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Abstract

As of January 2023, there are more than 90,000
people on the national transplant waiting list in
need of a kidney in the United States. These pa-
tients often have a friend or family member who
is willing to donate, but whose kidney type might
not be compatible. To help match these patients to
suitable donors, patient-donor compatibility can be
modeled as a directed graph. Specifically, in the
Kidney Exchange problem, the input is a directed
graph G, a subset B of vertices (altruistic donors),
and two integers £, and £.. An altruistic donor is a
donor who is not paired with a patient, and the re-
maining vertices are patient-donor pairs. Whenever
a donor is compatible with a patient from a patient-
donor pair, we place a directed edge from the donor
vertex to the patient-donor pair. Here the donor ver-
tex can be either altruistic or non-altruistic. The
goal is to find a collection of vertex-disjoint cy-
cles and paths covering the maximum number of
patients such that each cycle has length at most ¢,
and such that each path has length at most £, and
begins at a vertex in 3. The path and cycle lengths
are bounded so that the surgeries for a given path or
cycle can be performed simultaneously.

Kidney Exchange has received a great deal of at-
tention in recent years. We contribute to this line of
work by closing two open problems from IJCAI ‘18
and IJCAI 22: “Is Kidney Exchange FPT when
parameterized by (i) the treewidth (w) of G and (ii)
the number of vertex types in G?” Two vertices
have the same vertex type if they have the same
in- and out-neighborhoods. We show that Kidney
Exchange is FPT parameterized by the number of
vertex types. On the other hand, we show W[1]-
hardness with respect to w. We also design a ran-
domized 4‘n®M-time algorithm parameterized by
t, the number of patients helped, significantly im-
proving upon the previous state of the art, which
was 161101,
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1 Introduction

Kidney disease is a critical problem that affects tens of thou-
sands of patients in the United States and hundreds of mil-
lions across the world [Saran et al., 2020; Kovesdy, 2022].
To avoid a lifetime of dialysis appointments, patients with
kidney failure generally join a waiting list to be matched
with a compatible donor and receive a transplant. Unfortu-
nately, the demand for kidney donations far exceeds the cur-
rent number of transplants. In the United States, for example,
about 40,000 people join the waiting list for a kidney trans-
plant each year; in comparison, only about 20,000 patients
find a match each year. This discrepancy has several impli-
cations. Naturally, the number of people on the waiting list
is continually increasing. From the year 1995 to the present
day, the number of people waiting for a kidney donor has
more than doubled, from approximately 42,000 to more than
90,000 [Walsh, 2021]. Because of this, waiting times have
become quite long. Currently, the median waiting time for
a kidney transplant (from a deceased donor) is 4.05 years in
the U.S. [Stewart et al., 2023]. To make matters worse, many
patients fail to ever find a match. Thousands of patients are
removed from the waiting list each year because they either
pass away or simply become too sick to undergo the surgery.

Patients in this scenario often have a friend or a family
member who is willing to donate a kidney (a paired donor);
however, this donor’s kidney type might not be compatible
with that of the patient. In 2000, the Kidney Paired Donation
(KPD) or Kidney Exchange program was introduced [Rapa-
port, 1986; Roth et al., 2004] to address this issue and in-
crease the number of patients who receive a transplant. KPD
is a centrally administered barter-exchange market for kidney
donations. A patient with an incompatible donor can partici-
pate in the market in the hope of exchanging their donor with
a compatible donor from another participating pair. Since its
inception, the popularity of KPD has grown, both in terms of
the number of participating pairs and in terms of the num-
ber of successful transplants. The program now operates
in several countries including the United States, the United
Kingdom, the Netherlands [Dickerson et al., 2016], and In-
dia [Pahwa et al., 2012]. With this program, patients have a
higher chance of finding a compatible donor, and some pa-
tients can also receive a higher-quality match. For example,
matching blood type and age can lead to a longer period of
healthy kidney functionality [Segev ef al., 2005]. KPD gives
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rise to a natural computational problem known as the kidney
exchange problem, in which the goal is to maximize the num-
ber of patients who receive a transplant.

The goal in kidney exchange is to find cycles or
chains/paths of compatible patient-donor pairs in order to
maximize the number of possible transplants. Therefore, an
instance of this problem can be represented as a directed
graph: each patient-donor pair is a vertex, and there is a di-
rected edge from a vertex v; to v; if the donor at v; is compat-
ible with the patient at v;. The length of a cycle (resp. path) is
defined as the number of edges in the cycle (resp. path). Each
patient that belongs to a cycle (resp. path) receives a compati-
ble kidney from the previous vertex on that cycle (resp. path).
All transplants from a particular cycle must be done simulta-
neously as each donor is under no obligation to donate once
their paired patient has received a kidney [Roth et al., 2005;
Mak-Hau, 2017]. Therefore, to manage the logistics simul-
taneous transplants, smaller cycles are required in many real-
life settings [Abraham er al., 2007; Manlove and O’Malley,
2015] including the United Network for Organ Sharing.

For a path to be feasible, it must begin with a donor hav-
ing no paired patient. We refer to such donors as altruistic
donors, and we refer to the corresponding vertices as altruis-
tic vertices. We can afford much longer paths compared to the
length of cycles [Ashlagi ef al., 2012; Dickerson et al., 2016]
as in some cases all of the transplants on a path need not be
done simultaneously [Anderson et al., 2015]. While sequen-
tially operating on a path, if a donor leaves the program im-
mediately after their paired patient receives a kidney, then in
the remainder of the tail no patient is worse off than they were
before joining the program. In particular, such patient-donor
pairs can re-enter the KPD program.

We now define the Kidney Exchange problem formally.
The input consists of a directed graph G = (V, A) known as
the compatibility graph (whose vertices are altruistic donors
and patient-donor pairs), integers £, and /., which denote the
maximum permissible length for a path or cycle in the solu-
tion, respectively, and a subset B C V), denoting the altruistic
vertices. The remaining set V' \ B contains the patient-donor
pairs. We have a directed edge (u,v) € A if the donor at
the vertex u € ) has a kidney compatible with the patient at
veV\B.

The length of a path (resp. cycle) is defined as the number
of edges on the path (resp. cycle). We say a path in G is
feasible if it starts at an altruistic vertex and has length at least
1 and at most £,; a cycle in G is feasible if it has length at
most £.. We say a path (resp. cycle) covers the non-altruistic
vertices (patients) that appear on that path (resp. cycle).

Kidney Exchange Problem (KEP)

Input: A directed graph G = (V,.A) with no self-loops,
an altruistic set B C V such that each vertex in B is a
source in G, and two nonnegative integers ¢, and £..
Goal: Find a set of vertex-disjoint feasible cycles and
feasible paths covering the maximum number of non-
altruistic vertices in G.

For the rest of the paper, we denote instances of KEP by
(G,B,¢,,¢.), and the number of vertices in G by n.

1.1 Previous Work on KEP and Our Contributions

Many variants of Kidney Exchange have been studied in re-
cent years, most of which boil down to finding a maximum
packing of cycles and paths in a directed graph [Akbarpour et
al., 2014; Ashlagi and Roth, 2014; Roth et al., 2005; Segev
et al., 2005]. Since this underlying combinatorial problem
is NP-hard, many variants of Kidney Exchange are known
to be NP-hard even for very restricted cases [Krivelevich er
al., 2007; Abraham et al., 2007; Biro et al., 2009]. To cope
with this NP-hardness, Kidney Exchange has been studied
through the lens of approximation algorithms [Jia et al., 2017,
Krivelevich ef al., 2007] and parameterized complexity [Xiao
and Wang, 2018; Maiti and Dey, 2022]. Our work focuses
on the latter, exploring the parameterized complexity of this
problem.

The Kidney Exchange problem (KEP) as described above
was first introduced in [Glorie et al., 2014]. For the spe-
cial case of KEP where £, and £, are unrestricted, [Xiao and
Wang, 2018] gave an algorithm with running time f(6)n®®),
where 6 is the number of vertex types in G (two vertices
have the same vertex type if they have the same in- and
out-neighborhoods') and f is a computable function of 6.
(Such an algorithm is known as an FPT algorithm param-
eterized by 6.) Subsequently, [Maiti and Dey, 2022] gave
a f(0)n°M time algorithm for instances of KEP where
£, < £, and posed as an open problem whether there exists
an f(0)n®M-time algorithm for KEP without any assump-
tions on ¢, {.. Additionally, [Maiti and Dey, 2022] obtain
a f(w + max{¢,, £.})n®M-time algorithm for KEP, where
w is the treewidth of G (a measure of the “treelikeness” of
G), and asked whether KEP can be solved in time f(w)n®®.
Finally, [Maiti and Dey, 2022] considered the number of pa-
tients helped (%) as a parameter, and gave an algorithm with
running time ~ 161tn°M),

In this work we make a step forwards towards a more com-
plete understanding of the parameterized complexity of KEP.
In particular, we prove the following results:

1. KEP admits a randomized algorithm with running time
4'n©M (Theorem 2). This improves over the ~
161'n°M) time algorithm of [Maiti and Dey, 2022].

2. KEP admits an algorithm with running time f(8)n®™
(Theorem 1). This generalizes the previous algorithms
of [Maiti and Dey, 2022; Xiao and Wang, 2018].

3. Unless FPT = W([1], KEP does not admit an algorithm
with running time f(w)n®®) (Theorem 3).
Our second and third result resolves two open problems of

[Maiti and Dey, 2022]. We note that we defer some of our
proofs (marked with %) to the supplementary material.

Other work on computing exact solutions: Apart from
the recent developments in parameterized algorithms, the
main approaches in the literature are based on Integer Lin-
ear Programming [Roth et al., 2007; Constantino e al., 2013;
Mak-Hau, 2017] and the branch and price approach [Barn-
hart et al., 1998; Plaut et al., 2016]. While these algorithms

"For undirected graphs, the number of types is also referred to as
“neighborhood diversity” in the literature [Lampis, 2012].
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are guaranteed to eventually find an optimal solution, no run-
ning time guarantees are given. Finally, [Xiao and Wang,
2018] gave a dynamic-programming-based algorithm run-
ning in time O(2"n?).

Motivation for studying the parameters 6, ¢, and w: Kid-
ney compatibility depends on a few health parameters such
as blood type and age. [Dickerson et al., 2017] observed
that in real-world Kidney Exchange instances, these take on
only few different values. Thus the number of vertex types
() in G is typically small. Our other parameters, the num-
ber ¢ of patients helped and the treewidth w of G, are well
studied parameters that have improved the understanding of
many well-known graph problems. These parameters, being
much smaller than n = |V(G)|, help us design algorithms
that are faster than the existing exact exponential time algo-
rithms, e.g., the O(2"n?) time algorithm by [Xiao and Wang,
2018]. All three parameters, ¢, § and w, have been studied in
the past for KEP and we continue this work.

2 Preliminaries

We represent by N the set of natural numbers including zero.
For k € N, we denote the set {1,2,...,k} by [k]. Given a
graph GG and a subset X C V(G), we denote the induced sub-
graph of G on X by G[X]. We say a partition of a multiset X’
into ¢ parts is a collection X7 U - - - U X} of non-overlapping,
possibly empty submultisets of X whose union is X'. These
multisets are non-overlapping in the following sense: for ev-
ery x € X, the multiplicity of x in & is equal to the sum over
1 of the multiplicity of z in &;.

The treewidth of an undirected graph is a measure of how
close the graph is to a tree. We refer the reader to [Cygan
et al., 2015] for a complete description of treewidth and tree
decompositions. Whenever we mention the treewidth of a
directed graph, we refer to the treewidth of the underlying
undirected graph. We say two vertices in G have the same
vertex type if they are (i) both altruistic or both non-altruistic
and (ii) have the same set of in-neighbors and out-neighbors.

Let G be an undirected simple graph (graph with no self-
loops and multi-edges). A vertex coloring of G using at most
¢ colors is a function from xy : V(G) — [c] such that for
each edge e = (u,v) € E(G), xv(u) # xv(v). Fora
vertex v in G, we refer to xy(v) as the color of the ver-
tex v. An edge coloring of G using at most ¢ colors is a
function from xg : E(G) — [c] such that for each pair of
distinct edges ey, e € F(G) having an common end point,
xe(e1) # xe(e2). For an edge ¢ in G, we refer to yg(e)
as the color of the edge e. We will use greedy coloring and
Vizing’s theorem [Lewis, 2015] to efficiently obtain a vertex
coloring and an edge coloring for our hardness result.

Now let H be a directed graph. A walk in H is a sequence
of vertices vy,vs,...,v, € V(H) such that there is a di-
rected edge from v; to vy forall 1 < ¢ < k—1. A
closed or cyclic walk in H is a walk such that v;1 = vg. In
other words, a walk is a path in which we are allowed to re-
peat vertices, and a closed walk is a cycle in which we are
allowed to repeat vertices. Closed walks with distinct starting
points are considered to be distinct: for example, the closed
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walk v1,v9,v3,v4,v1 is distinct from wg, v3, v4, V1, Vo, as-
suming the vertices vy, va, Vs, v4 are distinct.

3 FPT Algorithm Parameterized by 6

We fix an instance (G, B, {,, £.) of KEP. In this section, we
outline our FPT algorithm for KEP parameterized by 6, the
number of vertex types in G. Vertices of the same type form
an independent set since G has no self-loops?.

Theorem 1 (x). KEP admits an algorithm running in time

062 log 6) . .
22 0O where 0 is the number of vertex types in the

input graph G.
In our algorithm, we reduce the problem to an ILP with

few (~ 20(071020)) variables and use an existing [Lenstra Jr,
1983] FPT algorithm for |ILPs parameterized by the number
of variables.

Proposition 1 ([Lenstra Jr, 1983]). There is an algorithm for
computing a feasible as well as an optimal solution of an ILP
which is FPT by the number of variables t and runs in time
204t LOW) vphere L is the total number of bits required to
encode the ILP.

For our algorithm, we show that there exists an optimal
solution to the problem that can be represented succinctly.
We then design an ILP with few variables to find such a suc-
cinct representation of an optimal solution. The former is the
crux of our result. Due to space constraints, we now give
an overview of how to obtain this succinct representation and
briefly discuss the ILP. The precise ILP formulation and other
details are deferred to the supplementary material.

We first show how to represent a solution to KEP in terms
of the types in G. We introduce the quotient graph () to rep-
resent G in terms of the types in G. We relate paths (cycles)
in the solution to walks (cyclic walks) in () and extend this
relationship to solutions, which are sets of paths and cycles.

Definition 1. The quotient graph Q = (Vg, Ag,wqg) of G
is a directed graph with vertex weights given by wg : Vg —
Z*. Each vertex v € Vg represents a type in G, and the
weight wq (v) is the number of vertices of that type. There is
an arc from a vertex u to a vertex v in Aq if and only if there
is an arc from a type u vertex to a type v vertex in G. Let
Bg C Vg be the set of altruistic types.

We can succinctly represent a walk in G by recording how
many times it transitions between each pair of vertex types.
This is captured by the notion of configuration graphs.

Definition 2. A configuration graph® H = (Vi, Ag, wg)
of Q is an edge-weighted connected graph arc set with wyy :
Ay — L7 such that Vig C Vg and Ay C Ag.

The next definition captures configuration graphs that en-
code feasible paths and cycles in G.

2Qur result can also be extended to allow types that are cliques
(for the case with self-loops), but we give an algorithm for the case
with only independent sets for ease of exposition.

3This is slightly different from the definition in the supplemen-
tary material for ease of exposition.
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Definition 3. A configuration graph H is path-feasible
(cycle-feasible) if there is a feasible path (cycle) R in G
that only uses vertex types from Vi, such that for each
e = (s,t) € Apn, R contains exactly wy (e) arcs from ver-
tices of type s to vertices of type t. We say such an R realizes
H and denote the configuration realized by R by H(R).

Observe that every path (cycle) R in G realizes the unique
configuration H(R), but a configuration can be realized by
multiple paths (cycles) covering the same set of vertices in
G. Furthermore, a configuration can either be path-feasible or
cycle-feasible but not both. One can use Eulerian paths (cy-
cles) to identify path-feasible (cycle feasible) configurations.

An Eulerian path (Eulerian cycle) of an edge weighted di-
rected graph G with weight function w : A(G) — Z* on the
arc set of GG is a walk (cyclic walk) in G that travels through
every edge e in G exactly w(e) times. An Eulerian path starts
and ends at different vertices in GG. The existence of an Eule-
rian path or Eulerian cycle in G can be verified by checking
the connectivity of G and the weighted degrees of each vertex
in G. There exists an Eulerian cycle in G if and only if G is
connected and for each vertex in G, its weighted in-degree is
equal to its weighted out-degree. A slightly modified check
can be done for Eulerian paths too.

Lemma 1 (x). Let H be a configuration graph of Q. H is
path-feasible if and only if H contains an Eulerian path of
length at most £,, that starts at an altruistic type and in which
each vertex v € Vi occurs at most wg (v) times. H is cycle-
feasible if and only if H contains an Eulerian cycle of length
at most L. in which each vertex v € Vi repeats at most wg(v)
times.

We note that we will have degree constraints in our ILP to
check the Eulerian property of configuration graphs, in turn
checking the feasibility of paths and cycles by Lemma 1. We
are now ready to define how to represent solutions in terms of
configuration graphs.

Definition 4. The configuration multiset of a solution S to
the instance (G, B, Ly, ;) is the multiset H(S) = {H(R) :
R € S} of configuration graphs realized by the paths and
cyclesin S.

Observe that for a solution S, |7 (S)| can be much larger
than 6, and can even be as large as O(n). So we still need to
find a way to express solutions more succinctly.

We define an edge e in a configuration graph H to be light
if 0 < wg(e) < 20, medium if 20 < wg(e) < 63, and
heavy if wy(e) > 63. It would be nice if there always ex-
ist an optimal solution S whose configuration multiset H(.5)
only contained configuration graphs with light and medium
edges. There are only few (~ f(6)) such configurations
graphs in total and we can fairly easily construct an ILP with
few variables to find such a solution. Unfortunately there ex-
ist instances for which such an optimal solution does not ex-
ist. We now develop tools to handle heavy edges.

Definition 5. A cycle in H is called non-light if it does not
contain any light edges. Based on the number of non-light
cycles in H, we call H a 0-NL, 1-NL or >1-NL configuration.
If H is 1-NL then we denote the unique non-light cycle in H
by C(H).
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In Definition 5 the number of non-light cycles refers to the
number of distinct non-light cycles in H. We do not care
whether these cycles overlap or not.

Lemma 2. Every heavy edge in a path-feasible (cycle-
feasible) configuration belongs to a non-light cycle.

Proof. Let H be a path-feasible (cycle-feasible) configura-
tion and let ¢ = (u,v) be a heavy edge in Ay. Recall that
by Definition 2, w(e) > 63. Suppose e does not belong to a
non-light cycle. Then each path from v to u contains a light
edge, which by definition has weight less than 26. Further-
more, there can be at most (g) light edges in H. Thus there is
an edge cut S from v to u having weight w(S) < 63. H con-
tains an Eulerian path (cycle) R because H is path-feasible
(cycle-feasible). Then R \ S is a disjoint union of |S| — 1
walks. But since w(S) — 1 < 63 and w(e) > 63, one of these
walks uses the edge e at least two times. Thus the walk con-
tains a subwalk from v to u disjoint from .S. This contradicts
that S cuts u from v. O

Lemma 2 immediately implies the following corollary.
Corollary 1. 0-NL configurations have no heavy edges.

A cycle C'in @ is a common cycle of two configurations H
and H' of Q if C'is a cycle in both H and H'. C'is a common
non-light cycle in H and H' if C' is a common cycle of H
and H' and it is non-light in both H and H'. The following
Lemma helps bound the number of >1-NL configurations.

Lemma 3 (x). There exists an optimal solution S to
(G,B,l,,L.) such that for every Ri,Ry € S, H(R1) and
H(R3) do not contain more than one common non-light cy-
cle. Furthermore, there are at most 2291°2(9) > _NL configu-
rations in H(S).

Let S* be an optimal solution as provided by Lemma 3. We
can represent S* using H(S*), the configuration multiset of
S*. However we want to find a way to represent S* succinctly
so that we can design an ILP with few variables that can find
it. Configurations in #(S*) can be partitioned into 0-NL,
1-NL and >;-NL configurations. We first discuss how we
handle 0-NL and >1-NL configurations in H(S*).

There are at most 20(9*1086) (_NL configurations — by

Definition 2 and Corollary 1, each such configuration H has
no heavy edges and has a subgraph of the quotient graph as its
underlying graph (V, Ag). Let Fy be the set of all path- or
cycle-feasible 0-NL configurations. |F| < 2067 1080) and
so we can represent all 0-NL configurations in H(S*) suc-
cinctly by using a function hg : Fo — Z* where ho(H) is
the number of occurrences of H in H(S*). In the ILP we
construct, we will have a nonnegative variable to compute
this count for each H € Fy.

Let F~1 be the set of all path- or cycle-feasible >1-NL con-
figurations. There can be many >1-NL configurations since
they have heavy edges, so we cannot use the trick we had for
0-NL configurations. Let O := {Gg = (Vy,An) : H €
H(S*) N Fs, } be the set of underlying graphs of all >;-NL
configurations in H(S*). We can enumerate all of O because
there are at most 22¢1°8(9) > _NL configurations in #(S*)
by the definition of S*. Then for each Gy = (Vy, Ay) € O
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and each arc e € Ay, we will have a nonzero variable for the
weight wy (e) of e in the ILP. Furthermore, to check feasibil-
ity of the configurations, we will add constraints in the ILP to
ensure that the conditions of Lemma 1 hold.

Let F be the set of all path- or cycle-feasible 1-NL con-
figurations and let F] be the set of 1-NL configurations with
edge weight at most 2. We now handle 1-NL configurations
in H(S*) which can potentially be many. We obtain a suc-
cinct representation for these configurations using F7.

Given a nonnegative integer x and a 1-NL configuration
H' € F{, we define the z-derived configuration of H’ to be
the configuration obtained from H’ by adding weight z to
each edge e on the non-light cycle C'(H'). We then show
that every 1-NL path(cycle)-feasible configuration H is the
x-derived configuration of some H’ € F| and some z > 0
— to prove this we use the Eulerian property of the feasible
configuration H (Lemma 1) and the fact that all heavy edges
in H lie on the unique non-light cycle C(H) (Lemma 2).

Next we partition all the 1-NL configurations in H (S*) into
groups U e 7/ Sy based on which configuration H' € Fj
they can be derived from. If a configuration can be derived
from many configurations H' € F], we arbitrarily select one
such H' € F and add H' to Sp.

Finally we represent each group Sp/ in the partition by
a triple containing - (i) the configuration H’ € ] that
the part corresponds to, (ii) |Sy/| and (iii) the sum ¢

> z. In the ILP we will add two variables to

HeSy
2 €N: H is a-derived from H'

find | Sy | and ¢ for each group Syv. Lastly in the ILP we
will also add constraints to ensure the number of vertices of
each type used in the solution does not exceed the number of
vertices of each type in G.

O(0logh) .
In total, we solve at most 22 *” instances of our ILP,

each having 20(0*1029) variables. Using Proposition 1, our

. . L 0(62 log ) .
algorithm will run in time 22 *TnOM We formalize

this discussion and provide our ILP formulation and algo-
rithm in the supplementary material.

4 Faster FPT Algorithm Parameterized by ¢

In this section, we describe a randomized FPT algorithm
for KEP parameterized by ¢, the number of patients (i.e.,
non-altruistic vertices) covered. This algorithm runs in time
O*(4%), where the O* notation suppresses polynomial fac-
tors. Since self-loops do not cause any complications in this
algorithm, we write this section in a way that allows G to have
self-loops.

If £, > t and G contains a path of length ¢, then we im-
mediately have a solution to our problem. The same is true if
£. > t and G contains a cycle of length ¢, where t < ¢ < /..
Therefore, we begin by checking whether G contains such a
path or cycle. This can be done in randomized time O*(4%)
[Williams, 2009; Zehavi, 2016].* For the remainder of our al-

*The algorithm in [Zehavi, 2016] is designed to detect a cycle of
length at least ¢t. However, with the following very simple modifica-
tion, we can use that algorithm to detect a cycle of length ¢, where
t < ¢ < L. In[Zehavi, 2016], line 6 of Algorithm 1, which says “if
the path P’ exists then Accept,” should be modified to “if the path
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gorithm, we update ¢, and ¢, to the values min{¢,,¢—1} and
min{¢.,t — 1}, respectively, and thus we can assume ¢, < ¢
and ¢, < t. This first step is similar to [Maiti and Dey, 2022].

In our algorithm, we will work with formal polynomials
that have no coefficients. This means we simply think of a
polynomial as a string composed of the characters, ‘+’, ‘x’,
and the characters representing the variables. If = and y are
variables, we abbreviate the string = X y as xy, and we ab-
breviate the string z X x X --- X x, where there are k copies
of z, as z*. We do not plug in values for the variables; each
variable is only a symbol. From now on, we will refer to a for-
mal polynomial without coefficients as simply a polynomial,
since all of our polynomials will be of that form.

Definition 6. Suppose P(x1,...,x,) is a polynomial. A
multilinear term in P is a term (monomial) that is a product
of distinct variables.

For example, in the polynomial P(xy,x5) = x129 + 231,
the term ;x5 is multilinear, but x%xz is not. It is also impor-
tant to note that in our formal polynomials, addition is com-
mutative, but multiplication is not. For instance, 1 + x2 =
To + x1, but x1x9 # T,

The key idea of our algorithm is as follows: We construct
a polynomial P, that contains a multilinear term if and only
if there is a solution covering at least ¢ patients, and then we
check whether P, contains a multilinear term using the fol-
lowing result (Theorem 3.1 in [Williams, 2009]).

Proposition 2. There is a randomized algorithm that takes as
input a polynomial P(x1,...,x,) of degree at most k, rep-
resented by an arithmetic circuit of size s(n) with + gates
(of unbounded fan-in), x gates (of fan-in two), and no scalar
multiplications. This algorithm outputs yes with high prob-
ability (at least %) if there is a multilinear term in the sum-
product expansion of P, and always outputs no if there is no
multilinear term. The algorithm runs in time O*(2¥s(n)).

Upon reading the proof of Proposition 2, it becomes appar-
ent that this algorithm only distinguishes between the follow-
ing two cases:

1. There is no multilinear term in P(z1,...,z,),

2. There exists a multilinear term that appears exactly once
in P(x1,...,25).

This is usually not an issue because for many problems,
the polynomial that one would naturally construct has no re-
peating terms (for example, in the case of k-path [Williams,
2009]). However, for KEP one must be slightly more care-
ful, since in this case a solution can consist of multiple paths
and cycles, and thus there can be distinct solutions that cor-
respond to the same list of vertices, in the same order. There-
fore, we will take care to construct a polynomial that has no
repeating terms. To apply Proposition 2, we describe a poly-
nomial P; of degree at most 2¢ that can be represented by
a circuit of size O(t*n3). Once we have constructed such a
polynomial, Proposition 2 immediately yields the following
theorem. Recall that a solution to KEP is a set of vertex-
disjoint feasible paths and feasible cycles.

P’ exists and is of length at most £. — k then Accept.”
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Theorem 2. There is a randomized algorithm that, given an
instance of KEP and a positive integer t, outputs yes with high
probability (at least %) if there is a solution covering at least
t patients, and always outputs no if there is no such solution.
This algorithm runs in time O*(41).

Fix an instance (G, B, {,, {.) of KEP. To define P, sup-
pose the vertex set of G is {1,...,n}, and let 21, ..., z, be
variables corresponding to the vertices of G. We also define
t additional variables y1,...,y:. We call a walk in G an al-
truistic walk if its first vertex belongs to B and it has length
(number of edges) between 1 and ¢,, inclusive. Suppose D
is an ordered collection of (possibly overlapping) altruistic
walks and closed walks in G, in which each closed walk has
length at most £.. We call such a collection D a donation plan
if it contains at most ¢ cycles. Note that a donation plan is not
required to be feasible — the same vertex might be covered
multiple times in the same walk or across different walks. In
the definition of D, we only consider collections with at most
t cycles because we know that if there exists a feasible solu-
tion, then there exists a feasible solution with at most ¢ cycles.

For each altruistic walk Wy = 4y,45...,4; in a dona-
tion plan D, we define ¢p(W1) = x4, -+ 24, and for
each closed walk Wy = j1,72,...,7¢,41 in D, we define
¢(W3) = yrxj @), - - ,, where k is such that W5 is the
Ekth closed walk in D. The degree of a donation plan D is the
degree of the term [ [y, ¢(W).

For a walk W in a donation plan, let p(T¥) denote the
number of patients covered by W, where patients that are
covered multiple times along the walk are counted multiple
times. Note that this is equal to the edge-length of . For
et > 1, let H? be the collection of all donation plans D
such that » >y, ., p(W) = t', and such that the degree of D
is exactly ¢. We define the polynomial

Pt(xl,...,xn,yl,...,yt):ZZ Z H d(W).

t'=t {=2 DEHE/ weD

In the product over W € D, we multiply the terms ¢(W) in
order, according to the ordering of the walks in D.

First, to ensure that we can apply Proposition 2, we observe
that distinct donation plans give rise to distinct terms in P;:

Observation 1 (x). If [[yycp, ¢(W) = [Lyyep, #(W) for
donation plans D1, Do, then D1 = Ds.

As mentioned above, proofs of results marked with a star
can be found in the supplementary material. Now, we need to
show that P, contains a multilinear term if and only if there
is a solution covering at least ¢ patients:

Lemma 4 (x). There is a solution to (G, B, ¢, {.) covering at
least t patients if and only if P, contains a multilinear term.

The following lemma (Lemma 5) is a key step in the proof
of Lemma 4. For the statement of Lemma 5, we need one
more definition: Let S be a solution to the given instance of
KEP. The degree of S is defined as ) -, o(p(W) + 1). This
is equal to the degree of the monomial ], ., (W), where
D is any ordering of S.

Lemma 5 (x). If there exists a solution to the instance
(G, B, ¢y, L) that covers at least t patients, then there exists
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a solution S with the following properties: the number of pa-
tients covered by S is at least t and at most 2t, and the degree
of S is at most 2t.

Finally, to properly apply Proposition 2, we must be able to
build a circuit that computes P;. This can be done in a similar
way to the algorithm for k-path [Williams, 2009]. The details
can be found in the supplementary material.

5 W]1|-Hardness of KEP Parameterized by w

In this section, we will show that KEP does not admit an algo-
rithm with running time f(w)n®®), where w is the treewidth
of the compatibility graph, unless FPT = W[1]. We prove this
by showing that KEP is W/[1]-hard parameterized by w.

Theorem 3. KEP is W([1]-hard. Unless FPT = W([1], KEP
does not admit an algorithm with running time f(w)n®®),

To prove Theorem 3, we give a reduction from the follow-
ing W[1]-hard variant of the Multicolored Clique problem. °

Dense k-Multicolored Clique Parameter: &
Input: A positive integer k& > 3, a k-partite graph G =
V =WViuVaU. - UV, FE), and a graph Gz =
(Vauas Faus) constructed from G with the following prop-
erties:

@) In G, |V;| = nforalli € [k], where n € N, (ii) for all
i, G[V; U V;] is not a complete bipartite graph for at most
three j # 4, (iii) Vyue = {v1,...,vx}, Where v; fori € [k]
corresponds to the vertex set V; in G, (iv) for i,j € [k]
with i # j, (v4,v;) € Egyy if and only if G[V; U V}] is not
a complete bipartite graph, and (v) G4, is triangle free.
Question: Does there exist a k-clique S C V with
|SNV;| =1 forall i?

Let (G = (Vi UVaU--- U Vg, E), k) be an instance of
Dense k-Multicolored Clique. We refer to each partition V;
of G as a color class of G. Let u] be the j* vertex in V; for
1 <j<mnandl <7< k. Wechoose an arbitrary ordering
of the vertices and edges of G, G-

We observe that the maximum degree of a vertex in G,
is 3; therefore, using Vizing’s Theorem [Lewis, 2015] we can
obtain a proper vertex coloring xv : V(Gauz) — {1,2,3,4}
and a proper edge coloring xg : F(Gauz) — {5,10,15,20}
in polynomial time. For a vertex v; € V., we denote the set
of edges incident to v; in G gyy by E(v;).

We now give the construction of a (0,n2%)-KEP instance
(G,0,0,n%5), where G = (V, A), using G, Gauz, Xv, and
xe- We will first construct an edge-weighted directed graph
Gep- We will then construct G from Gy, by replacing every
edge e with weight w, from u to v in Gjep by a new path
from w to v having w, — 1 internal vertices. Our construction
has the following two types of gadgets:

A simple reduction from the W([1]-hard problem Partitioned
Subgraph Isomorphism (PSI) [Lokshtanov et al., 2020, Proposi-
tion 3.1] [Marx, 2007, Corollary 6.3] shows W/[1]-hardness for our
variant of MCC. See the supplementary material for further details.
Also, we define MCC as above to get a cleaner reduction.
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(i) Edge gadgets (X.): For each edge e € E,,;, we add an
edge gadget X, to Gpep.
— Vertices of X.: Suppose e = (v;,v;). Let m
|E(G[V;, V;])| + 1. We construct two ordered sets of vertices
X" and X7, each of size m. We set V(X.) = X’ U X7.

Let 2!, and z , denote the ¢*" vertex in X/ and X/,

respectively. For 1 < ¢ < m, the pair (Jcé’f,l‘i 4) corre-
sponds to the (" edge in E(G[V;,V;]). We now define two
mappings fi: [m — 1] — Viand f/: [m — 1] — V;. If
(u; € Vi,u; € V) is the (" edge in E(G[V;,Vj]), then
Ji(0) := u; and f7(¢) := u;. These mappings will later be
used to assign weights to the edges of Gi¢p.
— Edges of X.: Foreach 1 < ¢ < m, we add the following
four types of directed edges: _
(a) (L, x?zﬂ) and (b) (. ,, 2} ,,,) both with weight 1,
(c) (x4, a2 ., ) with weight nXv(Dxe(e) 4 p. pxele),
(d) (xi,zv k4, q) with weight nxv(xe(e) 4 g . pxele),

We call the edges of type (¢) and (d) crossing edges.

(ii) Vertex gadgets (Y;): For each vertex v; € V., we add
a vertex gadget Y; to Gep.

— V(Y;): Let V(Y;) = {start;(s:),ys,...,y., end;(e;)},
where each y@ for 1 < ¢ < n corresponds to the 07 vertex
ug € V;. Note that |V (Y;)| = n + 2.

— Edges of Y;: Recall that E(v;) C E,,, is the set of edges
incident to v;. We add the following edges to Y;:

(a) (yi, start;) with weight n* — sum, for each
1 < ¢ < n, where sumy = YeeE(v;)Me + (nXV(“i) +
0)(Leepyn*=©) +n—£+2, and where m, is the number
of vertices in set X!. Recall that m, is one plus the number
of edges between the color classes V;, V.

(b) (yi,yi_,) with weight 1 for each 2 < ¢ < n.

(c) (end;, i) with weight 1.

Linking the edge and vertex gadgets: We now link our gad-
gets together to complete the construction of G',,. For each
v; € Vyua, wWe consider the following three cases according
to the cardinality of E(v;):

1. |E(v;)| = 1. Write E(v;) = {e1 }. We add the following
edges to Gep:

(start;,x?, ;) and (x2} ., end;), both with weight 1.

|E(v;)| = 2. Write E(v;) = {e1,e2}, and let e; < e
be the ordering of the edges. We add the following edges
t0 Grep:
(7) (starti,xéhl
1. (ii) (@i

€1,Me,

3. |E(v;)| = 3. Write E(v;) = {e1,e2,e3}, and sup-
pose e1 < ez < e3 is the ordering of those edges.
We add the following edges to Gep: (%) (start;,xb. ;)

er,l

)and (z22 .

) end;), both with weight
,xl, 1) with weight 1.

and (chg’meyendi), and (i1) (21, e, ) and
(L2 ., Tey,1)» all with weight 1.

Since G4y has k vertices each of degree at most 3, Gy
has k vertex gadgets and at most 3k /2 edge gadgets. Recall
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that G is constructed by replacing each edge in Gy, with a
path. Since replacing an edge with a path does not increase
the treewidth of the graph, to show that the treewidth of G is
O(k), it suffices to show that the treewidth of Gy, is O(k).

Observation 2 (x). The treewidth of G.p is O(k).

There exists a k-MCC in G if and only if there is a so-
lution to the constructed (0, n2%)-KEP instance (G, 0, 0,n%5)
which covers at least kn?® patients. Due to limited space,
we defer the formal proof of equivalence to the supplemen-
tary material. We will now describe the structure of cycles
in the solution and give a high-level idea of our proof. We
say a cycle intersects an edge gadget X, (resp. a vertex gad-
get Y;) if it has nonempty intersection with V(X.) (resp.
V(Y;)). Consider X., where e = (v;,vj) € Eguz. Sup-
pose (u;,u;) € E(G[V;UVj]), where u; € V; and u; € V;
is the /" edge in X.. We say a cycle intersecting X, selects
the edge (u;,w;) if it contains one of the two crossing edges
(@l gy x) gyy) O (2] 4, 2L 4, 1), and no other crossing edge in
X.. A cycle intersecting a vertex gadget Y; must follow a
path of the form end,, y%, . .., y}, start; for some n > ¢ > 1
since the only way to enter and exit a vertex gadget is through
end; and start;, respectively. We say such a cycle selects the
vertex uy (corresponding to y¢), where uy € V;. In our proof,
we show that (i) each cycle in the solution for (G,{,0,n?%)
intersects one vertex gadget and at most three edge gadgets,
(ii) if the vertex gadget corresponds to v; € V., then the
three edge gadgets correspond to the edges incident to v; in
Gauz, and (iii) all of the edges selected across the three edge
gadgets are incident to the vertex selected in the vertex gad-
get. Finally, we show that the &k vertices selected by the &
cycles in the solution form a clique in G.

6 Discussion and Open Problems

In this work, we considered KEP, a natural problem of match-
ing kidney patients to donors. We made significant progress
in understanding its parameterized complexity. Our ran-
domized algorithm from Theorem 2 can be derandomized to
run in time 14.34% using a deterministic version of Propo-
sition 2 [Fomin et al., 2014, Theorem 5.1]. Furthermore, we
believe our algorithms can be used for designing local-search-
style heuristics. For instance, algebraic algorithms for MOTIF
FINDING led to a highly parallelized implementation for this
problem on GPUs [Kaski et al., 2018].

In Section 5, we show that KEP is W[1]-hard parameter-
ized by w. Lampis [Lampis, 2014] introduced a technique
to design approximation schemes running in f (w)no(l) time
for problems that are W[1]-hard with respect to w. This tech-
nique uses tools from approximation algorithms over tree de-
compositions. We remark that a direct application of this
technique would yield a bicriteria approximation scheme for
t and max(£,, {.) for KEP running in time f(w)n®®). Ap-
proximating just the solution size ¢ within a similar running
time would also be interesting. Another nice open problem
that stems from our work would be to ask whether there ex-
ists a single-exponential FPT algorithm parameterized by the
number of vertex types.
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