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Abstract

We present a novel modal language for causal rea-
soning and interpret it by means of a semantics
in which causal information is represented using
causal bases in propositional form. The language
includes modal operators of conditional causal ne-
cessity where the condition is a causal change oper-
ation. We provide a succinct formulation of model
checking for our language and a model checking
procedure based on a polysize reduction to QBF.
We illustrate the expressiveness of our language
through some examples and show that it allows us
to represent and to formally verify a variety of con-
cepts studied in the field of explainable AI includ-
ing abductive explanation, intervention and actual
cause.

1 Introduction
Reasoning about causality plays a pivotal role in AI nowa-
days given the relevance of causal properties and concepts
for explainable AI (XAI). At a mere conceptual level, an ex-
planation can be seen as a causal attribution, namely, as the
recognition that a fact F1 (the explanandum) is true because
another fact F2 (the explanans) is true. For example, explain-
ing the decision of a classifier system such as a decision tree,
a random forest or an artificial neural network (ANN) just
consists in recognizing that the classifier made a certain clas-
sification because some input features/variables had certain
values. Most formal analyses of explanation reduce the prob-
lem of checking whether F1 holds because of F2 to the prob-
lem checking whether F2 is a sufficient condition (or cause)
of F1. They often include the requirement that F2 should be
minimal (i.e., no other F ′

2 strictly implied by F2 is sufficient
for F1).1 Different notions of explanation and cause based
on sufficiency have been formalized. These include sufficient
reason [Darwiche and Hirth, 2020] first introduced under the

1Some formal analyses of explanation also consider the ex-
plainer’s uncertainty about the values of some variables and/or about
the causal model and define explanation relative to the explainer’s
epistemic state (see, e.g., [Halpern and Pearl, 2005b; Miller, 2021;
Liu and Lorini, 2022] or [Halpern, 2016, Chapter 3]).

name PI-explanation in [Shih et al., 2018] and also called ab-
ductive explanation in [Ignatiev et al., 2019] following pre-
vious work on abduction [Marquis, 1991]; sufficient cause
and actual cause [Halpern and Pearl, 2005a]; sufficient con-
trastive cause [Miller, 2021]; NESS (Necessary Element of
a Sufficient Set) cause [Beckers, 2021b; Halpern, 2008]; di-
rect/weak/strong sufficiency [Beckers, 2021a].

Some of these notions rely on prime implicant (PI), while
the others rely on causal intervention (CI). We call the PI-
family the former and the CI-family the latter. Ignatiev et
al.’s abductive explanation (AXp) and Darwiche & Hirth’s
sufficient reason are representative of the PI-family, while
Halpern & Pearl (H&P)’s sufficient cause and actual cause
are representative of the CI-family. Complexity analyses for
notions in the CI-family, actual cause in particular, can be
found in [Eiter and Lukasiewicz, 2002; Gladyshev et al.,
2023]. The complexity analysis for the PI-family, especially
for abductive explanation, is much richer and depends on the
models to be explained ranging from tractable cases such as
monotone or linear classifiers [Marques-Silva et al., 2020;
Cooper and Marques-Silva, 2023; Audemard et al., 2020] to
intractable ones such as random forests [Izza and Marques-
Silva, 2021].

Greater attention has been paid by logicians to the CI-
family. In particular, several modal languages of interven-
tionist conditionals [Galles and Pearl, 1998; Halpern, 2000;
Halpern and Pearl, 2005a; Zhang, 2013] have been proposed
in the recent years that are particularly suited to expressing
sufficiency-based notions of explanation and cause belonging
to the CI-family. At the semantic level, they are interpreted by
means of so-called structural equation models (SEMs). Less
attention has been paid by logicians to the PI-family.

In the present paper we rebalance the analysis by introduc-
ing a novel modal language and semantics for causal reason-
ing i) which are general enough to handle notions of expla-
nation and cause from both families, and ii) which are well-
suited for formal verification. We consider ii) an essential
requirement given the urgent need to develop theoretically
well-founded algorithmic solutions for XAI applications.

Following [Lorini, 2023], at the semantic level we repre-
sent causal information using causal bases in propositional
form. The idea of replacing relational Kripke models with
knowledge bases, of which causal bases are a special case,
was also applied to epistemic logic in [Lorini, 2020]. Our
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semantics has a greater generality than the SEM semantics
for at least two reasons. First of all, unlike SEMs, in our se-
mantics there is no rigid distinction between endogenous and
exogenous variables which is fixed at the meta-level. Sec-
ondly, in our semantics causal information is not necessar-
ily represented in equational form. Thus, we can represent
incomplete information about the underlying causal model.
However, one can restrict to equational causal bases which
guarantee complete information about the causal model and
from which exogenous and endogenous variables as well as
causal graphs can be extracted.

Using these semantics we interpret a modal language
whose main constituent is a concept of conditional causal
necessity where the condition is a causal change operation
(causal necessity after a certain causal change operation has
taken place). An interesting aspect of the language is its mod-
ularity. We will show that the special case of conditional
causal necessity (causal necessity under no causal change) is
captured by a standard S5-modality and is sufficient to cap-
ture the notion of abductive explanation belonging to the PI-
family. We will moreover show that to capture H&P’s notion
of actual cause belonging to the CI-family, one has to con-
dition causal necessity to causal operations corresponding to
interventions.

The paper is organized as follows. In Section 2 we intro-
duce our semantics and modal language. In Section 3 we
show how to use the language to represent causal notions in-
cluding abductive explanation, causal necessity post interven-
tion and H&P’s actual cause. In Section 4 we present a model
checking algorithm for our language based on a polysize re-
duction to QBF. We illustrate its implementation on an exam-
ple by providing some experimental results on computation
time.

2 Logical Framework
In this section, we present our logical framework for causal
reasoning. We first present its semantics in which states in
a model include causal information represented in proposi-
tional form. Then, we introduce our causal language and in-
terpret it using the semantics. The novel aspect of our lan-
guage is a new family of conditional causal necessity opera-
tors that generalize the S5-modal operator of (unconditional)
causal necessity presented in [Lorini, 2023].2 Finally, we
consider a subclass of states, so-called equational states, in
which causal information is represented in equational form.
Equational states are needed to be able to relate our analysis
of actual cause to H&P’s analysis based on structural equa-
tional models (SEMs).

2.1 Semantics
Let P be a infinite countable set of atomic propositions whose
elements are noted p, q, . . . We note LPROP the proposi-
tional language built from P. Elements of LPROP are noted
ω, ω′, . . . Given ω ∈ LPROP, we note with P(ω) the set of
atomic propositions occurring in ω. Moreover, ifX ⊆ LPROP

then P(X) =
⋃

ω∈X P(ω).
2The idea of using the basic modal logic S5 for modeling causal

necessity traces back to [Burks, 1951].

The following definition introduces the concept of state,
namely, a causal base supplemented with a propositional val-
uation that is compatible with it.
Definition 1 (State). A state is a pair S = (C, V ), where
C ⊆ LPROP is a causal base, and V ⊆ P is a valuation such
that ∀ω ∈ C, V |= ω. The set of all states is noted S. A state
S = (C, V ) is said to be finite if both C and V are finite.

The valuation V represents the actual environment (or situ-
ation), whileC represents the base of causal information (viz.
the causal base). It is assumed that the former is compatible
with the latter, that is, if ω is included in the actual causal base
(i.e., ω ∈ C) then it should be true in the actual environment
(i.e., V |= ω). The following example illustrates the notion
of state.
Example 1. There is a group of agents J = {1, . . . , n} with
n > 2 who are writing a paper together. Two solutions are
taken into consideration: submitting the paper to a presti-
gious conference (co), or to a small workshop with no pub-
lished proceedings (¬co). Each agent i in J can invest either
a large (lt i) or a small (¬lt i) amount of time in the collabora-
tion. Whether the paper will be readable (re) or not (¬re) and
of high (hq) or low (¬hq) quality depends on how much time
the agents invest in the collaboration. Moreover, whether the
paper will be accepted (ac) depends on its quality, readil-
ity and to which event is submitted. In particular, the actual
causal base C0 includes the following four pieces informa-
tion: i) the paper will be of high quality if and only if at least
two agents in the group invest a large amount of time in the
collaboration, ii) the paper will be readable if and only if at
least one agent in the group invests a large amount of time in
the collaboration, iii) if the paper is submitted to the presti-
gious conference then it will be accepted only if it is of high
quality, iv) if the paper is submitted to the small workshop
then it will be accepted if and only if it is readable. Thus,
there is incomplete information about the underlying causal
model: a non-deterministic component is involved since high
quality is not a guarantee of acceptance at a prestigious con-
ference. That is, C0 = {ω1, ω2, ω3, ω4} with

ω1
def
= hq ↔

∨
i,j∈J:i̸=j

(lt i ∧ ltj),

ω2
def
= re ↔

∨
i∈J

lt i,

ω3
def
= co → (ac → hq),

ω4
def
= ¬co →

(
re ↔ ac).

We suppose in the current situation only the first agent invests
a large amount of time in the collaboration. Moreover, the
resulting paper turns out to be readable. It is submitted to the
small workshop and is accepted. That is,

V0 = {lt1, re, ac}.
It is easy to verify that the valuation V0 is compatible with
the information of the causal base C0, i.e., V0 |= ωk for every
k ∈ {1, . . . , 4}. Thus, S0 = (C0, V0) is a state.

Let symbols +X and −X denote, respectively, the opera-
tion of expanding a causal base with the set of propositional

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3325



formulas X ⊆ LPROP and the operation of retracting the set
of propositional formulas X ⊆ LPROP from a causal base.
We call them atomic causal change operations, or simply
atomic operations. We note O the set of (possibly empty) se-
quences of atomic operations and π, π′, . . . its elements. We
note ⋏ the empty sequence. Elements of O are generically
called causal change operations, or simply operations.

The following definition introduces the concept of con-
ditional causal compatibility, namely, compatibility between
two states conditioned on a certain causal change operation.

Definition 2 (Causal compatibility relation). Let π ∈ O and
S = (C, V ), S′ = (C ′, V ′) ∈ S. Then, SRπS

′ if and only if
C ′ = Cπ where Cπ is defined by induction on π:

C⋏ = C,

C+Xπ = (C ∪X)π,

C−Xπ = (C \X)π.

Note that causal compatibility between two states S and S′

does not depend on their valuations V and V ′. SRπS
′ means

that state S′ is causally compatible with state S conditionally
on the operation π (or after the operation π has taken place).

Let us go back to Example 1 to illustrate the causal com-
patibility relation.

Example 2 (cont.). The operation

π0 = −{ω4}+ {ω5}

with ω5
def
= ¬co → (hq ↔ ac) replaces the causal

rule ω4 with the more demanding rule ω5 which restricts
acceptance at the workshop to high quality papers. We
have that S0Rπ0

S1 with S1 = (C1, V1) such that C1 =
{ω1, ω2, ω3, ω5} and V1 = ∅. This means that state S1 is
causally compatible with state S0 conditionally on the causal
change operation π0.

2.2 Languages
The following definition introduces our modal language for
causal reasoning.

Definition 3 (Language). We structure the language in two
layers:

LCI
def
= α ::= p | ⊤ | ¬α | α ∧ α | △ω,

LCICN
def
= φ ::= α | ¬φ | φ ∧ φ | □πφ,

where p ranges over P, ω ranges over LPROP and π ranges
over O.

Operators ⊤, ⊥, ∨, → and ↔ are defined as usual ab-
breviations. The dual of □π is defined, as usual, as ♢πφ

def
=

¬□π¬φ.

We call LCI the language of causal information and LCICN

the language of causal information and conditional (causal)
necessity.

Formula △ω has to be read “the information ω is in the
actual causal base”, while formula □πφ has to be read “it is
causally necessary that φ conditional on the causal change
operation π” or “if the causal change operation π occurred,

it would be causally necessary that φ”. The operator □⋏ is
the operator of unconditional causal necessity, namely, causal
necessity relative to the actual causal base (when no causal
change operation takes place). It was already presented in
[Lorini, 2023]. For notational convenience, we abbreviate
□φ

def
= □⋏φ.

For notational convenience, we define the set of atomic for-
mulas:

Atm = P ∪ {△ω : ω ∈ LPROP}.

The following definition of model is needed to provide a
semantic interpretation of LCICN-formulas.

Definition 4 (Model). A model is a pair (S,U) such that S ∈
U ⊆ S. The set of models is noted M.

The component U is called context (or universe) of inter-
pretation.

The following definition introduces the satisfaction rela-
tion between models and formulas of the language LCICN.
(We omit semantic interpretations for the Boolean connec-
tives ¬,∧ and for ⊤ since they are defined in the usual way.)

Definition 5 (Satisfaction relation). Let (S,U) ∈ M with
S = (C, V ). Then,

(S,U) |= p iff p ∈ V,

(S,U) |= △ω iff ω ∈ C,

(S,U) |= □πφ iff for all S′ ∈ U, if SRπS
′

then (S′, U) |= φ.

Note thatU in Definition 4 can be any (possibly infinite) set
of states with no restriction on the information that is included
in a causal base. Nonetheless, in some cases it is useful to
restrict to models in which causal bases are constructed from
a finite repository of relevant information Γ ⊆ LPROP. This
leads to the following definition of Γ-model.

Definition 6 (Γ-model). The model (S,U) is said to be a Γ-
model if S ∈ U = SΓ, with SΓ = {(C, V ) ∈ S : C ⊆ Γ}.

Restricting to Γ-models does not limit generality. Indeed,
as the following theorem highlights, a formula φ is true at a
given model iff it is true at the corresponding submodel in
which causal bases can only be constructed from the infor-
mation in the actual causal base and the relevant information
about causal change which is contained in φ.

Theorem 7. Let φ ∈ LCICN and (S,U) ∈ M with S =
(C, V ) ∈ S. Then,

(S,U) |= φ iff (S,U ∩ SΓS,φ
) |= φ,

where ΓS,φ = C ∪ rlv(φ) and rlv : LCICN ∪ O −→ LPROP

such that

rlv(p) = rlv(⊤) = rlv(△ω) = rlv(⋏) = ∅,
rlv(¬φ) = rlv(φ),

rlv(φ ∧ ψ) = rlv(φ) ∪ rlv(ψ),

rlv(□πφ) = rlv(π) ∪ rlv(φ),

rlv(+Xπ) = rlv(−Xπ) = X ∪ rlv(π).
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Note that when U = S, from Theorem 7 we have that
(S,S) |= φ iff (S,SΓS,φ

) |= φ.
As the following theorem highlights, a formula is true at a

given model iff it is true at the model obtained from the initial
one by restricting valuations to the atoms in the formula.

Theorem 8. Let φ ∈ LCICN and (S,U) ∈ M. Then,

(S,U) |= φ iff (S|P(φ), U |P(φ)) |= φ,

where

U |P(φ) = {S′|P(φ) : S
′ ∈ U},

and for every S′ = (C ′, V ′) ∈ U

S′|P(φ) =
(
C ′, V ′ ∩

(
P(φ) ∪ P(C ′)

))
.

Theorem 7 and 8 together imply that a formula is true at
a given model iff it is true at the finite model obtained from
the initial one by i) restricting causal bases to the information
in the actual causal base and to the information about causal
change contained in the formula, and ii) restricting valuations
to the atoms in the formula. This kind of finite model property
is highligthed by the following corollary.

Corollary 9. Let φ ∈ LCICN and (S,U) ∈ M. Then,

(S,U) |= φ iff
(
S|P(φ), (U ∩ SΓS,φ

)|P(φ)

)
|= φ.

Let us continue with Example 2 to illustrate the semantic
interpretation of formulas as defined in Definition 5.

Example 3 (cont.). We consider the Γ0-model (S0,SΓ0) with

Γ0 =
{
ω1, ω2, ω3, ω4, ω5

}
,

where S0, ω1, ω2, ω3, ω4 and ω5 are defined as in Examples 1
and 2. We have:

(S0,SΓ0
) |= □

(
(lt1 ∧ ¬co) → ac

)
,

(S0,SΓ0) |= ¬□π0
(
(lt1 ∧ ¬co) → ac

)
,

(S0,SΓ0
) |= □π0

(
(lt1 ∧ lt2 ∧ ¬co) → ac

)
.

This means that in the actual causal model including the
causal rules ω1, ω2, ω3, ω4 if the first agent invests a large
amount of time in the collaboration, it will necessarily make
the paper accepted at the workshop. But, after the causal rule
ω4 is replaced by the more demanding causal rule ω5, the
first agent’s investment will no longer be sufficient to make
the paper accepted at the workshop. The investment of an
additional agent will be needed.

2.3 Equational States
The semantics for causal reasoning presented in Section 2.1
is very general since a causal base in a state can be any set of
propositional formulas. In [Lorini, 2023] a specific subclass
of state corresponding to structural equational models for bi-
nary variables is identified, the so-called class of equational
states whose causal bases can only include equational formu-
las. An equational formula for a proposition p is a propo-
sitional formula of the form p ↔ ω which unambiguously
specifies the truth value of p using a propositional formula ω

lt1 lt2 lt3

hq re co

ac

Figure 1: Causal graph for three agents (n = 3)

made of propositions other than p. We note LEQ the corre-
sponding set of equational formulas:

LEQ =
{
p↔ ω : p ∈ P, ω ∈ LPROP; and p ̸∈ P(ω)

}
.

For every p ∈ P, LEQ(p) is set of equational formulas for p.
An equational state is a finite state whose causal informa-

tion is expressed in equational form and which includes at
most one equational formula for each atomic proposition.
Definition 10 (Equational state). A state S = (C, V ) is said
to be in equational form if and only if C is finite, C ⊆ LEQ,
V ⊆ P(C) and

∀p ∈ P, ∀p↔ ω, p↔ ω′ ∈ C,ω = ω′.

The set of states in equational form, or equational states, is
noted SEq .

From an equational state S = (C, V ), it is straightforward
to extract its graphical counterpart. Specifically, given an
equational state S = (C, V ), we can extract the causal graph
GS =

(
NS ,PS

)
with NS = P+(C) and where the causal

parent function PS : N −→ 2N is defined as follows, for
every p ∈ N :

(i) PS(p) = P+(ω) if ∃ω ∈ LPROP

(
P \ {p}

)
s.t. p↔ ω ∈ C,

(ii) PS(p) = ∅ otherwise,

where P+(ω) = P(ω)∪{⊤} if ⊤ occurs in ω, P+(ω) = P(ω)
if ⊤ does not occur in ω, and P+(C) =

⋃
ω∈C P+(ω).

Moreover, an equational state S allows us to distinguish the
set of exogenous variables exo(S) from the set of endogenous
ones end(S):

end(S) =
{
p ∈ P : PS(p) ̸= ∅

}
,

exo(S) = P(C) \ end(S).

Let us consider the following variant of Example 1 to illus-
trate the concept of equational state.
Example 4. We get rid of the non-deterministic aspect of Ex-
ample 1 by replacing the causal rules ω3 and ω4 with the
following causal rule ω6:

ω6
def
= ac ↔

(
(¬co ∧ re) ∨ (co ∧ hq)

)
.

According to ω6, the paper resulting from the agents’ collab-
oration will be accepted if and only if either it is submitted to
the workshop and is readable or it is submitted to the confer-
ence and is of high quality. The state S′

0 = (C ′
0, V

′
0) such that

C0 = {ω1, ω2, ω6} and V0 = {lt1, re, ac} is an equational
state whose causal graph for the 3-agent case (n = 3) is il-
lustrated in Figure 1. Note that the causal graph is acyclic, it
is a DAG.
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3 Conceptual Analysis
This section is devoted to discussing some concepts that play
an important role in explanation. All concepts we consider
can be seen as binary predicates whose first argument is the
explanans (or the causing fact) and second argument is the
explanandum (or the caused fact). We assume the explanans
is always a term, namely, a non-empty conjunction of liter-
als in which a propositional variable can occur at most once,
while the explanandum can be any formula. We note Term
the set of terms and λ, λ′, . . . its elements. Given a non-empty
Z ⊆ P, we note TermZ the set of terms built from the vari-
ables in Z. Given λ, λ′ ∈ Term , with a bit of abuse of nota-
tion, we write λ′ ⊆ λ (resp. λ′ ⊂ λ) to mean that the set of
literals appearing in λ′ is a subset (resp. strict subset) of the
set of literals appearing in λ.

3.1 Abductive Explanation
Following [Ignatiev et al., 2019], we define abductive expla-
nation (AXp) from the concept of prime implicant. The term
λ is said to be a prime implicant of φ (i.e., PImp(λ, φ)) if,
necessarily λ entails φ and there is no λ′ ⊂ λ such that λ′ en-
tails φ. Moreover, λ is said to be an abductive explanation of
φ (i.e., AXp(λ, φ)) if it is a prime implicant of φ and is actu-
ally true. Both concepts are definable using the S5-modality
□.3 Let λ ̸= φ, then

PImp(λ, φ)
def
= □(λ→ φ) ∧

∧
λ′⊂λ

¬□(λ′ → φ).

Furthermore,

AXp(λ, φ)
def
= λ ∧ PImp(λ, φ).

Let us continue Example 3 to illustrate the concept of ab-
ductive explanation.
Example 5 (cont.). Let the model (S0,SΓ0

) be defined as in
Examples 1 and 3. We have:

(S0,SΓ0
) |= AXp(lt1 ∧ ¬co, ac). (1)

This means that at model (S0,SΓ0
) the fact the first agent

invests a large amount of time in the collaboration and the
paper is submitted to the workshop abductively explains the
fact that the paper is accepted.

The following proposition provides a dynamic character-
ization of prime implicant and abductive explanation, when
the explanandum is a propositional formula and the model
contains all states.
Proposition 1. Let λ ∈ Term , ω ∈ LPROP and (S,S) ∈ M.
Then,

(S,S) |= PImp(λ, ω) ↔
(
□πλω ∧

∧
λ′⊂λ

¬□πλ′ω
)
,

(S,S) |= AXp(λ, ω) ↔
(
λ ∧□πλω ∧

∧
λ′⊂λ

¬□πλ′ω
)
,

where, for every λ ∈ Term ,

πλ
def
= +{p ∈ P : p ⊆ λ}+ {q ∈ P : ¬q ⊆ λ}.

3See also [Liu and Lorini, 2023] for a formal analysis of abduc-
tive, contrastive and counterfactual explanation of classifier systems
based on the modal logic S5.

3.2 Causal Necessity Post Intervention
In this section, we define a new modality capturing causal
necessity after intervention. We see an atomic intervention on
a variable p as an event of type p = ⊤ or p = ⊥. A complex
intervention is a finite set of atomic interventions with at most
one atomic intervention for each variable. We define the set
of complex interventions as follows:

Int =
{
{p1 = τ1, . . . , pk = τk} : ∀1 ≤ k′, k′′ ≤ k, if k′ ̸= k′′

then pk′ ̸= pk′′ and τ1, . . . , τk ∈ {0, 1}
}
.

Elements of Int are noted E,E′, . . . Given {p1 =
τ1, . . . , pk = τk} ∈ Int , we define its corresponding set of
equational formulas

eq(E) = {p↔ ⊤ : p = 1 ∈ E} ∪ {p↔ ⊥ : p = 0 ∈ E},

as well as its corresponding conjunction over variables:

Ê =
∧

p=1∈E

p ∧
∧

p=0∈E

¬p.

For every finite set of atomic propositions Z ⊆ P, we note
IntZ the set of interventions for Z, that is,

IntZ =
{
E ∈ Int :(∀p ∈ Z, p = ⊤ ∈ E or p = ⊥ ∈ E) and

(∀p ̸∈ Z, p = ⊤ ̸∈ E and p = ⊥ ̸∈ E)
}
.

At the semantic level, a local intervention p = τ replaces
any equational formula for p in a causal base by the equa-
tional formula p↔ τ .

We can now define a modal operator of causal necessity
post intervention E parameterized by a set of propositional
formulas X:

[E,X]φ
def
= □πE,Xφ

with

πE,X
def
=

(
−

⋃
p∈P(eq(E))

(
LEQ(p) ∩X

))
+ eq(E).

[E,X]φ has to be read “φ necessarily holds after the
intervention E relative to the causal base X”. Notice
π{p1=τ1,...,pk=τk},X is the operation that replaces all equa-
tional formulas for the variables p1, . . . , pk in the causal base
X by the new equational formulas p1 ↔ τ1, . . . , pk ↔ τk.

In the next section, we will use the operator [E,X] to define
the notion of actual cause.

3.3 Actual Cause
In this section, we deal with the concept of actual cause based
on Halpern & Pearl’s definition [Halpern and Pearl, 2001;
Halpern and Pearl, 2005a]. We rely on the most recent formu-
lation of this concept given in [Halpern, 2015]. We are going
to show that the problem of checking whether a fact λ is the
actual cause of another fact φ can be formulated as a model
checking problem relative to an equational state.

Following Halpern, we say that λ is the actual cause of φ
if i) both λ and φ are true, ii) it is possible to intervene on the
endogenous variables in λ, while fixing by intervention the
values of some endogenous variables that are not in λ, such
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that if the value of the exogenous variables do not change φ
will be necessarily false, and iii) there is no λ′ ⊂ λ for which
ii) holds. This notion of actual cause is only definable relative
to equational states since it requires to distinguish exogenous
from endogenous variables.
Definition 11 (Actual cause). Let S = (C, V ) ∈ SEq , U ⊆ S
and λ ∈ Termend(S). We say λ is an actual cause of φ at
(S,U) if the following holds:

(S,U) |= λ ∧ φ ∧ But(S, λ, φ) ∧
∧

λ′⊂λ

¬But(S, λ′, φ),

where

But(S, λ, φ)
def
=

∨
Z⊆end(S),
Z∩P(λ)=∅,
E∈IntP(λ),

E′∈IntZ

(
Ê′ ∧ [E ∪ E′,C]

(
λexoS → ¬φ

))

and
λexoS =

∧
p∈exo(S)∩V

p ∧
∧

p∈exo(S)\V

¬p.

Note that, in line with Halpern, we assume that the cause λ
is built from the endogenous variables.

The conjunct λ ∧ φ ∧ But(S, λ, φ) in the definition cap-
tures the notion of sufficient cause. Together with the con-
junct

∧
λ′⊂λ ¬But(S, λ′, φ) it makes actual cause to coincide

with minimal sufficient cause.
The following example is a classic in the literature on for-

mal models of causality. We use it to illustrate the previous
definition.
Example 6. Suzy and Billy throw rocks at a bottle. There is
an asymmetry between them. Suzy is stronger than Billy so
that, if she throws her rock, her rock will get at the bottle first,
shattering it and preventing Billy from hitting it with his rock.
This means that i) Suzy throws her rock (st) iff she decides to
do so (sd ), ii) Billy throws his rock (bt) iff he decides to do so
(bd ), iii) Suzy hits the bottle (sh) if and only if she throws her
rock (st), iv) Billy hits the bottle (bh) if and only if he throws
his rock (bt) while Suzy does not hit the bottle (¬sh), v) the
bottle is shattered (bs) if and only if either Billy or Suzy hits
it. Thus, the causal base can be described as follows:

C0 =
{
st ↔ sd , bt ↔ bd ,

sh ↔ st , bh ↔ (bt ∧ ¬sh), bs ↔ (sh ∨ bh)
}
.

We suppose we are in the situation in which both Billy and
Suzy decide to throw their rocks:

V0 =
{
bd , sd , bt , st , sh, bs

}
.

We define S0 = (C0, V0).
We suppose the universe U0 includes all states whose

causal bases are closed under C0 and all possible rules that
can be added to the causal base through an intervention on
the variables of the problem. That is, we consider the uni-
verse SΓ0 with

Γ0 = C0 ∪
⋃

p∈{bd,sd,bt,st,bh,sh,bs},
τ∈{0,1}

{p↔ τ}.

We have that:

• st is an actual cause of bs at (S0,SΓ0),

• bt is not an actual cause of bs at (S0,SΓ0
).

In his analysis of actual cause, Halpern restricts to acyclic
causal models, namely, causal models in which dependency
relations between variables contain no cycles. Following
Halpern, we consider equational states whose induced causal
graphs are DAGs. As the following proposition highlights,
in such states once the values of the exogenous variables and
of the irrelevant variables are fixed, there is a unique solution
after an intervention.
Proposition 2. Let S = (C, V ) be an equational state such
that its causal graphGS is a DAG and letE ∈ IntZ for some
Z ⊆ end(S). Then, there is a unique S′ = (C ′, V ′) such that

SRπE,C
S′

and

V ∩
(
exo(S) ∪

(
P \ P(C)

))
= V ′ ∩

(
exo(S) ∪

(
P \ P(C)

))
.

We denote with SE such a unique state.
Proposition 2 turns out to be crucial for proving the follow-

ing theorem.
Theorem 12. Let S = (C, V ) be an equational state such
that its causal graph GS is a DAG, λ ∈ Termend(S) and
P(ω) ⊆ P(S). We have (S,S) |= But(S, λ, ω) iff

∃E ∈ IntP(λ), ∃Z ⊆ end(S), ∃E′ ∈ IntZ such that

Z ∩ P(λ) = ∅, (S,S) |= Ê′ and

(SE∪E′
,S) |= ¬ω.

Theorem 12 highlights that in the case of acyclic causal
structures the construction But(S, λ, ω) correctly captures the
“but-for” clause, the core part of Halpern’s definition of actual
cause. In particular, according to Theorem 12, it is possible
to intervene on the endogenous variables in λ, while fixing by
intervention the values of some endogenous variables that are
not in λ, such that the unique state resulting from these inter-
ventions in the which the values of the exogenous variables
have not changed makes φ false.

4 Model Checking
In this section, we define model checking over finite Γ-
models (Definition 6).
Definition 13 (Model checking).
input: a finite vocabulary Γ, a finite state S0 ∈ SΓ, and a

formula φ0 ∈ L.

output: yes if (S0,SΓ) |= φ0; no otherwise.
To be able to provide an efficient algorithm, we use a trans-

lation to Quantified Boolean Formulas (QBF).
Let Γ and φ0 be given. The setW of relevant sub-formulas

is defined as follows: W = P(φ0) ∪ P(Γ) ∪ {△ω | ω ∈ Γ}.
A set of fresh propositional variables is defined for each

state. That is, for each S ∈ SΓ, we have WS =
{xφ,S | φ ∈W}, where xφ,S is a fresh propositional variable
not appearing in Γ or φ0.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3329



Given an operation π, the sets of its expansions exp(π) and
its retractions ret(π) are defined recursively, as follows.

exp(π) =


∅, if π = ⋏
exp(π′) ∪X, if π = +Xπ′

exp(π′) \X, if π = −Xπ′

ret(π) =


∅, if π = ⋏
ret(π′) \X, if π = +Xπ′

ret(π′) ∪X, if π = −Xπ′

It should be clear that operation π is equivalent
to +exp(π)− ret(π), in the sense that SRπS

′ iff
SR+exp(π)− ret(π)S

′.
The translation of the model checking problem (S,U) |= φ

to QBF is recursively defined as follows.
Definition 14 (Translation).

tr(⊤, S) = ⊤
tr(p, S) = xp,S

tr(△α, S) =
{
x△α,S , if α ∈ Γ

⊥, otherwise

tr(¬φ, S) = ¬ tr(φ, S)

tr(φ1 ∧ φ2, S) = tr(φ1, S) ∧ tr(φ2, S)

tr(□πφ, S) = ∀WS′(Rπ
(S,S′) → tr(φ, S′))

with Rπ
(S,S′)

def
=

∧
α∈Γ f(α, π, S, S

′) and

f(α, π, S, S′) =


¬x△α,S′ , if α ∈ ret(π)

x△α,S′ ∧ tr(α, S′), if α ∈ exp(π)

(x△α,S ↔ x△α,S′)∧
(x△α,S → tr(α, S′)), otherwise

Intuitively, each fresh variable xp,S encodes the member-
ship of p to V , whereas x△α,S encodes the membership of
α to C. This means that each state S ∈ SΓ can be asso-
ciated with an element of 2WS , namely {xp,S | p ∈ V } ∪
{x△α,S | α ∈ C}. Therefore, we also have that formula
Rπ

(S,S′) encodes the membership of (S, S′) to the relation Rπ ,
as follows. If α is removed from the base of S, then △α is set
to false in S′. Similarly, if α is added to the base of S, then
△α is set to be true in S′. In the latter case, one must also
make sure that S′ is a state. Therefore, tr(α, S′) is also set to
be true at S′. In the third case, if α is not added nor removed,
then its truth value must remain the same in S′. In addition, in
the case where it is true, α must also be satisfied by S′. Also
note that the formulas △ω which are not in W are considered
to be false in the model. Therefore, the translation replaces
them with ⊥. The theorem below shows how the translation
is used to encode model checking.
Theorem 15. Let S = (C, V ) be a state in SΓ. (S,SΓ) |= φ
if and only if |=QBF ∀WS(DS → tr(φ, S)), where:

DS =
∧
α∈C

x△α,S∧
∧

α∈W\C

¬x△α,S∧
∧
p∈V

xp,S∧
∧

p∈W\V

¬xp,S

The following corollary is a direct consequence of Theo-
rem 15 and the fact that the translation tr is polynomial.

#agents 3 16 64 256
|P| 7 20 68 260
|W | = |P|+ |Γ0| 12 25 73 265

|SΓ| = 2|W | 4096 3.36e7 9.44e21 9.93e79
Exec. time (sec.) 0.0866 0.0891 0.1698 5.3242

Table 1: Symbolic model checker performance on Example 5.

Corollary 16. Model checking (Def. 13) is in PSPACE.

Note that, if the modal depth of φ is 1, we have only two
quantifiers on the formula of Theo. 15. Therefore, in this
case, model checking is in ΣP

2 . This is the case of most ex-
amples of causality found in the literature, including exam-
ples 1–5 and 6.

In order to verify the feasibility of the theoretical frame-
work, we implemented a symbolic model checker,4 which
uses the translation into QBF. The resulting QBF is then
translated into a binary decision diagram (BDD), similar to
what is done in [van Benthem et al., 2018]. The program
is implemented in Haskell and the BDD library used is Has-
CacBDD [Gattinger, 2023]. It was compiled with GHC 9.4.8
in a MacBook Air with a 1.6 GHz Dual-Core Intel Core
i5 processor and 16 GB of RAM, running macOS Sonoma
14.1.2.

Table 1 shows the performance of the symbolic model
checker on different instances of Example 5. Execution times
correspond to the elapsed time to perform (1). The number of
states (|SΓ|) gives an idea of the size of the search space for
formulas. In principle, to check a formula of the form □φ,
one must check φ in every state of the model. Because of
that, a naive implementation cannot be used.

5 Conclusion
We have presented a novel logical framework for causal rea-
soning in which causal information is represented through
propositional causal bases. At the language level, its main
constituent is a modality of causal necessity conditional on
the occurrence of a causal change operation. We have used
our language to express the notion of abductive explanation,
representative of the PI-family, and of actual cause, represen-
tative of the CI-family. We have provided a PSPACE model
checking procedure based on a polysize reduction to QBF and
shown how to exploit it to automatically verify properties of
explanations and causes. Our conjecture is that the model
checking problem defined in Section 4 is PSPACE-hard. This,
in conjunction with Corollary 16, would allow us to conclude
that it is PSPACE-complete. We believe PSPACE-hardness
is provable using a polysize reduction of the model checking
problem for the modal logic K interpreted using belief bases.
The latter problem was proved to be in PSPACE in [Lorini,
2019]. Future work will be devoted to proving this conjec-
ture. We also plan to extend our analysis to the notion of
NESS cause from the CI-family [Beckers, 2021b] and the no-
tion of agency analyzed in STIT theory [Belnap et al., 2001].

4Available: https://src.koda.cnrs.fr/tiago.de.lima/cmc/-/releases/
0.1.0.0
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