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Abstract

Machine unlearning aims to enable models to for-
get specific data instances when receiving deletion
requests. Current research centers on efficient un-
learning to erase the influence of data from the
model and neglects the subsequent impacts on the
remaining data. Consequently, existing unlearning
algorithms degrade the model’s performance after
unlearning, known as over-unlearning. This pa-
per addresses this critical yet under-explored issue
by introducing machine Unlearning via Null Space
Calibration (UNSC), which can accurately unlearn
target samples without over-unlearning. On the
contrary, by calibrating the decision space during
unlearning, UNSC can significantly improve the
model’s performance on the remaining samples. In
particular, our approach hinges on confining the un-
learning process to a specified null space tailored
to the remaining samples, which is augmented by
strategically pseudo-labeling the unlearning sam-
ples. Comparison against several established base-
lines affirms the superiority of our approach.

1 Introduction
With the rising concerns regarding the privacy of users’ data
in the AI era, legislative bodies have instituted regulatory
measures to safeguard user’s data. A notable example is the
Right to Be Forgotten, which requires service providers to re-
move users’ data from AI models upon receiving deletion re-
quests [Hoofnagle et al., 2019]. However, removing the trace
of particular data from a trained model is challenging. Ma-
chine unlearning has emerged as a promising solution. It en-
deavors to enable models to forget specific data samples, ef-
fectively erasing their influence as if they were never trained
on these samples. The simplest way is to retrain the model
from scratch without unlearning samples. However, it is time-
consuming and even impossible in the face of frequent un-
learning requests. As such, the research community has been
actively developing algorithms to expedite unlearning.
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(a) Original model (b) Baseline (c) UNSC

Figure 1: A toy example to illustrate the effectiveness of UNSC. (a)
presents decision boundaries of the original model trained on four
overlapping Gaussian distributions. We unlearn the entire purple
class and plot the results in (b) and (c) for baseline and UNSC. Our
method preserves the decision boundaries between remaining sam-
ples by unlearning in the null space and further improves the model’s
accuracy by calibrating the decision space.

However, current unlearning methods find that the unlearn-
ing process significantly affects the remaining data, leading
to over-unlearning [Hu et al., 2023; Fan et al., 2023]. The
model loses part of its prediction performance on the remain-
ing data after unlearning. This is because the unlearning
process requires modifications to the weights of the original
model. Though the intent was to eliminate the influence of the
unlearning data, these modifications inadvertently resulted in
partial forgetting of the remaining samples, ultimately lead-
ing to over-unlearning. This raises a compelling question:

Q1: To maintain the model’s performance, can we prevent
over-unlearning, and if so, how to achieve it?

In this paper, we propose machine Unlearning via Null
Space Calibration (UNSC). To avoid over-unlearning, UNSC
constrains the unlearning process within a null space tailored
to the remaining samples. This ensures unlearning does not
negatively impact the model’s performance on the remaining
samples. Figure 1c visualizes this concept, where decision
boundaries among remaining samples closely resemble those
depicted in Figure 1a. Going beyond, we further ask:

Q2: Is it possible to improve the model’s performance after
unlearning, and how?

To answer this question, we find that targeted unlearning
can mitigate class overlap and augment the model’s accuracy.
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Therefore, calibrating the decision space might be a possible
solution. Take a toy case shown in Figure 1 as an example.
We train a model to classify a mixture of four Gaussian dis-
tributions. Figure 1a depicts the decision boundaries. Due to
the overlap of the purple class with other classes, the model
struggles to distinguish the overlapping samples. Unlearning
misclassified samples and calibrating decision space lead to
more accurate decision boundaries shown in Figure 1c.

UNSC assigns pseudo-labels to unlearning samples based
on their proximity to the remaining samples. This process
reallocates the space of unlearning samples to the remaining
classes, forming more separable clusters (as shown in Figure
4d). Contributions of this paper are summarized as follows:

• We tackle the challenging problem of over-unlearning.
Going beyond, we investigate the possibility of boosting
the model’s performance after unlearning.

• We propose UNSC, a novel machine unlearning method
that confines the unlearning process to a specific null
space and assigns pseudo-labels to the unlearning sam-
ples. Combined, UNSC is not only free from over-
unlearning but can also boost the model’s performance.

• We provide theoretical justifications for the proposed
method and empirically validate it with extensive exper-
iments. The results show UNSC can provide equivalent
and even better performance than retraining.

2 Related Works
2.1 Machine Unlearning
Current unlearning algorithms have two branches: exact un-
learning and approximate unlearning [Xu et al., 2023]. Ex-
act unlearning ensures that distributions of model weights
in an unlearned model are indistinguishable from those in
a model retrained from scratch. [Cao and Yang, 2015] ex-
plore this concept within the realm of statistical query learn-
ing, [Ginart et al., 2019] propose an efficient data elimination
algorithm for k-means clustering. However, these methods
can not be generalized to deep learning. To address this limi-
tation, SISA [Bourtoule et al., 2021] divides the training data
into several segments and trains sub-models on each segment.
It only needs to retrain the affected segment when unlearning
requests arise. Nevertheless, the computational overhead of
the exact unlearning method remains substantial.

Unlike exact unlearning, approximate unlearning is
bounded by an approximate guarantee. Works in this stream
estimate the influence of unlearning samples and modify the
model weights to achieve unlearning. For example, [Graves
et al., 2021] make the estimation through the gradient, [Guo
et al., 2019] develop their method on the influence function
[Koh and Liang, 2017]. [Golatkar et al., 2020] use the fisher
information matrix in their design. [Lin et al., 2023] asso-
ciate the unlearning samples with feature maps. While our
work belongs to this category, it does not require the estima-
tion of the influence of unlearning samples.

Works most closely related to ours are those by [Chen et
al., 2023; Li et al., 2023]. Both [Chen et al., 2023] and our
approach shift decision boundaries. The distinct advantage
of our work lies in the design of a sophisticated null space,

which maintains the decision boundaries of the remaining
classes, leading to better performance. [Li et al., 2023] also
explore subspace-based unlearning; however, their approach
does not capitalize on unlearning samples to guide the shift-
ing of decision boundaries, an essential aspect of our method.

2.2 Subspace Learning
DNNs are usually over-parameterized as they have more pa-
rameters than input samples. However, the intrinsic dimen-
sion is much smaller [Allen-Zhu et al., 2019]. The weight
updates happen in a much smaller subspace than the origi-
nal parameter space. [Li et al., 2018] find that optimizing
in a reduced subspace reaches 90% performance of regular
SGD training. [Gur-Ari et al., 2018] observe that after a
short training period, the weight updates converge to a tiny
subspace spanned by several top eigenvectors of the Hessian
matrix.

Learning in subspace has many applications. [Li et al.,
2022] optimize DNNs in a 40-dimensional subspace and
achieve comparable performance to regular training over
thousands or even millions of parameters. In the context of
meta-learning, [Lee and Choi, 2018] employ a learned sub-
space within each layer’s activation space where task-specific
learners perform gradient descent. This subspace is tailored
to be sensitive to task-specific requirements, facilitating more
effective learning across different tasks. Subspace has also
been applied in continual learning to mitigate catastrophic
forgetting [Farajtabar et al., 2020; Saha et al., 2021].

3 Preliminaries and Notation
We use bold lowercase to denote vectors, e.g., xi, and italics
in uppercase for space or set, e.g., S . The training dataset is
represented as D = {xi, yi}Ni=1 ⊆ X × Y , where X ⊆ Rd is
the input space and Y = {1, ...,K} is the label space. We fur-
ther split D into unlearning set Du and remaining set Dr. We
consider unlearning a neural network f with L layers. The
input feature of input xi at layer l is denoted as ril . We de-
note f(·, θo) the original model trained onD with parameters
θo =

{
w1

o, ...,w
L
o

}
, and f(·, θr) is trained on Dr.

A machine unlearning algorithm takes the original model
f(·, θo) and the unlearning samples Du as input and outputs
an unlearned model f(·, θu), in which the trace of the un-
learning samples is removed. It can be formally defined as:

Definition 1 (Machine unlearning). [Cao and Yang, 2015]
Given a model f(·, θo) = A(D) trained on dataset D with
some training algorithm A, denote Du ⊆ D the set of sam-
ples that we want to remove from the training dataset D as
well as from the trained model A(D). An unlearning process
U produces a new set of weights θu that performs as though
it had never seen the unlearning dataset Du.

θu ← U(f(·, θo),Du). (1)

UNSC constrains the unlearning process within a null
space tailored to the remaining samples, which is defined as:

Definition 2 (Null space). Let A be an m by n matrix, the
null space of A, denoted by null(A), is the set of all vectors
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η ∈ Rn that satisfy Aη = 0.

null(A) = {η ∈ Rn|Aη = 0} . (2)

4 Proposed Method
Our proposed method consists of two key parts: 1) unlearning
in the null space to avoid over-unlearning and 2) calibrating
decision space to improve the model’s performance.

4.1 Find the Null Space for Unlearning
An ideal unlearning algorithm should erase the trace about
the unlearning samples from the model without degrading the
model’s performance on the remaining samples, i.e., without
over-unlearning. To achieve this, UNSC constrains the un-
learning process within a null space tailored to the remaining
samples. The underlying principle is that different models
with weights in the same null space would yield identical pre-
dictions on the samples associated with that null space (theo-
retical justification is provided in Section 5.1).
Gradients lie in the subspace spanned by inputs. Con-
sidering a single-layer neural network performing a binary
classification task. The loss function is defined as:

Li(w) = −yi log
(
σ(wTxi)

)
−(1−yi) log

(
1− σ(wTxi)

)
,

(3)
in which σ(z) = 1

1+e−z is the sigmoid function. According
to the chain rule, we have:

∇wLi =

(
1− yi

1− σ(wTxi)
− yi

σ(wTxi)

)
∂σ(wTxi)

∂w
. (4)

Substitute the last term with the derivative of the sigmoid
function, we get:

∇wLi =
(
σ(wTxi)− yi

)
xi = eixi, (5)

ei is the prediction error. Eq. 5 shows the gradient lies in the
space span {x1,x2, ...,xN}. The same relation can be de-
duced for the convolutional layer by reformulating the con-
volution into matrix multiplication [Liu et al., 2018].
Identify the layer-wise subspace for each class. Based on
the relationship between gradient and inputs, we first identify
the subspace of each class. Then, for each unlearning sample,
we find the corresponding null space to perform unlearning.
This incurs negligible computation overhead. For each class,
we only need a small batch of samples (256 in our experi-
ment) to find the null space. In addition, we only need to find
the subspace once because we treat the null space as fixed dur-
ing unlearning. Our experiment results justify the hypothesis.
One may consider iterative updating the null space during un-
learning. We leave this as future work.

To find the subspace of class k, we sample a batch of
inputs Bk = {(xi, yi)|yi = k}Bi=1 from class k at random
and feed these samples through the original model f(·; θo).
At the l-th layer, we have a collection of input features as
Rk

l = [rl,1, rl,2, ..., rl,B ] with each column corresponds to an
input. For the convolutional layer, we need to reformulate the
input feature by treating each patch as a column. The columns
of Rc

l are usually larger than the rows, and each column rep-
resents a vector sampled from some unknown subspace. We

Algorithm 1 Find layer-wise subspace of class k

Input: Batch input {xi, yi|yi = k}Bi=1; network f(·; θo);
threshold {ϵl}Ll=1.
Output: Layer-wise subspace of class k.

1: Feed forward {xi}Bi=1 through f(·; θo).
2: for l ∈ [L] do
3: Collect the input feature Rk

l .
4: Perform SVD: Rl = Uk

l Σ
k
l V

kT
l .

5: end for
6: return Sk =

{
Uk

l

}L

l=1
.

decompose it using singular value decomposition (SVD) to
find the subspace as:

Uk
l Σ

k
l V

kT
l = SVD(Rk

l ). (6)

The elements in Uk
l are the subspace basis for class k at

layer l. The gradient induced by samples from class k lies in
this subspace. Σk

l is a diagonal matrix that stores the eigen-
values in descending order. We repeat this process of all lay-
ers in f(·; θo) to identify subspaces of each layer,

Sk =
{
Uk

l

}L

l=1
. (7)

Algorithm 1 formalizes this process. Note that the inputs do
not need to be from the same class. However, in our design,
we find the layer-wise subspace Sk of each class for efficient
unlearning. The unlearning samples could come from differ-
ent classes. For each unlearning sample, we need to find the
corresponding null space to perform unlearning. By identi-
fying class-wise null space, we can efficiently identify each
unlearning sample’s null space. We articulate this in the fol-
lowing part.
Unlearning in the null space. After getting the layer-wise
subspaces of each class, we are ready to find the null space
for unlearning. For an unlearning sample (xi, yi = c) ∈ Du,
we perform unlearning in the null space of the rest classes
c̄ = {i ∈ [K]|i ̸= c}. Denote the concatenation of the rest
subspaces as S c̄l = ∪i∈c̄U

i
l at layer-l. We merge these sub-

spaces as:
Uc̄

lΣ
c̄
lV

c̄T
l = SVD

(
S c̄l

)
. (8)

The basis of the merged subspace comes from the element
of Uc̄

l . S c̄l has few dominant eigenvalues and a large num-
ber of very small ones. The eigenvectors corresponding to
those small eigenvalues are usually irrelevant. Thus, we can
approximate the subspace by the span of top-k eigenvectors.∥∥(S c̄l )k∥∥2F ≥ ϵl

∥∥S c̄l ∥∥2F , (9)

where ϵl is the approximation threshold (we find ϵl > 0.97
is good enough in our experiment), ∥A∥F is Frobenius norm
of matrix A. The top-k eigenvectors span the approximate
subspace:

Ŝc̄
l = span

{
uc̄
l,1, u

c̄
l,2, ..., u

c̄
l,k

}
, (10)

where uc̄
l,i is the i-th element of Uc̄

l . Gradient lies in Ŝc̄
l

will alter the model’s response to samples from c̄, which may
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lead to over-unlearning. As such, we project the gradient to
a space perpendicular to Ŝc̄

l , i.e., the null space of the rest
samples. The projection matrix is defined as:

Pc̄
l = I− Ŝc̄

l (Ŝ
c̄)T
l . (11)

At layer-l, the updating rule is modified as:

wl
t+1 = wl

t − ηPc̄
l∇wlLc, (12)

where Lc is the classification loss on unlearning sample
(xi, yi = c). Algorithm 2 illustrates the pseudo-code.

4.2 Calibrate Decision Space
To calibrate the decision space, we borrow the idea from poi-
soning attacks, which aim to decrease the victim model’s per-
formance by feeding it poisoned samples. There are several
poisoning attacks, one of which is the label-flipping attack
[Rosenfeld et al., 2020]. In this attack, the input feature xi

remains unchanged, and the label is carefully set as the most
dissimilar class. But our target is different, i.e., we aim to
boost the model’s utility on the remaining samples. As such,
we label an unlearning sample as the most similar class in the
rest of the classes.

However, comparing samples-wise similarity could be
rather inefficient and even impossible when the remaining
samples are not accessible. As such, we base our method
on the prediction of the original model. For an unlearning
sample of class (xi, yi = c), we find the pseudo-labels from
the remaining classes set c̄ as:

ỹ = argmax
y∈c̄

f(xi; θo). (13)

We use the top-1 prediction as the pseudo-label for an un-
learning sample if it gives the wrong prediction. Otherwise,
we use the second-highest score as the pseudo-label.

To elucidate our design, one might consider this in another
way: we expect the unlearned model to behave similarly to
the retrained model. The unlearned model should give the
same or similar predictions as the retrained model for the
unlearning samples. The retrained model, trained using the
remaining samples, has never been exposed to the unlearn-
ing samples. Consequently, the retrained model will classify
these unlearning samples into categories represented within
the remaining samples. As such, the unlearned model should
predict a given unlearning sample belongs to the same class
as the remaining samples most similar to it.

5 Theoretical Analysis
5.1 Null Space Prevents Over-unlearning
Theorem 1. For a trained model f(·; θo), unlearning the tar-
get samples from Du in the null space tailored to the remain-
ing samples from Dr ensures the unlearned model f(·; θu)
has approximately the same performance as f(·; θo), i.e.,

Lr(θu) ≈ Lr(θo), (14)

where Lr(θ) :=
1

|Dr|
∑

Dr
ℓ(f(xi; θ), yi) is the average loss

on the remaining samples.

Algorithm 2 Unlearning via null space calibration
Input: Training data D; trained model f(·; θo).
Output: Unlearned model f(·; θu)

1: # Get the subspace of each class
2: for k ∈ [K] do
3: Identify the subspace of class k by Algorithm 1 with
{xi, yi|yi = k}Bi=1, f(·; θo), and {ϵl}Ll=1 as input.

4: end for
5: # Calculate the projection matrix
6: for c ∈ [K] do
7: for l ∈ [L] do
8: Merge subspaces of rest classes using Eq. 8.
9: Perform k-rank approximation by Eq. 9

10: Find the subspace as Eq. 10.
11: Calculate layer-wise projection matrix as Eq. 11.
12: end for
13: end for
14: # Unlearning in the null space
15: for (xi, yi) ∈ Du do
16: ỹi ← argmaxy∈c̄ f(xi; θo) ▷ Pseudo-labeling xi

17: Calculate gradients on (xi, ỹi).
18: Update the original model in the null space as Eq. 12.
19: end for

Proof. We expand Lr(θu) around Lr(θo) as:

Lr(θu) = Lr(θo) + (θu − θo)
T∇θLr(θo) +O(∥θu − θo∥2)

= Lr(θo) + ∆θT∇θLr(θo) +O(∥∆θ∥2).

We decompose ∆θT∇θLr(θo) layer-by-layer as:

∆θT∇θLr(θo) =
1

|Dr|
∑
l∈[L]

∑
Dr

(∆wl)T∇wlℓ(f(xi; θo), yi).

(15)
Note θ =

{
w1, ...,wL

}
and ∆wl = w1

u − w1
o. At the l-

th layer, we have rl+1
i = σ(wlrli), where σ(·) is activation

function, rli is the activation at layer l with respect to input
xi. We rewrite the derivative term by the chain rule:

∇wlℓ(f(xi; θ0), yi) =

∇f ℓ(f(xi; θ0), yi)∇wl+1f(xi; θ0)diag
{
σ′(wlrli)

}
rli.

Note that we confine the learning in a null space tailored to
the reaming samples fromDr. Thus, at the l-th layer, we have
the following by definition:〈

∆wl, rli
〉
= 0, ∀xi ∈ Dr. (16)

Thus, we immediately have ∆θT∇θLr(θo) = 0. During un-
learning, ∆θ should be relatively small. As such, we have:

Lr(θu) ≈ Lr(θo). (17)

Theorem 1 asserts that confining unlearning in the null
space ensures the unlearned model f(·, θu) performs com-
parably to the original model f(·, θo). This substantiates that
UNSC can effectively mitigate the risk of over-unlearning.
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5.2 Pseudo-labeling Benefits Unlearning
Assuming the unlearning sample xi is generated i.i.d. from
the domain ⟨Du, ho⟩, with the ground-truth labeling function
ho. In our proposed method, we assign pseudo-labels to the
unlearning samples, this equivalent to replacing ho with a
new labeling function hu. Consequently, the domain of un-
learning samples becomes ⟨Du, hu⟩ during learning. The pri-
mary objective of unlearning is to minimize the model’s re-
tention of information about the unlearning samples. We use
the empirical risk of unlearning samples as a proxy measure-
ment of forgetting in our analysis. The risk of f(·; θu) over
⟨Du, hu⟩ is calculated as:

ϵ(θu, hu) = Exi∈Du
[1f(xi;θu)̸=hu(xi)]. (18)

We use the parallel notion ϵu(θu, ho) to denote the risk over
the original domain ⟨Du, ho⟩, which can be expressed as:

ϵ(θu, ho) = ϵ(θu, ho) + ϵ(θu, hu)− ϵ(θu, hu)

= ϵ(θu, hu) + Exi∈Du [1f(xi;θu)̸=ho(xi)]

− Exi∈Du
[1f(xi;θu)̸=hu(xi)]

≥ ϵ(θu, hu)− Exi∈Du
[1ho(xi)=hu(xi)]. (19)

The forgetting level ϵ(θu, h0) depends partly on the second
term on the right-hand side. It measures the expectation that
the pseudo-labeling function disagrees with the ground-truth
labeling function for the unlearning samples. To facilitate
forgetting, hu should assign each unlearning sample a label
different from ho(xi) to minimize Exi∈Du

[1ho(xi)=hu(xi)].
The pseudo-label assigned by UNSC differs from the ground-
truth label ho(xi). Thus, it minimizes the second term and
increases ϵ(θu, ho), leading to better forgetting.

6 Experiments
6.1 Protocol and Evaluation Metrics
Datasets and models. We compare UNSC with existing
methods on the standard FashionMNIST [Xiao et al., 2017],
CIFAR-10, CIFAR-100 [Krizhevsky et al., 2009], and
SVHN [Netzer et al., 2011] benchmarks. We use AlexNet
[Krizhevsky et al., 2012] for FashionMNIST, VGG-11 [Si-
monyan and Zisserman, 2015] for SVHN, AllCNN [Sprin-
genberg et al., 2015] for CIFAR-10, and ResNet-18 [He et
al., 2015] for CIFAR-100.
Evaluation metrics. We evaluate the unlearning process
from two aspects, i.e., utility and privacy guarantee. (1)
Utility guarantee is evaluated by accuracy on the remain-
ing testing data AccDrt and accuracy on the unlearning test-
ing data AccDut . An ideal unlearning process should sus-
tain AccDrt and reduce AccDrt towards zero [Chen et al.,
2023]. (2) Privacy guarantee is assessed through the mem-
bership inference attack (MIA) [Shokri et al., 2017]. Fol-
lowing [Fan et al., 2023], we apply the confidence-based
MIA predictor to the unlearned model on the unlearning sam-
ples. We define the MIA accuracy as the True Negative Rate
AccMIA = TN/|Du|, i.e., the rate of unlearning samples that
are identified as not being in the training set of the unlearned
model. A higher AccMIA indicates a more effective unlearn-
ing. All results are averaged over three trials by default1.

1Code released at https://github.com/HQC-ML/UNSC

Implementation details. The training set is divided into
90% for training and 10% for validation. We train the origi-
nal and retrained models for 200 epochs and stop the training
based on validation accuracy. The patience is set to 30. We
use SGD optimizer in all experiments, starting with a learning
rate of 0.1, and reducing it by 0.2 at epochs 60, 120, and 160.
In the unlearning stage, we determine the best learning rate
and number of epochs for different datasets and networks.

6.2 Comparison with the State-of-the-Art
We compare UNSC with various methods, assessing both
utility and privacy guarantees. These include: (1) Retrain,
(2) Boundary unlearning (BU) [Chen et al., 2023], (3) Ran-
dom labels (RL) [Hayase et al., 2020], (4) Gradient ascent
(GA) [Golatkar et al., 2020], (5) Fisher Forgetting (Fisher)
[Golatkar et al., 2020], and (6) SalUn [Fan et al., 2023]. Fol-
lowing [Chen et al., 2023], we randomly select one class (or
ten classes on CIFAR-100) and unlearn all the samples.

Utility guarantee. Table 1 displays the accuracy results of
models obtained by different unlearning methods. Observ-
ing the results reveals that: (1) Comparison methods strug-
gle with over-unlearning: AccDut decreases at the cost of
AccDrt , leading to over-unlearning. For instance, SalUn re-
duces AccDut

to 3.56% with a 16.7% reduction in AccDrt

on the SVHN dataset. This is more sever on the CIFAR-100
dataset, as comparison methods degrade AccDrt

by more than
30%; (2) UNSC excels in avoiding over-unlearning: UNSC
consistently maintains AccDut

below 2% without compro-
mising AccDrt

. This underscores UNSC’s ability to avoid
over-unlearning; (3) UNSC exhibits superior performance
compared to the original model: On all datasets, models de-
rived from UNSC get higher AccDrt than the original models.
We attribute the improvement to the calibration of decision
space, which makes the remaining samples more separable.

Privacy guarantee. Figure 2 depicts MIA results. By ran-
domly selecting one class to unlearn, we get various un-
learned models through different methods. We then assess
these models using MIA. The retrained model, having no ex-
posure to unlearning samples, obtains an attack accuracy of
1.0. On CIFAR-10, Fisher and GA exhibit an accuracy be-
low 0.8, pointing to inadequate unlearning. SalUn achieves a
higher accuracy but suffers more severe over-unlearning than
Fisher, as evident by AccDrt

in Table 1. The attack accuracy
of BU and UNSC is around 0.98, signifying success unlearn-
ing. However, unlike BU, UNSC is free of over-unlearning.
For SVHN, the attack accuracy of BU and GA falls below
0.8, suggesting unsuccessful unlearning. Conversely, UNSC
gets an attack accuracy of 1.0.

6.3 Ablation Studies
Pseudo-labeling strategy. To demonstrate the efficacy of
the proposed pseudo-labeling strategy, we conduct a thorough
examination of different datasets. We present results obtained
on CIFAR-10 in Figure 3a. We unlearn all samples of class 3
and assign pseudo-labels as described in Section. 4.2. Figure
3a plots distributions of pseudo-labels and labels predicted by
the retrained model. The distribution of pseudo-labels aligns
well with the predictions of the retrained model on unlearning
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Approach FashionMNIST SVHN CIFAR-10 CIFAR-100
AccDrt(↑) AccDut(↓) AccDrt(↑) AccDut(↓) AccDrt(↑) AccDut(↓) AccDrt(↑) AccDut(↓)

Original 93.58±0.28 80.97±1.44 95.52±0.12 91.30±0.30 92.10±0.29 79.93±1.72 75.36±0.34 72.07±1.18

RL 91.50±0.20 3.37±1.44 75.87±8.67 1.17±0.16 82.88±2.62 3.30±0.83 24.58±2.01 1.13±0.61

BU 72.71±0.44 2.97±1.28 80.99±4.01 4.03±1.87 87.24±2.43 1.47±0.17 36.81±3.05 12.13±2.40

GA 80.94±3.87 6.40±2.90 75.11±6.76 3.10±3.90 88.53±1.11 6.80±1.93 36.55±12.85 12.87±7.61

Fisher 95.11±0.17 1.50±1.27 95.72±0.30 2.53±0.91 92.54±0.79 0.07±0.05 49.23±2.02 0.00±0.00

SalUn 91.11±0.32 1.80±1.44 78.81±4.85 3.56±0.56 88.88±0.19 6.17±0.83 41.85±3.56 5.97±1.39

UNSC 95.23±0.27 0.67±0.17 95.74±0.17 0.00±0.00 92.77±0.08 0.70±0.08 76.16±0.35 1.80±0.16

Retrain 95.19±0.20 0.00±0.00 95.56±0.23 0.00±0.00 93.22±0.18 0.00±0.00 75.77±0.22 0.00±0.00

Table 1: Comparing the utility guarantee among UNSC and SOTA methods: For FashionMNIST, SVHN, and CIFAR-10, we randomly
unlearn one class, and for CIFAR-100, we unlearn ten classes. The results of the retrained model are provided as a reference.

(a) On CIFAR-10. (b) On SVHN.

Figure 2: Comparing the MIA accuracy of different unlearning
methods. A higher AccMIA indicates more effective unlearning.

(a) (b)

Figure 3: (a) Distributions of pseudo-labels and predictions of the
retrained model on CIFAR-10. (b) Loss contour on CIFAR-10. We
evaluate the model’s loss on remaining test data.

samples. The consistency substantiates the effectiveness of
the proposed pseudo-labeling strategy.

Impact of null space. Our first contribution is confining
the unlearning process in a null space, which avoids over-
unlearning. Here, we provide experimental validation. We
randomly select one class as the unlearning class and iden-
tify the corresponding null space following the steps outlined
in Algorithm 1. We modify the model’s weights by adding
vectors composed of two components: one within the null
space and one outside. We evaluate the modified model on
the testing set of remaining samples and plot the loss contour
in Figure 3b, with the axes displaying the scaled coefficients.

From Figure 3b, we observe that modifying weights out-
side the null space increases the loss, while alterations within
the null space leave the loss unchanged. This pattern vali-

(a) Original model (full) (b) Unlearned model (full)

(c) Original model (part) (d) Unlearned model (part)

Figure 4: Visualization of latent space after unlearning all samples
of class 3 (red points) on CIFAR-10: (a) Original and (b) Unlearned
model with all samples, (c) Original and (d) Unlearned models, both
excluding the unlearned samples.

dates our analysis: unlearning within the null space does not
impact the model’s performance on the remaining samples.

Decision space calibration. Our second contribution is the
calibration of the decision space, which improves the model’s
performance. To illustrate this, we compare decision spaces
of the original and unlearned model in Figure 4. We unlearn
class 3 and visualize the latent spaces using UMAP [McInnes
et al., 2018]. Several observations can be made: (1) UNSC
successfully unlearns class 3 from the original model. In
Figure 4b, the cluster of class 3 disperses, with its samples
overlapping with adjacent samples. A clear signal that the
unlearned model forgets the unlearned samples; (2) Decision
boundaries among the remaining samples remain unaffected
after unlearning. The shape and positions of clusters in Fig-
ure 4d closely resemble those in Figure 4c, underscoring the
efficacy of UNSC in overcoming over-unlearning; (3) Better
separability after unlearning. UNSC redistributes the region
previously dominated by class 3 among neighboring classes,
improving their separability as depicted in Figures 4c and 4d.
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(a) Unlearn 1 class (b) Unlearn 3 classes (c) Unlearn 4 classes (d) Unlearn 5 classes

Figure 5: Comparison of class-wise accuracy on CIFAR-10. We compare the original model, the retrained model, and the model obtained
by UNSC under different settings. In all experiments, the UNSC-obtained model demonstrates near-zero accuracy on the forgetting classes,
achieving superior accuracy compared to the original model and comparable performance to the retrained model.

#Classes Original Retrain UNSC Accuracy Gain
AccDrt AccDut AccDrt(↑) AccDut(↓) AccDrt(↑) AccDut(↓) ∆AccDrt(↑)

1 92.10±0.29 79.93±1.72 93.22±0.18 0.00±0.00 92.77±0.25 0.70±0.08 0.67±0.42

2 91.66±0.36 87.77±0.89 93.18±0.15 0.00±0.00 92.73±0.25 0.60±0.33 1.07±0.35

3 92.35±0.35 87.44±0.64 94.24±0.17 0.00±0.00 93.84±0.33 0.89±0.45 1.49±0.57

4 92.38±0.36 88.63±0.77 94.28±0.36 0.00±0.00 94.08±0.21 0.31±0.23 1.70±0.54

5 93.23±0.34 88.53±0.55 96.12±0.22 0.00±0.00 96.15±0.13 0.68±0.52 2.92±0.42

Table 2: Performance evaluation of UNSC on CIFAR-10. #Classes denotes the number of unlearned classes.

UNSC under different settings. We randomly select 1 to
5 classes to unlearn. Table 2 compares the utility guarantee
of the original model, the retrained model, and the model ob-
tained by UNSC on the CIFAR-10 dataset. Figure 5 provides
a detailed class-wise accuracy breakdown.

Across different settings, the model obtained by UNSC
gets near-zero accuracy on the unlearned classes. Meanwhile,
the accuracy of the remaining classes is higher than that of
the original model (measured by ∆AccDrt

). Furthermore, as
the number of unlearned classes increases, so does the accu-
racy gain. This observation affirms (1) the effectiveness of
null space in preventing over-unlearning and (2) the benefit
of decision space calibration. As we progressively unlearn
additional samples, we allocate more decision spaces to the
remaining samples. This process results in a more distin-
guishable decision space, ultimately enhancing the model’s
classification performance on the remaining samples.

UNSC vs. Baselines. To discern the contribution of each
component in the proposed method, we contrast UNSC with
three baselines: the original model, Retrain, and RL. Table 3
presents a detailed breakdown of the results on the Fashion-
MNIST dataset, with indexed experiments for reference.

Contribution of null space. We conduct an ablation study
by removing the constraint of null space and then compare
the outcomes of experiments III and IV. In the absence of null
space constraints, RL reduces AccDut to 0.90%, incurring a
7.28% reduction in AccDrt . RL successfully completes the
unlearning task but at the cost of excessive impact on the re-
maining samples. In contrast, when confining the unlearning
process within a null space tailored to the remaining samples
in experiment IV, we decrease AccDut

to 1.57% without af-
fecting AccDrt

. This comparison highlights the effectiveness
of the null space in preventing over-unlearning.

Exp. ID OR RE RL NS PL AccDrt AccDut

I ✓ 93.58±0.28 80.97±1.44

II ✓ 95.19±0.20 0.00±0.00

III ✓ 86.30±0.85 0.90±0.21

IV ✓ ✓ 93.30±1.12 1.57±0.53

V ✓ ✓ 95.23±0.27 0.67±0.17

Table 3: Ablation on FashionMNIST. OR: Original model, RE: Re-
train, RL: Random labels, NS: Null space, PL: Pesudo-labeling.

Contribution of pseudo-labeling. We further demonstrate
the benefits introduced by pseudo-labeling. Compared to
experiment IV, replacing RL with pseudo-labeling increases
AccDrt

by 1.93% in experiment V. Thanks to pseudo-
labeling, the decision space of the unlearning samples can
be selectively redistributed to the adjacent classes, forming a
more distinguishable decision space. The combination of null
space and pseudo-labeling contributes to an elevated AccDrt

of 95.23%, surpassing the original model by 1.61% and even
outperforming the retrained model.

7 Conclusion
This paper introduces UNSC, an accurate unlearning algo-
rithm that addresses the challenge of over-unlearning and
further enhances the model’s performance after unlearning.
The innovation in UNSC is grounded in two pivotal de-
sign aspects: (1) Constraining the unlearning process within
a designated null space to prevent over-unlearning and (2)
Pseudo-labeling the unlearning samples to calibrate the deci-
sion space, thereby improving prediction accuracy. Our the-
oretical analysis and empirical results convincingly demon-
strate the superior performance of UNSC over baselines.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

364



Acknowledgments
This work was supported by the Australian Research Council
(ARC), Australia, through the ARC Discovery Project under
Grant DP230100246 and DP240100955.

References
[Allen-Zhu et al., 2019] Zeyuan Allen-Zhu, Yuanzhi Li, and

Zhao Song. A convergence theory for deep learning via
over-parameterization. In International conference on ma-
chine learning, pages 242–252. PMLR, 2019.

[Bourtoule et al., 2021] Lucas Bourtoule, Varun Chan-
drasekaran, Christopher Choquette-Choo, Hengrui Jia,
Adelin Travers, Baiwu Zhang, David Lie, and Nicolas
Papernot. Machine unlearning. In Proceedings of the
42nd IEEE Symposium on Security and Privacy, 2021.

[Cao and Yang, 2015] Yinzhi Cao and Junfeng Yang. To-
wards making systems forget with machine unlearning.
In 2015 IEEE symposium on security and privacy, pages
463–480. IEEE, 2015.

[Chen et al., 2023] Min Chen, Weizhuo Gao, Gaoyang Liu,
Kai Peng, and Chen Wang. Boundary unlearning: Rapid
forgetting of deep networks via shifting the decision
boundary. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
7766–7775, June 2023.

[Fan et al., 2023] Chongyu Fan, Jiancheng Liu, Yihua
Zhang, Dennis Wei, Eric Wong, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight
saliency in both image classification and generation. arXiv
preprint arXiv:2310.12508, 2023.

[Farajtabar et al., 2020] Mehrdad Farajtabar, Navid Azizan,
Alex Mott, and Ang Li. Orthogonal gradient descent for
continual learning. In International Conference on Artifi-
cial Intelligence and Statistics, pages 3762–3773. PMLR,
2020.

[Ginart et al., 2019] Antonio Ginart, Melody Guan, Gregory
Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural infor-
mation processing systems, 32, 2019.

[Golatkar et al., 2020] Aditya Golatkar, Alessandro Achille,
and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9304–9312, 2020.

[Graves et al., 2021] Laura Graves, Vineel Nagisetty, and
Vijay Ganesh. Amnesiac machine learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 11516–11524, 2021.

[Guo et al., 2019] Chuan Guo, Tom Goldstein, Awni Han-
nun, and Laurens Van Der Maaten. Certified data re-
moval from machine learning models. arXiv preprint
arXiv:1911.03030, 2019.

[Gur-Ari et al., 2018] Guy Gur-Ari, Daniel A Roberts, and
Ethan Dyer. Gradient descent happens in a tiny subspace.
arXiv preprint arXiv:1812.04754, 2018.

[Hayase et al., 2020] Tomohiro Hayase, Suguru Yasutomi,
and Takashi Katoh. Selective forgetting of deep net-
works at a finer level than samples. arXiv preprint
arXiv:2012.11849, 2020.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

[Hoofnagle et al., 2019] Chris Jay Hoofnagle, Bart Van
Der Sloot, and Frederik Zuiderveen Borgesius. The eu-
ropean union general data protection regulation: what it is
and what it means. Information & Communications Tech-
nology Law, 28(1):65–98, 2019.

[Hu et al., 2023] Hongsheng Hu, Shuo Wang, Jiamin Chang,
Haonan Zhong, Ruoxi Sun, Shuang Hao, Haojin Zhu, and
Minhui Xue. A duty to forget, a right to be assured? expos-
ing vulnerabilities in machine unlearning services. arXiv
preprint arXiv:2309.08230, 2023.

[Koh and Liang, 2017] Pang Wei Koh and Percy Liang. Un-
derstanding black-box predictions via influence functions.
In International conference on machine learning, pages
1885–1894. PMLR, 2017.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny im-
ages. 2009.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural infor-
mation processing systems, 25, 2012.

[Lee and Choi, 2018] Yoonho Lee and Seungjin Choi.
Gradient-based meta-learning with learned layerwise met-
ric and subspace. In International Conference on Machine
Learning, pages 2927–2936. PMLR, 2018.

[Li et al., 2018] Chunyuan Li, Heerad Farkhoor, Rosanne
Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. arXiv preprint
arXiv:1804.08838, 2018.

[Li et al., 2022] Tao Li, Lei Tan, Zhehao Huang, Qinghua
Tao, Yipeng Liu, and Xiaolin Huang. Low dimensional
trajectory hypothesis is true: Dnns can be trained in tiny
subspaces. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(3):3411–3420, 2022.

[Li et al., 2023] Guanghao Li, Li Shen, Yan Sun, Yue Hu,
Han Hu, and Dacheng Tao. Subspace based federated un-
learning, 2023.

[Lin et al., 2023] Shen Lin, Xiaoyu Zhang, Chenyang Chen,
Xiaofeng Chen, and Willy Susilo. Erm-ktp: Knowledge-
level machine unlearning via knowledge transfer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 20147–20155, 2023.

[Liu et al., 2018] Zhenhua Liu, Jizheng Xu, Xiulian Peng,
and Ruiqin Xiong. Frequency-domain dynamic pruning
for convolutional neural networks. Advances in neural in-
formation processing systems, 31, 2018.

[McInnes et al., 2018] Leland McInnes, John Healy, and
James Melville. Umap: Uniform manifold approximation

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

365



and projection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

[Netzer et al., 2011] Yuval Netzer, Tao Wang, Adam Coates,
Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature
learning. In NIPS workshop on deep learning and unsu-
pervised feature learning, volume 2011, page 7. Granada,
Spain, 2011.

[Rosenfeld et al., 2020] Elan Rosenfeld, Ezra Winston,
Pradeep Ravikumar, and Zico Kolter. Certified robust-
ness to label-flipping attacks via randomized smoothing.
In International Conference on Machine Learning, pages
8230–8241. PMLR, 2020.

[Saha et al., 2021] Gobinda Saha, Isha Garg, and Kaushik
Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

[Shokri et al., 2017] Reza Shokri, Marco Stronati, Con-
gzheng Song, and Vitaly Shmatikov. Membership infer-
ence attacks against machine learning models, 2017.

[Simonyan and Zisserman, 2015] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2015.

[Springenberg et al., 2015] Jost Tobias Springenberg,
Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. Striving for simplicity: The all convolutional net,
2015.

[Xiao et al., 2017] Han Xiao, Kashif Rasul, and Roland
Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[Xu et al., 2023] Heng Xu, Tianqing Zhu, Lefeng Zhang,
Wanlei Zhou, and Philip S Yu. Machine unlearning: A
survey. ACM Computing Surveys, 56(1):1–36, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

366


	Introduction
	Related Works
	Machine Unlearning
	Subspace Learning

	Preliminaries and Notation
	Proposed Method
	Find the Null Space for Unlearning
	Calibrate Decision Space

	Theoretical Analysis
	Null Space Prevents Over-unlearning
	Pseudo-labeling Benefits Unlearning

	Experiments
	Protocol and Evaluation Metrics
	Comparison with the State-of-the-Art
	Ablation Studies

	Conclusion

