solutions may
be more appropriate. For example, algorithms like Ford-
Johnson are well-suited for situations with costly comparisons
and a low likelihood of interruption; contract-based algorithms
offer better suitability when interruption times are known and
formal guarantees are required. ASort offers similar guaran-
tees, even though it is outperformed experimentally.

Furthermore, our proposal does not rely on any specific
prior information about the input list. This makes our proposal
very generic but also means that if such prior exists, we do
not leverage it to reduce the average number of comparisons
required, as it is done in [Peters and Procaccia, 2021].

Lastly, we have not provided a formal proof that our Cor-
sort algorithm has an average comparison complexity in
O(nln(n)). This conjecture is only supported by simulations
demonstrating its superior performance compared to heapsort,
Shellsort, and quicksort/ASort.

Roadmap. The rest of the article is organized as follows.
Section 2 formally defines anytime sorting, presents a taxon-
omy of anytime sorting algorithms, and introduces our novel
approaches: estimators, multizip sort, and Corsort. Section 3
evaluates the proposed solutions through simulations. Sec-
tion 4 concludes.

Extended version. A version of the paper completed by
additional details is available online [Caizergues et al., 2024].

2 Anytime Sorting

Formally, we want to sort a list X = (X[1],..., X[n]), where
n > 0, by performing comparisons of the type: is X [i] less
than X [j]? An anytime sorting algorithm is an algorithm ca-
pable, after £ comparisons have been performed, of returning
an estimate X, of the result. By convention, if k is greater
than the number of comparisons needed for the algorithm’s
termination, then X, is the sorted list. We measure the error
of X}, by the Spearman’s footrule metric between X}, and the
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Comparison  Global Native Interest(s)
complexity  complexity estimator
Ford-Johnson ~ nlogy(n) O(nQ) No Comparison complexity
Binary insertion ~ ~ nlogy(n) O(n?) Yes Comparison complexity
Quicksort O(nln(n)) O(nln(n)) Yes Fast termination in practice
ASort O(nln(n))  O(nln(n)) Yes Good native estimator with theoretical guarantees
Top-down merge  ~ nlogy(n) O(nln(n)) Yes Complexities
Bottom-up merge ~ nlogy(n) O(nln(n)) Yes Good performance profile, complexities
Multizip ~nlogy(n) O(n ln(n)) Yes Very good performance profile, complexities
Corsort O(n?)* O(n*)* No Best performance profile, comparison complexity™

Table 1: Cost of the algorithms considered in this paper (we exclude heapsort and Shellsort due to their poor termination times, see Figure 5).
All complexities are well-known results except for the last two rows. All algorithms can use the estimator p when interrupted. Using p requires
O(nln(n)) for Corsort, O(n®) operations for the other algorithms. Native estimators, when they exist, can be used directly.

* Simulations suggest O(n In(n)) comparisons, yielding a global complexity of O(n® In(n)) operations.
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(c) Multizip sort execution.

Figure 1: Sorting the list X =

(51872643) with top-down merge, bottom-up merge and multizip sort. Each edge represents a comparison. The

bracket notation [ | | delimits two sublists already sorted that are being merged. For more details, cf. Appendix A.1 in the extended paper.

sorted list [Diaconis and Graham, 1977], i.e. by the sum of the
absolute differences between the ranks of elements in X}, and
in the sorted list : S, = >, |r(X[i]) —i|, where r(z) denotes
the rank of x in the sorted list. The function & — Sj, which
represents the evolution of the error made as the algorithm
runs, is called its performance profile. 1deally, we are looking
for an anytime sorting algorithm whose performance profile is
consistently lower than that of the other algorithms tested.

2.1 Classical Sorting

Some classical algorithms can be seen as anytime because
they maintain a list that converges to the sorted list and can
be used as an estimate Xj. This is the case of quicksort,
mergesort, binary insertion sort, and Shellsort, all of which we
shall implement in a way that is favorable to the spirit of the
original algorithm: for quicksort, for instance, the position of
the pivot is updated in the list after each comparison.
Changing the order in which comparisons are made may
improve the intermediate estimates Xj. For mergesort, the
standard recursive implementation, also called top-down, sorts
the left part, then the right part of each considered sub-list
(recursively), and reunites them by a merge procedure [Cor-
men et al., 2009, Chapter 2]. However, it is also possible
to go through it bottom-up, by sorting sub-lists of increasing
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size [Knuth, 1998, Chapter 5.2.4]. Figure 1 illustrates this
difference on an example' of size 8: the top-down execution
sorts completely the left side of the list before completely
sorting the right side of the list, whereas the bottom-up ex-
ecution starts by sorting all lists of size 2, both on left and
right sides. In all classical mergesort implementations, the
merge procedure is a single block. We propose a variant of
the bottom-up implementation, which we call multizip sort,
where all merge procedures of a given depth of the recursion
tree are interleaved. Figure 1c illustrates the idea: the first
part of the execution is unchanged and sorts all lists of size
2. Then, when bottom-up sorts the two lists of size 4 sequen-
tially, multizip alternates comparisons in the two lists until
they are both sorted (cf. Appendix A.1 in the extended paper
for details). The rationale for proposing multizip sort will be
discussed in Section 2.2. Note that all the considered variants
of mergesort make the exact same comparisons, but not in the
same order. Intuitively, bottom-up and multizip ensure that
the information available on the elements of the list (through
comparisons) is more balanced. This should be more favorable
for the intermediate estimates X, as Section 3.2 will verify

"For brevity, we omit the commas to note the lists taken as ex-
amples in the tables and figures. For example, the list (a, b, ¢, d) is
noted as (abed).
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(a) Quicksort execution. (b) ASort execution.

Figure 2: Sorting the list X = (3246715) with quicksort or ASort.
A node appears in bold if it has already been used as a pivot: it
partitions the list into smaller elements on the left and larger ones
on the right. Intermediate steps that do not perform any comparison
are omitted. For ASort (2b), we use quickselect [Hoare, 1961] as
median identification subroutine. Each step represents the application
of a pivot, and each edge represents a comparison. A node is circled
twice if it has been identified as a median. In the third step, since
the median 4 has been found, we must compute the median of the
left sub-list (213); but note that it is useless to make any comparison
with element 3, previously used as a pivot, because it is is already in
its final position.

experimentally.

For quicksort, balancing the comparisons is equivalent to
the ASort algorithm [Giesen er al., 2009], using quickse-
lect [Hoare, 1961] as a subroutine for median identification.
Specifically, ASort determines the median, separates smaller
from larger elements, and proceeds recursively. When utiliz-
ing quickselect to identify the median, which uses successive
pivots like quicksort, ASort performs precisely the same com-
parisons as quicksort, albeit not in the same order. This is
illustrated in Figure 2.

Certain other classical algorithms allow to obtain an esti-
mate X, by a natural transformation of their current state. For
example, heapsort keeps in memory the heap associated to
the partially sorted list. To obtain a fair estimate from the
algorithm, we can first go through the heap (backwards), then
through the elements already sorted (forwards).

Finally, some algorithms like Ford-Johnson, whose internal
state does not have a structure naturally close to a list, do not
seem to have a natural estimator. Since it is not always trivial
to translate the execution of an algorithm into intermediate
estimators, we show in the next section how to produce X}
for any comparison-based sorting algorithm.

2.2 Estimators

To make an anytime version of any sort, we propose to use an
estimator that ignores the execution details and solely relies
on the historical record of the comparisons made.

Let Cy = {X[i1] < X[j1],...,X[ix] < X[jx]} be the
result of & comparisons. C, defines a partial order <, on the
elements of the list by transitive closure?. We call estimator a

2We assume for clarity that all elements are distinct. In case
of redundancy, uniqueness can be enforced by appending to each
element z its index ¢ in the initial list. For example, (17,42, 42)

function that associates to any partial order one of its linear
extensions, i.e. a compatible total order.

An estimator is optimal if it always finds a total order that
minimizes the expected Spearman’s footrule metric with a
uniform random linear extension of the input partial order.
Assuming the linear extensions of <j are known, this is equiv-
alent to solving an assignment problem [Kuhn, 1955] where
the cost of assigning element x to index ¢ is the total error
generated by the decision over all extensions. As the metric is
a L1-norm, we can also associate to each element its median
rank, which gives the optimal result as long as all medians
are distinct integers. However, both approaches are computa-
tionally challenging, as enumerating the linear extensions is
known to be #P-complete [Brightwell and Winkler, 1991].

In practice, we propose to use classical score-and-sort
heuristics [Calauzénes and Usunier, 2020; Robertson, 19971:
each element gets a score that reflects its estimated ranking
in the list, and we return the list associated with sorting the
scores. Recall that global complexity is distinct from compar-
ison complexity: we assume that sorting n numerical scores
is much faster than comparing two elements of the list. In
case of ties, we return the elements in their original order. By
a slight abuse of language, we also call estimator the score
function itself.

To build our heuristics, we define descendants and ancestors
as follows: if  is an element of the list, di(z) = |{y € X :
y =k 2} and ax(z) = [{y € X : © =<}, y}| are respectively
the number of known descendants and ancestors of x in <, (x
is included in both sets by convention). A simple way to com-
pute dy, and ay, for a given k is to build the transitive closure
of C, which can be done in O(n?) using the Flyod-Marshall
algorithm [Cormen et al., 2009, chapter 25.2]. If one wishes
di, and a, for all values of k, it is best to maintain the sets
of descendants and ascendants: after each new comparison,
update the descendants of the ancestors of the greater element
with the descendants of the smaller element, and conversely (cf
Appendix A.2 in the extended paper for details). The cost of
this incremental approach is O(n?) for each new comparison
performed.

Using dy, and ag, we consider the following score functions:

o Ay, defined by Ag(z) = di(z) — ar(x). Ay assigns to
each x a score that reflects the average between its lowest
and highest possible positions.

* pk, defined by pr(z) = di(z)/(dp(z) + ax(z)). pr
positions z as if its descendants and ancestors were on
average regularly spaced within the whole list.

If there is no ambiguity, we will omit the index k. A, p,
but also the median rank m are valid estimators: one can
check that if an element is greater than another in a partial
order, then its score is higher, which ensures that the returned
estimate is a linear extension. In particular, when the result of
all comparisons is known, sorting the elements according to
the score function returns the sorted list.

Figure 3 exhibits a partial order where the three estimators
give distinct results. Here, p is better than A because it posi-

should be seen as ((17, 1), (42, 2), (42, 3)). When sorting the list, it
is possible to be in a situation where we already know that (17,1) <
(42, 2) but we do not yet know how to compare (17,1) and (42, 3).
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Estimator Returned estimate S
A (cde fghiajbklmnpoq) 16.2
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m (cdefaghijklmbnpog) 13.9

Figure 3: Example of score-based selection of a linear extension.
The input partial order, represented by the edges of the graph, is
the transitive closure of: @ < b,¢c <d < ... < n <o, n <
p < q. Heights are proportional to scores. Returned estimates and
expectation S of the error .S are also provided for completeness.

tions better the small chain component (nodes a and b) with
respect to the large Y-shaped one (nodes c to ¢q). However, it
is still surpassed by the median rank m, which is optimal here
because all medians are distinct (cf. above).

Figure 3 illustrates that A and p distort their estimate when
the partial order is a combination of chains and Y -shaped com-
ponents. Yet, during a standard mergesort execution, a typical
partial order is a combination of chains (the sorted sublists)
and one Y -shaped component (the ongoing merge). We intro-
duced the multizip sorting earlier to avoid this scenario, so that
a typical partial order will be multiple Y -shaped components
of similar size (the ongoing merge procedures). In essence,
multizip is a variant of mergesort tailored for A and p.

Multizip complexity. As multizip schedules the same com-
parisons as mergesort, its comparison complexity is equivalent
to nlog,(n) even in worst case, which is asymptotically opti-
mal [Cormen et al., 2009]. Each step requires O(1) computing
operations so the global complexity is O(n In(n)). If an inter-
ruption occurs, we need to build the transitive closure of the
comparisons made, which is done in O(n?).

In our preliminary work [Caizergues et al., 2023], we found
out that p generally outperforms A as an estimator, and there-
fore we adopt it as the default choice. However, A can serve
another purpose, as elaborated in Section 2.3.

2.3 Comparison-Oriented Sort

We call Corsort (Comparison-ORiented Sort) a sorting al-
gorithm that, at each step of its execution, selects the next
comparison based on the current partial order <. We assume
that only pairs that are not comparable yet (according to <)
are chosen until convergence is achieved.

The heart of a Corsort, i.e., the choice of the next com-
parison, aims at two objectives. Firstly, it must ensure fast
termination, i.e., minimize the total number of comparisons.
This is a problem of sorting under partial information, which
amounts to choosing a comparison whose result is as uncertain
as possible [Cardinal et al., 2010]. To this end, we propose
to rely on closeness for a score function. The rationale is
that close scores should indicate a high uncertainty regard-
ing the outcome of the comparison. Secondly, to improve
the quality of intermediate estimates X}, we need to acquire
information on elements for which we have little, as these
create uncertainty that will be reflected in the error Si. We
introduce I (z) = dg(z) + ax(x) to represent the amount of
“information” acquired on an element x, and we wish to com-
pare elements for which [, is low. In our preliminary work
[Caizergues er al., 2023], we compared several variants of
Corsort and we selected the following one, called Corsort-A:

* The next comparison is made by seeking a pair of incom-
parable items whose A scores are as close as possible.

* We use I}, for tie-breaking. Specifically, among the pairs
that minimize A-closeness, we pick up one that minimizes
max(lx(z), I(y))-

The intermediate estimates X, can be given by any estima-
tor. In practice, we use p. For the pseudocode, cf. Appendix
A.3 in the extended paper. As an example, Figure 4 shows
the execution of the selected Corsort on the list X = (42315).
As we argued earlier that p is better than A, one may wonder
why A is preferred for the choice of the comparison. An intu-
ition that explains the advantage of A is the need of balance
between termination and intermediate estimates: p can take
O(n?) distinct values, against O(n) for A. As a result, A
generates more ties than p (a typical case is X4 on Figure 4:
p4(2) < pa(3) but Ay(2) = A4(3)), so the tie-breaking rule,
which targets accuracy of the estimate, is used more often.
Experimentally, this gives a better performance profile than a
p-based Corsort, at the price of a (slightly) longer termination.

Complexity. Corsort never compares a given pair twice, so
it makes at most n(n — 1)/2 comparisons. At each step, one
needs to compute the next pair, compare, then update a and d,
for a cost of O(n?) operations, which sums up to a global
complexity in O(n?). The cost of interruption, a score-and-
sort in O(nIn(n)), is comparatively negligible.

3 Evaluation

To compare the performance of ASort, multizip sort and Cor-
sort with the classical sorting algorithms discussed in Sec-
tion 2.1, we have developed an open-source Python package
specifically designed for creating anytime sorting algorithms
and evaluating their effectiveness [Caizergues er al., 2023] (cf.
Appendix B in the extended paper).
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Figure 4: Execution of Corsort-A on the list X = (42315). Each
step k depicts the partial order after £ comparisons. The next compar-
ison to perform is visually highlighted by the two vertices whose val-
ues of Ay, (displayed above each element) are in red. Each subfigure
represents py as each element’s height and gives the corresponding
estimate X, based on py and the associated error Si.

3.1 Uninterrupted Behavior

Figure 5 shows the termination time (measured in number
of comparisons) for the different algorithms. The curves for
top-down merge, bottom-up merge, and multizip sort coincide
as they represent different scheduling variations of mergesort.
Similarly, the curves for ASort and quicksort are identical as
they involve the same comparisons. We consider values of the
list size n ranging from 8 to 2048. For each point, we generate
10,000 random lists and we record the number of comparisons
required for a complete sort. The y-axis shows the relative
deviation from the theoretical lower bound of log,(n!) =
nlogy(n) — n/In(2) + log,(27n)/2 + o(1) [Cormen et al.,
2009]: a curve closer to 0 indicates closer proximity to the
optimal performance. To give a comprehensive view of the
results distribution, each algorithm’s median is depicted by
a dark curve, while the 2.5% to 97.5% quantiles form a 95%
confidence interval represented by a light area.

We observe that Heapsort requires almost twice as many
comparisons as necessary, and Shellsort (here implemented
with Ciura’s gap sequence [Ciura, 2001]) approximately 60%
more. Quicksort shows better performance with less than
30% overhead for the studied values of n, but relying on a
pivot selection introduces high variance. The remaining four
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Figure 5: Number of comparisons required for algorithm termination,
as a relative overhead compared to the information-theoretic lower
bound. Each point is obtained by sorting 10,000 random lists.

sorting algorithms demonstrate even lower overhead: 6% for
Corsort, 2% for mergesort, 0.6% for binary insertion, and
0.3% for Ford-Johnson. These algorithms also exhibit neg-
ligible variance. Based on these findings, we conclude that
Corsort emerges as a promising candidate, surpassing all other
algorithms except those with comparison complexities asymp-
totically equivalent to nlog,(n) [Ford and Johnson, 1959].
Moreover, our simulations confirm the asymptotical optimal-
ity of mergesort, further reinforcing the position of its multizip
variant as a strong candidate for anytime sorting.

3.2 Performance Profiles

Figure 6 displays the performance profiles of the sorting al-
gorithms. Heapsort and Shellsort were excluded due to their
poor termination times (cf. Section 3.1). The Ford-Johnson
algorithm employs the estimator p. Quicksort is examined
in three variants: its natural implementation; ASort; ASort
version equipped with p. Three variants of mergesort are also
considered: the natural top-down implementation; bottom-up
merge; multizip sort. The last two are both equipped with p.
Binary insertion sort is explored with both its natural estima-
tor and the estimator p. Finally, as discussed in Section 2.3,
Corsort utilizes A for selecting the next comparison (with
additional criteria in case of ties) and p for yielding estimates.

For each algorithm, we sort 10,000 lists of size n = 1000.
After each specified number of comparisons k, we interrupt
the algorithm and compute the estimation error Si. As for Fig-
ure 5, we represent the median and a 95% confidence interval.
The error is normalized by the maximal distance |n?/2].

First and foremost, Corsort stands out with its remarkable
performance profile. It consistently exhibits a decreasing trend
with minimal variance, and outperforms other algorithms ex-
cept for termination. Corsort emerges as a highly commend-
able anytime sorting algorithm, providing accurate estimates
within a reasonable timeframe.

Multizip sort demonstrates notable performance, ranking
second almost constantly in terms of the performance profile.
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Figure 6: Performance profiles for n = 1000. Each curve is obtained by sorting 10,000 random lists. The error S is normalized by the
maximal distance |n?/2]. Results are dispatched on two subfigures for better visibility. For the computation times, cf. Appendix B.2 in the

extended paper.

It offers a compelling option in scenarios where global speed
is of utmost importance, with a termination cost of O(n In(n))
total operations (excluding the interruption cost).

ASort also exhibits a good profile, especially if one fo-
cuses on the median values, for which it is slightly better than
multizip for £ € [5700, 7700]. Its main drawback is a sig-
nificant variance, shared with Quicksort, primarily explained
by their pivot selection process. In contrast, the other sorting
algorithms showcase greater consistency in their performance:
binary insertion sorts, mergesorts, and Ford-Johnson exhibit
relatively low variances, while Corsort demonstrates virtually
negligible variance.

Corsort, multizip, and ASort are anytime by design and
outperform algorithms such as binary insertion sort and Ford-
Johnson. Yet, the differences between them are also signif-
icant, as illustrated by Table 2, which links the number of
comparisons and the estimation error on a few values.

# of comparisons  Corsort Multizip ASort
4000 54(05.7) 97114 11.724.4)
6000 1.2(1.3) 4.4(6.2) 4.3(9.0)
8000 020.2) 1.12.0) 1.3(3.4)

Table 2: Normalized error (in percent) depending on the number of
comparisons for n = 1000. Each entry shows the median value, then
the 97.5% quantile in parenthesis. Numbers are rounded to the first
decimal place.

We also observe that the use of the estimator p contributes
to an improved performance profile. Figure 6 only shows
the case of binary insertion and ASort to limit the number
of curves, but we actually observed the same phenomenon
for all algorithms from Table 1 that have a native estimator.
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However, the impact of p is limited for ASort, where the gain
is relatively small and limited to the left part of the profile.

4 Conclusion

We have formalized the problem of anytime sorting and intro-
duced novel approaches to address it. Our proposed estimators
allow to transform any comparison-based sorting algorithm
into an anytime algorithm. We have introduced the innovative
algorithms of multizip sort and Corsort. Through extensive
simulations, their outstanding performance has been demon-
strated, showcasing their efficiency in terms of termination
time and the quality of intermediate estimates. Our work ad-
vances the understanding and effectiveness of anytime sorting
algorithms. In particular, despite its lack of proven upper
bound and global complexity, we believe that Corsort de facto
replaces ASort as a benchmark for empirical evaluation of
future anytime sorting algorithms.

The relative novelty of our approach opens up several av-
enues for future research. Exploring different scoring func-
tions could potentially enhance Corsort even further, and also
improve the performance profiles of classical sorting algo-
rithms like Ford-Johnson. Formally proving that Corsort has
an O(nln(n)) comparison complexity poses another chal-
lenge. Additionally, narrowing the gap between existing the-
oretical bounds and empirical observations is a promising
direction for future research.
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