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Abstract

The Belief-Desire-Intention (BDI) approach to
agent development has formed the basis for much
of the research on architectures for autonomous
agents. A key advantage of the BDI approach is
that agents may pursue multiple intentions in par-
allel. However, previous approaches to managing
possible interactions between concurrently execut-
ing intentions are limited to interactions between
simple achievement goals (and in some cases main-
tenance goals). In this paper, we present a new ap-
proach to intention progression for agents with tem-
porally extended goals which allow mixing reacha-
bility and invariant properties, e.g., “travel to loca-
tion A while not exceeding a gradient of 5%”. Tem-
porally extended goals may be specified at run-time
(top-level goals), and as subgoals in plans. In ad-
dition, our approach allows human-authored plans
and plans implemented as reinforcement learning
policies to be freely mixed in an agent program,
allowing the development of agents with ‘neuro-
symbolic’ architectures.

1

The Belief-Desire-Intention (BDI) approach to agent devel-
opment [Rao and Georgeff, 1992] has formed the basis for
much of the research on architectures for autonomous agents
[de Silva et al., 2020]. In BDI-based agent programming lan-
guages, e.g., [Bordini er al., 2007; Dastani, 2008], the be-
haviour of an agent is specified in terms of beliefs, goals,
and plans. Beliefs represent the agent’s information about the
environment. Goals represent states of the environment the
agent is trying to bring about. Plans are the means by which
the agent can modify the environment in order to achieve its
goals. Plans are composed of steps which are either basic ac-
tions that directly change the agent’s environment or subgoals
which are in turn achieved by other plans. For each top-level
goal, the agent selects a plan which forms the root of an in-
tention, and commences executing the steps in the plan. If the
next step in an intention is a subgoal, a (sub)plan is selected to
achieve the subgoal and added to the intention, and the steps
in the (sub)plan are then executed and so on. This process of
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repeatedly choosing and executing plans is referred to as the
agent’s deliberation cycle.

While the BDI approach has been very successful, it has
the disadvantage that all the agent’s plans must be written
by a human developer.! For nondeterministic environments,
e.g., control of cyber-physical systems, this can be challeng-
ing. In addition, in many BDI languages, e.g., [Bordini et al.,
20071, the developer must anticipate any possible interactions
between plans to achieve the agent’s goals. This typically in-
volves writing special purpose scheduling code which spec-
ifies the order in which goals should be achieved and which
plans can execute concurrently. For example, consider a Mars
Rover which has a goal to perform a soil experiment at loca-
tion A and another goal to recharge its battery at location B.
Suppose its current battery level only allows the Mars Rover
to move from the current position to A or B, and it cannot
move from A to B (or B to A) without recharging its bat-
tery. In this situation, the only way to achieve both goals is to
pursue the goal of recharging the battery first.

There has been work on allowing the agent to au-
tonomously manage possible interactions between concur-
rently executing plans for multiple goals at run-time. This
is termed intention progression in [Logan et al., 2017]. Sev-
eral approaches have been proposed including: Summary
Information-based e.g., [Thangarajah and Padgham, 2011],
Coverage-based approaches e.g., [Waters et al., 2015] and
most recently, MCTS-based approaches e.g., [Yao and Lo-
gan, 2016]. These approaches typically involve reasoning
over a representation of the agent’s programme called a goal-
plan tree. A goal-plan tree (GPT) represents the relation-
ships between an agent’s goals, plans, the subgoals in those
plans and their associated subplans as an and-or tree structure
[Thangarajah er al., 2003al. However, these approaches are
limited to handling interactions between simple achievement
goals, e.g., “move to A”’, and, in some cases, maintenance
goals, e.g., “maintain a battery level of at least 10%” e.g.,
[Duff et al., 2006; Wu et al., 2023].

In this paper we present a new approach to intention pro-
gression for agents with temporally extended goals. Tem-
porally extended goals allow mixing reachability and invari-

"There has been some work on generating new plans at run-time
using Al planning techniques, e.g., [de Silva er al., 2009], however,
this is not supported in widely-used BDI languages and platforms.



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

ant properties; for example, “travel to location A while not
exceeding a gradient of 5%”. Temporally extended goals
have been proposed before in the BDI literature; for example,
PRS supported reachability and invariant goals [Georgeff and
Lansky, 1987]. However, the agent developer was respon-
sible for writing code (meta-plans) to ensure that the execu-
tion of the agent maintains the invariant. To the best of our
knowledge, our approach is the first to allow an agent to au-
tonomously progress its intentions to achieve multiple tem-
porally extended goals concurrently. Temporally extended
goals may be specified at run-time (top-level goals), and as
subgoals in plans. Our approach does not rely on goal-plan
trees [Thangarajah et al., 2003al, and supports a more gen-
eral notion of plan than that typically used in the BDI litera-
ture. In particular, it allows human-authored plans and plans
implemented as reinforcement learning (RL) policies to be
freely mixed in an agent program, allowing the development
of agents with ‘neuro-symbolic’ architectures which combine
behaviours produced by machine learning and programmed
behaviours [Bordini ef al., 2020]. For example, the overall
sequencing of tasks may be specified by a human developer,
with low-level control implemented using RL policies.

2 BDI Agents with Temporally Extended
Goals

In this section, we introduce the basic components of a
BDI agent with temporally extended goals, including beliefs,
goals, actions and plans, and define the intention progression
problem.

Beliefs. We assume a finite set of propositions P. @ C
p(P) is a non-empty finite set of environment states (truth
assignments to propositions in P). We denote the set of all
literals over P by P. The agent’s beliefs B = {b1,...,b,}
are a finite set of ground literals defined over P representing
its information about the environment.

Goals. The agent’s state goals S = {f1,..., fm} are a fi-
nite set of propositional formulas built from P that can be
evaluated to true or false in the states. State goals are some-
times termed achievement goals in the BDI literature [de
Silva et al., 2020]. The agent’s temporally extended goals
T are temporal formulas built from S and P. More precisely
a temporally extended goal is a formula ¢ of the form:

Yv=pl-plpAqglpVyq
p=f1Fo|vUp |G oNG |pV ¢

where p,q € P and f € S.> Observe that we have a set of
propositional formulas 1) that is not the same as the set of state
goals; state goals are a strict subset of the set of propositional
formulas, as there are only finitely many state goals. We also
only allow propositional formulas as invariants. As explained
below, invariants do not have a corresponding plan; rather
they restrict the choice and execution of other plans.

The temporally extended goal F'¢ indicates that ¢ should
be achieved in some future state, 1 U ¢ that ¢ should be

2We do not include a “next” temporal operator in the syntax as
we do not want to make any assumptions about when the next time
instant occurs.
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achieved in some future state while maintaining the invari-
ant ¢ in all intervening states, and G that v should be
true in all future states. Temporally extended goals thus con-
strain the future execution of the agent so as to bring about
state goals in ¢ and/or maintain literals in . For exam-
ple, F'batt_full A G —batt_empty states that the agent should
recharge at some point and never allow the battery to become
fully discharged.

Temporally extended goals are interpreted on finite traces.
A trace T is a sequence of states ¢ € p(P). We denote
the length of a trace 7 as length(7). We denote the po-
sitions on the trace as 7(i) with 0 < ¢ < last, where
last = length(7) — 1 is the last state of the trace. Given an
interpretation 7 we inductively define when a temporally ex-
tended goal ¢ is true at position i (for 0 < i < last), 7,i = ¢
as follows:

T,i|Epforp € Piffp € 7(i)

T,i | ¢ iff 1,i £ &

777: ': ¢1 /\¢2 lffTaZ ': ¢1 andT7i ’: ¢2

T7i ': ¢1 \/¢2 lffTaZ ': ¢1 01'7',7: ': ¢2

7,1 |= F¢ iff for some j,1 < j < last,7,j E ¢

7,1 = U ¢ iff for some j, i < j < last, 7,j = ¢, and
forallk,i <k <j,7,kE¢

7,1 | G¢iffforall j,i < j <last,7,j = ¢

A goal ¢ is true in 7, denoted 7 |= ¢, if 7,0 | ¢.

Each temporally extended goal ¢ is associated with a utility
r¢ representing the utility obtained by the agent if its future
execution is such that ¢ holds, i.e., if the trace of the agent’s
execution 7 is such that 7 = ¢. The agent receives 74 when
¢ becomes true on 7, i.e., for reachability goals at the state ¢,

0 < 4 < last such that 7,7 = ¢, and for all j, 0 < j < i,
T,J £ ¢, and for invariants G ¢ in the last state on the trace.

Actions. The agent can perform a set Act = {aq,...,ax}
of primitive actions in the environment. The preconditions of
an action «;, ¢ = pre(a;), are a set of literals that must be
true for the action to be executable, and the postconditions of
a;, ¥ = post(a;), are a set of literals that are true after the
execution of the action. For simplicity, we assume that ac-
tions are deterministic: if the preconditions of an action hold,
then the postconditions of the action hold after executing the
action.® An action is executable if B |= ¢.

Plans. Each of the agent’s state goals f € .S is associated
with a set of plans 71, . .., 7, that achieve f. Each plan 7; is
a three tuple of the form (f, x;, next;), where f is the state
goal achieved by m, x = pre(m;) is a set of literals specify-
ing the context condition which must be true for 7; to begin
execution, and next; — Act is a function of zero arguments
which returns the next step in the plan, which may be either
an action, a temporally extended subgoal, or n:l (indicating
that the plan is complete).* Note that this approach to defin-
ing plans is more general than that typically used in the BDI

30ur approach can be extended in a straightforward way to han-
dle non-deterministic actions as in [Yao et al., 2016]

“Test goals which are evaluated against the agent’s beliefs can
be easily accommodated, e.g., by having the next; function return a
“test” action whose preconditions are the test.
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literature, where plans are defined as sequences of actions and
(state) subgoals [de Silva et al., 2020]. In particular, it allows
human-authored plans and plans implemented as RL policies
to be freely mixed in an agent program, allowing the devel-
opment of agents with ‘neuro-symbolic’ architectures which
combine behaviours produced by machine learning and pro-
grammed behaviours [Bordini et al., 2020]. For example, if
a plan is implemented as an RL policy, next; may be im-
plemented as a lexical closure with a reference to the current
state of the agent’s environment, which simply returns the ac-
tion specified by the policy in the current environment state;
for “traditional” BDI plans, next; may, e.g., be implemented
as a closure with a reference to the plan which maintains the
index to the next step to be executed, which is updated on
each call.

Intention Progression The intention progression problem
[Logan et al., 2017] for an agent with temporally extended
goals is the problem of selecting and executing plans so
as to maximise the agent’s utility. More precisely, as the
agent chooses and executes plans to achieve its goals, the
execution of actions in these plans gives rise to a path,
i.e., a sequence of environment states and actions p
qo,1,q1, 02, . . ., iy, G, Where g; 1 results from updating
the state g; with the postconditions of «; (and any exogenous
changes to the environment). The trace corresponding to a
path p is the sequence of states 7 = qg, q1, - - . , ¢, generated
by omitting the actions in p. The intention progression prob-
lem for an agent with temporally extended goals is to generate
a trace that maximises the agent’s utility.

In [Logan et al., 2017], the intention progression problem
is defined in terms of goal-plan trees. However, goal-plan
trees are not an appropriate representation for the intentions
of a BDI agent with temporally extended goals. For exam-
ple, the temporally extended goal F'¢; A F'¢o does not spec-
ify the order in which ¢; and ¢ should be achieved — the
agent is free to achieve them in either order, depending on
which is more convenient given its other goals, its location,
etc. In general, representing all possible orders in which a
temporally extended goal (and the temporally extended sub-
goals in the associated plans) can be achieved would require
an exponentially-sized goal-plan tree.’ Nor is it clear how to
represent invariants such as G 1 in a GPT-based approach, as
GPTs have no way to talk about properties of executions of
the GPT, only what needs to hold for a plan to be selected or
an action executed. We therefore adopt a different represen-
tation of intentions for agents with temporally extended goals
as explained in the next section.

3 Representing Intentions

In this section, we explain how the progression of an agent’s
temporally extended intentions can be represented using re-

SNote that we can’t simply consider each conjunct in a tempo-
rally extended goal as a top-level goal in a GPT-based approach.
The utility is associated with the conjunction and there is no way to
express that it’s not worth achieving one top-level goal if it is not
possible to achieve the other. In addition, “lifting” the conjuncts to
top-level goals isn’t possible for temporally extended subgoals in
plans.
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Figure 1: RM for moving to cell (z,y) while avoiding holes

ward machines.

3.1 Reward Machines

A reward machine (RM) [Toro Icarte et al., 2018] is a Mealy
machine where states represent abstract ‘steps’ or ‘phases’
in a task, and transitions correspond to observations of high-
level events in the environment indicating that an abstract
step/phase in the task has (or has not) been completed. We
assume that events are sets of literals over P. Formally,
we require that events are generated by a labelling function
L:Sx Act x S — p(P); for example, a labelling could
consist of postconditions of actions.

R

Definition 1. A reward machine
(U,ur, %, 0, rr) where:

is a tuple

* U is a finite non-empty set of states;

uy is the initial state;

) is a finite set of environment events;

O0r : U x ¥ — U is a transition function that, for every
state v € U and environment event o € %, gives the
state resulting from observing event o in state u; and

rr : U XX — RU{—o0} is a reward function that
for every state u € U and event o € X gives the reward
resulting from observing event o in state u.

We restrict our attention to task completion reward ma-
chines [Illanes er al., 2020] which, on producing a positive
reward, go into a final state from where it is not possible to
make a transition to any other state. We denote by Fr the
set of ‘positive reward’ states of R, that is, states u’ such
that for some u, o, dg(u,0) = ' and rg(u,o) > 0. Sim-
ilarly, we define the set of ‘infinite negative reward states’
Nr =A{u' | udo.ér(u,0) = ' Arg(u,0) = —o0}. Ng
states represent violations of invariant properties.

Reward machines can be automatically synthesised from
task specifications expressed in a range of goal and property
specification languages, including temporally extended goals
defined in Section 2, using reactive synthesis techniques. For
example, a Mars rover may have a goal to move to location
(z,y) without falling into a hole, which can be expressed as
the formula —hole U at_zy. The corresponding reward ma-
chine is shown in Figure 1. The agent receives a positive re-
ward when the event at,, is observed and the reward machine
transitions to state u;, and a negative reward if it falls into a
hole (state u2). Depending on the magnitude of the negative
reward and whether it is possible to return from the negative



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

reward state, invariants can be specified as preferences (avoid
1) states) or hard constraints which terminate the correspond-
ing goal (as in Figure 1). In the interests of brevity, we refer
the reader to [Camacho et al., 2019] for details of reward ma-
chine generation.

Reward machines were originally proposed as a way of in-
creasing sample efficiency in reinforcement learning. How-
ever, in our approach, they are used to formalise the progres-
sion of the agent’s intentions.

3.2 Progressing Intentions

We represent an intention by a stack of intents. An intent is a
five tuple of the form (¢, R, u, 0, next,), where ¢ is a tempo-
rally extended goal, R is the reward machine corresponding
to ¢, u is the current state in R, o is an environment event in 2
and next, is the next step function of a plan to achieve 0. The
root of an intention +; is an intent (¢9, RY, u, 09, next? ) in
which ¢ corresponds to a top-level temporally extended goal
in T Initially u{ is u; in RY, and o, neat) are .
Progressing an intention proceeds by first choosing a tran-
sition from ! with event (state goal) o and updating o,
0¥ =0, and then choosing a plan 7 which makes o true. That
is, o represents a choice regarding which state goal in ¢? the
agent is currently pursuing, and next?ri = next, represents
the plan chosen to achieve 0. The agent then begins execut-
ing steps in 7. If the next step in 7 is a temporally extended
subgoal ¢;, a new intent (¢;, R}, uj, o}, next] ) is pushed
onto the stack, and a choice is made regarding which event
(state goal) in ¢} to pursue and which plan should be used
to achieve it. When the agent observes an event in o e S,

for each intent in each intention ~; where &7, (u o) =,

the current state in the reward machine RJ is updated with

= &, (u},0), and ol and next] . are reset to e. Updat-
1ng all 1ntents in all 1ntent10ns on each observation allows
the agent to exploit synergies between intentions [Yao et al.,
2016]. For example, when intentions share a common sub-
goal, e.g., being at a particular location, the states in all the
relevant RMs are updated when the agent reaches the loca-
tion, essentially marking the subgoal as achieved. Note, how-
ever, that if the intentions sharing the common sub-goal must
be executed sequentially, e.g., due to resource constraints,
the RMs of the deferred intentions will be updated when the
agent leaves the location, essentially re-posting the subgoal
for those intentions. When an event o causes a reward ma-
chine R to transition to a state in F’ }J%i U N zjzi (i.e., the tem-

porally extended goal ¢{ is true on the trace or an invariant in
(bf has been violated), the intent is popped from the intention
and the agent receives reward r ol Note that the current RM
state, selected event and plan in the intent for the parent goal
¢§ ~! are also reset by o, indicating completion of the sub-
goal. An intention containing no intents (i.e., all intents have
been popped) is dropped.

3.3 Operational Semantics

In this section, we give the operational semantics of an
agent with temporally extended goals in terms of a transition
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system on agent configurations defined by a set of deriva-
tion rules [Plotkin, 1981]. Each derivation transforms one
agent configuration into another and corresponds to a sin-
gle computation/execution step. An agent configuration is
a tuple (A, I1, B, T, p,p), where A are the actions the agent
can perform, II is the agent’s plan library, B is the agent’s
beliefs, I" is the agent’s intentions, p is a path consisting
of alternating states and actions, and p € {b,g,a} is a
phase indicator. (As A and II do not change during ex-
ecution, we omit them from the derivation rules.) Agent
configurations represent the execution state of an agent.
The agent begins execution in an initial agent configura-
tion (A I1, By, T, €, b), where By are the agent’s initial be-
lifs, (6% RSl e ), .. (60, RO, ) e )]}
for each (i)l € T are the agent’s inltlal intentions, the path
is empty, and the phase is b.

The execution of an agent modifies its initial configuration
by means of transitions that are derivable from the rules be-
low. Execution proceeds in phases. In the belief (b) phase,
the agent updates its beliefs and the current state of each re-
ward machine in each intention where the belief update event
triggers a transition. In the goal (g) phase, any goals which
have been achieved by the execution of a plan or by changes
to the environment are dropped, together with their associated
plans. In the action (a) phase, the agent executes a step in one
of its intentions.

In what follows, we denote by ~[¢] the ith intent in the in-
tention -, and by [0, . .. , 7] the intents from the root of +y to
~[i]. The functions head and tail return the head and tail of
an intention respectively, and o denotes concatenation. The
head of an intention is termed an active intent, and an active
plan is a plan in an active intent. The intents forming the tail
of an intention are said to be suspended.

Belief Update In the belief phase, the agent’s beliefs are
updated. The function sense takes information about the cur-
rent environment state env and the agent’s current beliefs B,
and returns a new set of beliefs, B’. The state of each intent in
the agent’s intentions is also updated with the new beliefs and
execution enters the goal phase. Note that all intents are up-
dated, not just active intents, as events perceived by the agent
may result in transitions in suspended intents, e.g., if an en-
vironment change results in the achievement of a suspended
goal.

B’ = sense(env, B) A
I =T[(¢, R, u,o,nexty)/(d, R, €, ¢€)]
Y(¢, R,u,0,next;) : dg(u,0) =u' ANB' E o
<B,F, P, b> - <B,7F,7p o B/ag>

where B’ |= ¢ means that the propositional valuation spec-
ified by B’ satisfies o, and I'[x/y] is the result of replacing
every intent of the form x in I" by an intent of the form y.

Goal Update Any temporally extended goals ¢ which have
become true on the trace or where an invariant in ¢ has been
violated are dropped, together with their associated plans and
any intents for subgoals and subplans to achieve ¢. Execution
enters the action phase.



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

I'"={4[0,...,i] |y A
i =max{i|[Vj:0<j <i=[j]# (¢ R uee)}t}
<BaF7p>g> — <B,I‘/,p,a>

Goal Selection Step If an active intent of an intention -y for
a temporally extended goal ¢ has no event and plan selected,
an event (state goal) o in the reward machine R for ¢ and a
plan 7 to achieve o are selected. ¢ and m become the active
intent and plan of ~, and execution enters the belief phase.

Iy el : (¢, R,u,c,€) = head(v) A
I = (¢, R,u,0,next;) : 0 € st(R,u) A
Ir=(o,x,7): BEx
(BT, p,a) — (B, (I'\ {y}) U{rotail(7)}, p, b)
The function st(R,u) = {o | dr(u,0) = u,u # o,
rr(u,0) > 0} returns the labels on transitions from v in R
which are state goals.

Primitive Action Step If the next step in an active plan 7 is
a primitive action o whose preconditions hold in the current
environment, the action is executed, and execution enters the
belief phase.

Iy e T: (¢, R,u, 0,next,) =head(y) A a = next,() A
action(a) A B |= pre(a)
(B,T,p,a) — (B,T',poa,b)

Subgoal Step If the next step in an active plan 7 is a tempo-
rally extended subgoal ¢’ a new intent ¢ = (¢’, Ry, ur, €, €)
for ¢’ is pushed onto the top of the intention -y containing 7.
Execution of 7 is suspended, and ¢ becomes the active intent
of . Execution enters the belief phase.

Iy el : (¢, R,u,0,next,) = head(y) A
¢ =next,() A goal(¢')
(BT, p,a) — (B, (T\{7}) U{(¢, Ry, ur, €,€) 07}, p,b)

4 Intention Progression with MCTS

In this section, we present our approach to intention pro-
gression with temporally extended goals. Our approach is
based on Single-Player Monte-Carlo Tree Search (SP-MCTS)
[Schadd et al., 2012], a well-known best-first search in which
pseudorandom simulations are used to guide the expansion
of the search tree. It was originally developed to solve single-
player puzzles (games against the environment). However,
it has also been used to solve single- and multi-agent inten-
tion progression problems, and represents the state of the art
in GPT-based approaches to intention progression [Yao and
Logan, 2016; Dann et al., 2020].

MCTS is an anytime algorithm which iteratively builds a
search tree until a computation budget is reached. Each node
in the search tree represents an interleaving of steps from the
agent’s intentions, together with the environment state result-
ing from the execution of this interleaving. In addition, each
node records the current state of each tuple in each inten-
tion, the number of times the node has been visited, the total
simulation value, the total squared simulation value and the
best simulation performed from the node (described below).
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Algorithm 1 Return the step to be executed at this cycle

1: C+«+ (B,T,p,a)
2: procedure PROGRESS-INTENTION(c, 3)

3: ng < nodey(C)

4: fori < 1,a do

5: Ne <— MAX-UCT-LEAF-NODE(ng)
6: children(ne) < EXPAND(n,)

7: N < RANDOM-CHILD(children(n.))
8: S0

9: for j + 1,8 do

10: S < S U {SIMULATE(n,)}
11: v(ng) < max(S)

12: BACKUP(ny)

13: ny < max children(ng)

14: return n,

Edges represent the choice of an environment event to ad-
vance the state of a reward machine, i.e., which state goal in
a temporally extended goal ¢ the agent is trying to achieve or
the selection of a plan to achieve a state goal, or the execution
of primitive action in a plan.

Each iteration of the main loop consists of 4 phases: se-
lection, expansion, simulation and back-propagation. In the
selection phase, a leaf node, n. is selected for expansion (line
5). ne is selected using a modified version of Upper Confi-
dence bounds applied to Trees (UCT) [Schadd er al., 2012],
which models the choice of node as a k-armed bandit prob-
lem. Starting from the root node, we recursively follow child
nodes with the highest UCT value until a leaf node n. is
reached.

In the expansion phase, n. is expanded by adding child
nodes representing the agent configuration (the environment
state and the current state of each intention in I') resulting
from progressing each intention v; € I" where a transition in
the operational semantics is possible (line 6). Each child node
therefore represents a different choice of which intention to
progress at this cycle and how it should be progressed (which
environment event to consider in an RM, or which plan to
choose to achieve a state goal). One of the newly created child
nodes, ng, is then selected at random for simulation (line 7).

In the simulation phase, the value of n is estimated (lines
8—11). Starting in the agent configuration represented by ng,
a next step of an intention that is progressable in node 7 is
randomly selected and executed, and the environment, cur-
rent state of the selected intention and path are updated in the
current agent configuration. This process is repeated until a
state is reached in which no intention can be progressed or all
top-level goals are achieved. Each temporally extended goal
¢ in each intent in I" is evaluated on the trace 7 (obtained
by projecting on the state components of p) generated by the
simulation. The value of the simulation, v, is the sum of the
utilities 74 for each temporally extended goal ¢ where 7 |= ¢
(including the negative utilities associated with any invariants

Qur approach is capable of interleaving intentions at either the
plan level, where the choice of which intention to progress next is
made only when a subgoal is reached, or the action level, where the
choice is made at each plan step. [Yao and Logan, 2016].
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violated on 7). The simulation with the highest value is then
returned as the value of ng. Finally, the simulation value is
back-propagated from ng to all nodes on the path to the root
node ng (line 12).

After « iterations, the step that leads to the best child ny
of the root node ny is returned, and the current agent config-
uration C' is updated based on the selected step. Algorithm 1
essentially resolves the nondeterministic choice in the action
phase rules in the operational semantics.

5 Evaluation

In this section, we evaluate our approach using a version of
the Mars Rover domain [Duff et al., 20061, in which the tasks
assigned to the Rover are specified using temporally extended
goals.

5.1 Mars Rover Domain

The Mars Rover domain is a two-dimensional grid envi-
ronment where the agent (the rover) can move around and
conduct soil experiments at different locations (see Figure
5). Moving and performing experiments consumes battery
power, and there is a base station at which the agent can
recharge. Some cells in the environment contain holes, which
may cause the agent to get stuck and should be avoided.
The primitive actions the agent can perform are: moveUp,
moveDown, moveLeft and moveRight, which change its cur-
rent location, performExp which performs a soil experiment,
and recharge. For simplicity, we assume all actions except
recharge consume 1 unit of battery.
The agent has the following temporally extended goals;

G —batt_empty

which states its battery should never be fully discharged; a set
of goals of the form

F(exp_z;y; N F at_base)

which states the agent should conduct a soil experiment at
cell (z;, y;) and then return to the base; and

Fbatt_full

which states that at some point the agent should recharge. The
invariant G —batt_empty prevents the agent from reaching a
state in which its battery is empty. The F' batt_full goal en-
sures that the agent will recharge at some point. The only way
to satisfy both goals is to ensure that the recharge happens be-
fore the battery is empty (i.e., while the agent can still reach
the charging station).

The plan 7ezyp 4,4, to achieve the state goal exp_;y; con-
sists of the temporally extended subgoal —hole U at_x;y;
stating that the rover should move to cell (x;, y;) while avoid-
ing holes, followed by the action performExp. The plan
to achieve the state goal batt_full consists of the subgoal
—hole U at_base followed by the action recharge. The plans
to achieve the state goals at_z;y; and at_base contain no sub-
goals. Note that a set of goals of the form {F(exp_x1y; A
F at_base), F(exp-zays A F at_base), ...} allows the agent
to perform experiments in any order, and it will return to
base after the last experiment, even if it visits the base to
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recharge before completing all the experiments. Note also
that the agent does not have to return to the base after each
experiment—each goal simply specifies that the agent should
return to the base at some future point; if the agent can per-
form all experiments without recharging, then returning to the
base once satisfies all goals.

The reward machine for the goal G —batt_empty is shown
in Figure 2: so long as the event batt_empty is not observed,
the RM remains in state ug and the agent receives no re-
ward; the agent receives a negative reward if batt_empty is
observed and the RM transitions to state u;. The reward ma-
chine for the goal F'(exp_x;y; A F at_base) is shown in Fig-
ure 3: the RM loops in state ug until an event indicating the
experiment has been performed is observed, and then loops
in u until the agent returns to the base. The reward machine
for the goal —hole U at_x;y; is shown in Figure 1 in Section
3 (the RM for —hole U at_base is similar). The RM for the
goal F'batt_full is shown in Figure 4: the agent receives a
reward if the events at_base and batt_full are observed, in
that order; if the agent leaves the base before recharging, the
RM transitions back to uy.

5.2 Experiment Setup

For all the experiments reported below, the Mars Rover envi-
ronment is a 21 x 21 grid containing 10 holes.” The base and
the initial position of the agent are the centre of the grid. The
locations for conducting soil experiments and the holes are
randomly generated. However, the base and the experiment
locations are not located in a hole. The battery capacity for
the rover is 50 units. The performance of the agent is based
on the total reward specified by the reward machines. That is,
the agent will receive a reward of negative infinity if it enters

"The software used in the experiments is freely available at https:
//github.com/yvy714/TEG-MCTS.


https://github.com/yvy714/TEG-MCTS
https://github.com/yvy714/TEG-MCTS
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a grid cell with a hole or runs out of battery, otherwise, its
performance is equivalent to the number of experiments car-
ried out. For simplicity, we assume that the agent recharges
once, i.e., the agent is given a single recharge goal.

We provided both human-authored plans and plans based
on RL policies for state goals at_z;y; and at_base. The
human-authored plans are sequences of actions forming the
shortest path between each z;y;, and the base. The RL pol-
icy is trained to find a shortest path to the goal. None of
the plans take the location of holes into account. As plans
require moving to a particular location in the environment,
the MCTS scheduler was configured to interleave intentions
at the plan level. In each deliberation cycle, the scheduler
performs 100 iterations (o 100) and 10 simulations per
iteration (8 = 10).

%
* (K |k
*x | @ [ ]
A
Y *
gEEEEEE Anen
mEEs
[ ]
] ]

Figure 5: The Mars Rover domain; black circles represent holes and
stars represent soil experiments

5.3 Results

In each run, the agent has a goal to avoid the battery becom-
ing discharged, a goal to recharge the battery (at some point),
and a variable number of soil experiment goals. We varied
the number of soil experiment goals (# Goals) from 8 to 15
and report the average performance over 50 runs. The results
are shown in Table 1. As can be seen, with fewer than 11
goals the agent is able to achieve all goals without violating
the invariant. When the number of top-level goals increases,
there may be no solution which achieves all top-level goals
in some of the randomly generated environments, e.g., the lo-
cation of a soil experiment is more likely to be affected by
the holes, and thus one recharge is not enough to achieve all
goals. However, our approach can still achieve more than
96% of the goals.

The computational overhead of our approach depends on
the search configuration, i.e., how many iterations should be
performed at each deliberation cycle, and how many simula-
tions are performed at each iteration. With the search config-
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#G
Reward

8
8

9
9

10
10

11
11

12
11.9

13
12.75

14
13.6

15
14.5

Table 1: Rewards with increasing number of goals

uration used for the experiments above, i.e., a = 100, 8 = 10,
our prototype implementation requires about 50 milliseconds
to return the best next plan for 15 concurrent intentions on
a 1.4 GHz Quad-Core Intel Core i5, which suggests that the
computational overhead compared to GPT-based approaches,
e.g., SA [Yao and Logan, 2016] is small.

6 Related Work

Temporally extended goals were introduced in the Procedural
Reasoning System (PRS) [Georgeff and Lansky, 19871, and
in much of the early work on BDI logics [Rao and Georgeff,
1993] goals are viewed as temporal formulas. PRS used a
graph-based representation for plans, and goals were defined
on an interval of time: (!p) specifies that p should be true
at some future state; (?p) that p should be true in the next
state; and (#p) specifies that p should hold in all states.
Later versions of PRS [Ingrand, 1991] supported achievement
goals, and two forms of maintenance goal: ‘passive preserve’
PR, (le, ¢) which specifies that e should be achieved while
monitoring ¢ and aborted if e fails or ¢ does not hold; and
‘active preserve’ PR, (le, ¢), which is similar, except that if
¢ does not hold, the plan for e is suspended while the agent
attempts to re-establish ¢, and only if this fails, e is aborted.
However PRS is a rich and complex language which is diffi-
cult to reason about, and it is only recently that an operational
semantics was proposed [de Silva et al., 2018]. Compared
to [Georgeff and Lansky, 19871, our approach supports (!p)
and (#p) goals, but not (?p) goals. Compared to [Ingrand,
19911, our approach supports achievement and passive pre-
serve goals, the nesting of temporal operators in goal speci-
fications (which neither [Georgeff and Lansky, 1987] or [In-
grand, 1991] support), and the semantics we present in Sec-
tion 3.3 is considerably simpler than that given in [de Silva
et al., 2018]. Moreover, the developer of a PRS program is
responsible for anticipating and writing code (meta-plans) to
manage interactions between the agent’s intentions, and the
language does not support plans implemented using RL poli-
cies.

Much of the later work in the BDI paradigm focused
on simpler languages, e.g., [Rao, 1996]. There has been
considerable work on intention progression for such lan-
guages, mostly for agents with achievement goals. Thangara-
jah et al. [2003a; 2003b; 2002; 2011] proposed a summary-
information-based (SI) approach which avoids conflicts and
exploits synergies between intentions by reasoning about the
conditions that will definitely or possibly be brought about
by each top-level goal. Waters et al. [2014; 2015] proposed a
coverage-based (CB) approach that prioritises the progression
of intentions that are most likely to be affected by the changes
in the environment. Yao et al. [2014; 2016; 2016; 2020;
2021] proposed an MCTS-based approach which returns the
“best” action to perform at each deliberation cycle. They
showed that SA [Yao and Logan, 2016] out-performed round-
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robin (RR), first-in-first-out (FIFO), SI, and CB intention pro-
gression in both static and dynamic environments. There
has also been some work on intention progression for agents
with active preserve maintenance goals [Duff er al., 2006;
Wu et al., 2023]. However, in this work maintenance goals
are restricted to top-level goals, i.e., they do not support tem-
porally extended subgoals in plans.

In most of the work on autonomous intention progres-
sion, the agent’s program is represented using goal-plan trees
(see Section 2). In [Dann et al., 2022] reward machines are
used to represent the high-level structure of other agents’
achievement goals in ‘intention-aware’ intention scheduling,
i.e., where an agent progresses its intentions taking into ac-
count the implications of action scheduling for both its own
goals and the goals of other agents. However, in [Dann er al.,
2022] the other agents’ goals are simple achievement goals
and GPTs are used to represent the program of the ‘intention-
aware’ agent.

There has also been some work on integrating learned be-
haviours and learning into BDI agents. For example, Tan et
al. [2011], propose the BDI-FALCON architecture which ex-
tends a low-level TD-FALCON reinforcement learning agent
with desire and intention modules. A BDI-FALCON agent
uses explicit goals instead of an external reward signal, and
is able to reason about a course of action using the intention
module and a plan library. In the absence of a plan, the agent
learns a new plan using the FALCON module. In [Singh and
Hindriks, 2013], reinforcement learning was integrated into
the GOAL agent programming language to improve action
selection. Bosello and Ricci [2020] address the problem of
how to exploit reinforcement learning in the process of de-
veloping an agent and how to integrate plans written by the
agent programmer with plans designed to be learnt. They pro-
pose a proof of concept programming language, Jason(RL),
where learning is integrated into the deliberation cycle. Fi-
nally, Al Shukairi and Cardoso [2023] present a hybrid BDI-
NN architecture for controlling a vehicle in the CARLA sim-
ulation environment where interactions between the agent’s
collision avoidance plans are pre-specified by the developer.
However, in all this work, the agent’s goals are limited to sim-
ple achievement goals.

Dastani er al. [2011] present a rich taxonomy of goal types,
where the goals are represented by LTL formulas which
are translated into combinations of more basic declarative
and maintenance goals, and sketch how such temporal goals
can be realised in standard agent programming languages.
Hindriks et al. [Hindriks ef al., 2009] discuss how tempo-
rally extended goals expressed in LTL can be integrated into
the language Goal, and sketch a decision procedure based
on bounded lookahead for choosing between programmer-
specified enabled actions.

7 Discussion

In this paper, we presented a new approach to intention pro-
gression for agents with temporally extended goals. Tempo-
rally extended goals allow mixing reachability and invariant
properties, e.g., “move to location A without falling into a
hole”, and may be specified at run-time (top-level goals) and
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as subgoals in plans. The introduction of invariants signif-
icantly increases the expressiveness of BDI agent program-
ming by allowing constraints to be placed on a particular ex-
ecution of the agent’s plans. For example, a standard move-
ment plan may be used in an environment with holes, rather
than writing a new plan that avoids holes. In contrast, with
GPTs, the agent’s plans would have to consider all possi-
ble constraints on execution, e.g., “move to location A while
avoiding holes / maintaining line of sight to the base / etc.”.
To the best of our knowledge, our approach is the first to allow
an agent to autonomously progress its intentions to achieve
multiple temporally extended goals concurrently.

In addition, our approach allows human-authored plans
and plans implemented as reinforcement learning policies to
be freely mixed in an agent program, allowing the devel-
opment of agents with ‘neuro-symbolic’ architectures which
combine behaviours produced by machine learning and pro-
grammed behaviours [Bordini et al., 2020]. One of the main
motivations for introducing support for plans implemented
as RL policies is to allow temporally extended goals and
the BDI approach in general to be applied to cyber-physical
systems (CPS). We believe BDI has seen limited application
in CPS due to the difficulty of writing BDI plans for non-
deterministic environments, as the sequential ordering of ac-
tions typically assumes that action preconditions have been
established by previous actions in the plan. RL policies have
been shown to be highly effective in such environments, and
we envisage “hybrid” systems, where low-level control is
handled by plans implemented as policies, while higher-level
decision making is handled by human-authored plans.
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