
Public Event Scheduling with Busy Agents

Bo Li1 , Lijun Li2 , Minming Li2 and Ruilong Zhang3

1Department of Computing, The Hong Kong Polytechnic University
2Department of Computer Science, City University of Hong Kong

3Department of Computer Science and Engineering, University at Buffalo
comp-bo.li@polyu.edu.hk, lijunli3-c@my.cityu.edu.hk, minming.li@cityu.edu.hk,

ruilongzhang.cn@gmail.com

Abstract
We study a public event scheduling problem, where
multiple public events are scheduled to coordinate
the availability of multiple agents. The availability
of each agent is determined by solving a separate
flexible interval job scheduling problem, where the
jobs are required to be preemptively processed. The
agents want to attend as many events as possible,
and their agreements are considered to be the total
length of time during which they can attend these
events. The goal is to find a schedule for events as
well as the job schedule for each agent such that the
total agreement is maximized.
We first show that the problem is NP-hard, and then
prove that a simple greedy algorithm achieves 1

2 -
approximation when the whole timeline is polyno-
mially bounded. Our method also implies a (1− 1

e)-
approximate algorithm for this case. Subsequently,
for the general timeline case, we present an algo-
rithmic framework that extends a 1

α -approximate
algorithm for the one-event instance to the gen-
eral case that achieves 1

α+1 -approximation. Fi-
nally, we give a polynomial time algorithm that
solves the one-event instance, and this implies a 1

2 -
approximate algorithm for the general case.

1 Introduction
Artificial intelligence algorithms are widely used in many so-
cietal settings, such as scheduling public activities and assist-
ing with personal work schedules, in which finding a suit-
able schedule shall lead to good social welfare. To moti-
vate our study, consider the pubic event scheduling process
at a university. Suppose the student/staff development office
wants to hold some public activities for students/staffs, e.g.,
networking events, new student/staff orientation, etc. These
events have fixed duration, while the target students/staffs are
busy, and they have their own tasks that must be done but
with some degree of time flexibility, e.g., homework, lectures,
research meetings, submission deadlines, etc. For example,
there are two events, both lasting for two hours. Some of the
students/staffs must spend two hours on their own tasks be-
tween 10:00 and 13:00, and other students/staffs must spend

three hours between 14:00 and 18:00. The whole schedu-
lable time span for events is 10:00-18:00. These events are
important to students/staffs, and it is crucial to schedule these
public events at suitable times so that the target students/staffs
can participate as long as possible. The agreement of a stu-
dent/staff to an event schedule is considered as the total time
that she can attend the events. Hence, the organizer’s task
is to make the event schedule admit a maximum agreement.
This shall lead to good social welfare, motivating our work.

The above public event scheduling problem aims to find
feasible job and event schedules such that social welfare is
maximized. Hence, it falls under the umbrella of both job
scheduling and computational social choices. The intersec-
tion of these two fields has been extensively studied in various
literature, such as selfish load balancing [Bilò et al., 2020;
Vinci et al., 2022], the Santa clause problem [Bamas et al.,
2021; Bansal and Sviridenko, 2006; Springer et al., 2022],
fair division with scheduling constraints [Li et al., 2021;
Li et al., 2023; Zhou et al., 2023], etc [Elkind et al., 2022;
Pascual et al., 2018; Endriss et al., 2022].

From the scheduling perspective, our problem shares some
similarities with a set of scheduling problems. Intuitively, the
optimal solution to our problem tends to gather the sched-
ule of agents’ jobs, which leads to a long consecutive idle
time during which events can be scheduled. The optimal so-
lution for a batch of scheduling problems also shares a simi-
lar behavior, such as gap scheduling [Antoniadis et al., 2020;
Baptiste, 2006], active time slots minimization [Chang et al.,
2014; Chau and Li, 2020; Kumar and Khuller, 2018], cali-
bration scheduling [Bender et al., 2013; Chau et al., 2020;
Chen et al., 2019], etc. However, our work investigates a dis-
tinct objective compared to these classical scheduling prob-
lems and thus leads to completely different techniques.

From the perspective of computational social choice, our
problem shares some similarities with the recently proposed
cake-sharing model [Bei et al., 2022]. We can consider the
whole timeline as a cake whose range is from [0, 1], and then
normalize all agents’ tasks to ensure that jobs’ release time
and deadline are in [0, 1]. Furthermore, we assume the jobs’
processing time is equal to the length of its interval, where
we call a job rigid (otherwise, it is called flexible). An agent’s
task can be interpreted as a preference for the cake, i.e., if
an agent has a task [a, b], then the agent does not prefer this
part of the cake. Our goal is to pick m pieces of cakes such

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2877

that the total agreement of the picked cakes is maximized.
The above scenario also motivates our work, and it matches
the setting of cake-sharing [Bei et al., 2022] in the general
sense. Compared to cake sharing, the first main difference is
that we allow jobs to be flexible. The second main difference
is that we focus on the social welfare maximization problem
while [Bei et al., 2022] aims to design truthful mechanisms.

1.1 Our Contributions
We consider the problem of Public Event Scheduling with
Busy Agents (PESBA). We distinguish several cases accord-
ing to the event set or the length of the whole timeline. For
each case, we either give an approximate (or exact) algorithm
running in polynomial time or show the problem is NP-hard.
We remark that, due to space limits, all formal proofs are
omitted and can be found in full version [Li et al., 2024].

Main Result 1 (Theorem 1). When the whole timeline is
polynomially bounded, a natural greedy algorithm running
in polynomial time achieves 1

2 -approximation for PESBA.
Moreover, PESBA admits a (1 − 1

e)-approximate algorithm
running in polynomial time.

For a better understanding of our method, let us first fo-
cus on the case where the whole timeline is polynomially
bounded (Section 3). Our main algorithm is an intuitive
greedy algorithm which can be viewed as a simple voting
process. Namely, in each round of our algorithm, for each
unscheduled event, we ask agents to vote on the position for
this event, and each agent votes for those time slots that max-
imize her agreement. The algorithm then picks one position
that receives the most votes for this event. Finally, the al-
gorithm schedules the event that maximizes the total agree-
ment among all unscheduled events in this round. By proving
(i) a new result for a variant of the submodular maximiza-
tion (ii) the agreement function is submodular, we show that
the greedy algorithm is 1

2 -approximate. This intuitive algo-
rithm enables us to extend it to arbitrary timeline cases. In
fact, we show a stronger result that the agreement function
is a rank function of some matroid, which is also crucial for
the arbitrary timeline case. By using the more involved algo-
rithms for submodular optimization with matroid constraints,
our method also implies a better (1 − 1

e)-approximate algo-
rithm, but it is hard to extend to arbitrary timeline cases.

Main Result 2 (Theorem 2). When the whole timeline is
arbitrary, we present an algorithmic framework that extends
a 1

α -approximate algorithm for PESBA with one event to
the multiple events case achieving 1

α+1 -approximation. We
design an optimal algorithm for the one-event instance and
hence obtain a 1

2 -approximate algorithm for the arbitrary
timeline case.

Our second result focuses on the general PESBA instance
(Section 4). We propose an algorithmic framework for the
general case. Given any 1

α -approximate algorithm for the
one-event instance, our framework extends the algorithm to
multiple events case in polynomial time that achieves 1

α+1 -
approximation. Our algorithmic framework is rooted in the
greedy algorithm for the polynomially bounded timeline case.
In each iteration of the greedy algorithm, it enumerates each

time slot for searching the best position of each unsched-
uled event. This only works for the previous case since the
whole timeline is polynomially bounded. We design a new
oracle based on the given one-event approximation algorithm
that is able to return a “good” position for each unsched-
uled event without enumerating the whole timeline. How
good the position is depends on the approximation ratio of
the given one-event algorithm. By using the optimal algo-
rithm for the one-event instance proposed in full version [Li
et al., 2024], we directly obtain a 1

2 -approximate algorithm
for general PESBA instances, which matches the approxi-
mation ratio for restricted timeline case.
Main Result 3. The problem PESBA is NP-hard even in
the case where (i) there is only one agent; (ii) this agent has
only two rigid jobs. Moreover, the problem PESBA is in P
when only one event is required to be scheduled.

Our last result focuses on the computation complexity of
the problem. We first show that PESBA is NP-hard even
if there is only one agent and the agent has only two rigid
jobs. The hardness result is built on the classical partition
problem. Then we show PESBA is in P when there is only
one event that needs to be scheduled. This result shall be
used to get an approximation for general PESBA instances.
Our algorithm for one-event instance is involved, and its basic
idea is to draw the plot for the agreement function when the
event moves over the timeline. To this end, we prove that the
agreement function is piecewise linear and has a polynomial
number of turning points. These two parts can be found in the
full version [Li et al., 2024].

1.2 Other Related Works
Fair Allocation with Public Goods. Our problem shares
some similarities with fair allocation of public goods.
[Conitzer et al., 2017] first uses “public” to distinguish the
previous “private” goods, and subsequently, there is a batch
of follow-up works [Fain et al., 2018; Fluschnik et al., 2019;
Garg et al., 2021]. In the public goods setting, all agents ob-
tain utilities when some goods are selected, which is similar
to the agreement in our problem. However, the techniques are
different since we consider a different objective.
Other Related Scheduling Problems. When the preemp-
tion is not allowed, it is NP-complete to determine whether
the given job set admits a feasible schedule [Garey and John-
son, 1979]. When all jobs are rigid or unit, the problem is
equivalent to determining the size of the maximum indepen-
dent set on interval graphs or a maximum matching. Hence
it is in P [Schrijver, 1999]. When preemption is allowed, a
simple greedy algorithm (earliest deadline first) can be used
to decide instances’ feasibility [Lenstra and Shmoys, 2020].

2 Preliminaries
We consider the problem of Public Event Scheduling with
Busy Agents (PESBA). An instance of PESBA consists of
an agent set A := { 1, . . . , n } and a public event set E :=
{ e1, . . . , em }. We consider discrete time, and for t ∈ N≥1,
let [t, t+1) denote the t-th time slot. T is a time slot set con-
sisting of all time slots where events and jobs can be sched-
uled. Each agent i has a set of jobs denoted by Ji. Each job j

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2878

in Ji has a release time rj ∈ N≥1, a deadline dj ∈ N≥1, and a
processing time pj ∈ N≥1 such that pj ≤ dj−rj+1. A job j
is called a rigid job if pj = dj−rj+1; it is called a unit job if
pj = 1. For each job j, the interval [rj , dj] is called a job in-
terval, which can also be viewed as a set of consecutive time
slots, i.e., { rj , rj + 1, . . . , dj }. The event set E consists of
m public events, and each event e has a length l(e) ∈ N≥1.
When an event e is scheduled at the t-th time slot, this event
occupies { t, t+ 1, . . . , t+ l(e)− 1 } time slots to be held.
We use a tuple (e, t) to denote that event e is scheduled at
the t-th time slot. Let L be a set of all possible tuples, i.e.,
L := { (e, t) }e∈E,t∈T . Let L(e) be the set of all possible
schedules of event e, i.e., L(e) := { (e′, t) ∈ L | e′ = e }.

A solution consists of both the event schedule and the job
schedule for each agent. The event schedule S is considered
as a subset of L such that every event appears in exactly one
tuple in S . This ensures that (i) every event e ∈ E is sched-
uled at some time slot; (ii) no event is scheduled more than
two time slots. An event schedule S is said to be a partial
event schedule if every event appears in at most one tuple;
otherwise, it is called a complete event schedule. The job
schedule consists of n subschedules, each of which corre-
sponds to a job schedule for each agent. We consider the
preemptive schedule, and the job schedule for each Ji, i ∈ A
is required to be feasible, i.e., (i) each job j in Ji is assigned
pj time slots in its job interval; (ii) for each t ∈ T , at most
one job from Ji is processed at t. It is ensured that for each
i ∈ A, the input job set Ji is feasible.

Each event is considered to be a good activity, and agents
are willing to attend the events. A time slot t is said to be an
agreement time slot for agent i if (i) t is occupied by some
scheduled event; (ii) no job from Ji is scheduled at t. Given
any event schedule and a job schedule for Ji, agent i’s agree-
ment is defined as the total number of agreement time slots.
We allow event schedules to overlap since we can always
eliminate the overlap by adjusting events’ schedules without
decreasing the total agreement (see Observation 1 in full ver-
sion [Li et al., 2024]). Our goal is to find a job schedule for
each Ji as well as a complete event schedule such that the
total agents’ agreement is maximized.

We use function agri : 2
L → N≥0 to represent the maxi-

mum agreement that is produced by an event schedule S for
agent i. Given any partial event schedule S and an agent i, in
Section 3.2, we show that the value of agri(S) can be com-
puted in polynomial time. Such an algorithm is used to com-
pute the optimal job schedule, and this allows us to focus only
on finding an event schedule. Based on the agreement func-
tion, our objective is equivalent to finding a complete event
schedule S such that

∑
i∈A agri(S) is maximized. An exam-

ple can be found in Figure 1. In the remainder of this paper,
we refer to S as a partial solution if S is a partial event sched-
ule; otherwise, it is a complete solution.

3 Algorithms for Polynomial T
In this section, for a better understanding of our method,
we focus on the case where the whole timeline is polyno-
mially bounded; the assumption shall be removed in Sec-
tion 4. We show that a natural greedy algorithm achieves

1 |T | = 11

J1

J2

e1 e2{
{

Timeline

Figure 1: Illustration of the model of PESBA problem. There
are two public events E = { e1, e2 } with length l(e1) = 2
and l(e2) = 3 represented by shaded rectangles, and two agents
A = { 1, 2 }. Agent 1’s job set is J1 containing two jobs [1, 3]
with processing time 2 and [2, 7] with processing time 3. Agent
2’s job set is J2 containing two jobs [7, 11] with processing time
3 and [5, 8] with processing time 2. The time span is T = [1, 11]
containing 11 time slots. The figure shows one optimal event sched-
ule S = { (e1, 3), (e2, 8) } maximizing

∑
i∈A agri(S) and a corre-

sponding optimal job schedule where the black disk indicates job’s
processing. Agent 1 can attend the whole course of e1 and e2 under
schedule S and thus get agreement 5; agent 2 can attend whole e1
but can only attend e2 for 2 times and thus get agreement 4 from S.

1
2 -approximation. In Section 4, we shall extend the 1

2 -
approximation algorithm to the arbitrary |T | case with the
approximation ratio being preserved. Our method also im-
plies a slightly stronger algorithm that achieves (1 − 1

e)-
approximation in the polynomial bounded |T | case. Such a
stronger result uses the submodular maximization subject to
a matroid constraint [Călinescu et al., 2011] as a black box,
and thus, it is hard to be extended to the arbitrary |T | case.
Thus, we focus on the greedy algorithm, and we state how to
get a (1− 1

e)-approximation in the proof of Theorem 1.

Theorem 1. Given any instance of PESBA with polynomi-
ally bounded |T |, there exists a greedy algorithm running in
polynomial time that achieves 1

2 -approximation. The approx-
imation ratio can be further improved to (1− 1

e).

Algorithmic Framework. For each event e ∈ E and a time
slot t ∈ T , the tuple (e, t) represents that the event e is sched-
uled at the t-th time slot. Since |T | is assumed to be poly-
nomially bounded, we can find the optimal position for event
e by enumerating all possible positions. Our algorithm runs
in rounds and schedules exactly one event in each round until
all events are assigned to a starting position. In each round,
the algorithm checks the unscheduled events one by one. For
each unscheduled event e′, every agent assigns some “votes”
to every possible position of e′. Then, our algorithm chooses
the schedule (e′, t′) that receives the most votes (break ties ar-
bitrarily), which gives a scheduled position t′ for event e′. For
each unscheduled event, we have a position in this round, and
then, the algorithm just picks an event and its position (e∗, t∗)
with the maximum votes among all unscheduled events. Intu-
itively, the votes of some schedule (e, t) stands for the agent’s
preference for this schedule. Our algorithm shall select the
schedule that is liked by the most agents and schedule the
corresponding event at the corresponding time slot.

The first step of the algorithm is to set up an appropriate

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2879

preference rule such that each agent assigns suitable votes to
each schedule. Our idea is intuitive, i.e., agent i’s prefer-
ence for some schedule (e, t) is just the maximum incremen-
tal agreement that agent i can gain by scheduling e at t, i.e.,
agri(S ∪{ (e, t) })− agri(S) where S is the current solution.

3.1 The Complete Algorithm
This section presents the formal description of the algorithm.
Given the partial solution S , we define F to be the to-
tal agreement produced by S for notation convenience, i.e.,
F (S) :=

∑
i∈A agri(S). For an unscheduled event e and

any schedule (e, t), the total preference for the schedule (e, t)
is F (S ∪ { (e, t) }) − F (S). Following the basic idea stated
above, the algorithm picks a schedule with the maximum total
preference in each round until all events are scheduled.

Algorithm 1 The Complete Algorithm for PESBA

Input: A PESBA instance with polynomially bounded |T |.
Output: A schedule S of all events in E.

1: S ← ∅.
2: while there exists an unscheduled event do
3: H ← ∅.
4: for each unscheduled event e′ do
5: t′ ← argmaxt∈T F (S ∪ { (e′, t) })− F (S).
6: H ← H∪ { (e′, t′) }.
7: end for
8: (e∗, t∗)← argmax(e,t)∈H F (S ∪ { (e, t) })−F (S).
9: S ← S ∪ { (e∗, t∗) }.

10: end while
11: return S .

The analysis of Algorithm 1 is built on a variant of a clas-
sical submodular maximization problem, i.e., the selected
elements are additionally required to satisfy the group con-
straints, and an imperfect oracle exists. The formal definition
is shown in Definition 1.
Definition 1 (Submodular Maximization with Group Con-
straints and Imperfect Oracle (SMGC)). Given some param-
eter n ∈ N≥1 and there is a ground element set U with
|U | = 2poly(n). There is a monotone and submodular func-
tion f : 2U → R≥0 defined over U . The ground element U
is partitioned into ℓ groups: G1, . . . , Gℓ with ℓ = poly(n).
There is a polynomial α-approximate oracle g(·, ·) that takes
two parameters as the input: a subset S ⊆ U and a group Gi,
and it returns an element e∗ ∈ Gi in poly(n) time such that
f(S∪{ e∗ })−f(S) ≥ 1

α maxe∈Gi
f(S∪{ e })−f(S), where

α ≥ 1 is some given parameter. The goal is to pick a sub-
set S of the ground element set such that f(S) is maximized,
where S is required to satisfy two conditions: (i) |S| ≤ k (ℓ
is guaranteed to be larger than k); (ii) S contains at most
one element from Gi for all i ∈ [ℓ]. The running time of the
algorithm is required to be poly(n).
SMGC v.s. PESBA. To see the connection, consider U as
all possible schedules L, n as the input size of PESBA, f(·)
as the total preference function F (·). The additional group
constraint corresponds to the requirement that each event can
be assigned at most one starting point in our problem. The

imperfect oracle states that to get an element with a good
marginal value in polynomial time, the algorithm has to ask
an imperfect oracle, which may only be able to return some
non-optimal elements. The α-approximate oracle is used to
deal with general |T | cases, and its role will be clear in Sec-
tion 4. In this section, we can assume that we have a 1-
approximate oracle (i.e., α = 1) since we consider the poly-
nomially bounded |T | case. This implies that the size of L
(i.e., the ground element set) is polynomially bounded, so
finding an element with the maximum marginal value takes
polynomial time.

When α = 1, SMGC is a special case of submodular max-
imization subject to a matroid constraint [Călinescu et al.,
2011], which admits a (1− 1

e)-approximation. However, the
algorithm is involved, and it is based on the multilinear exten-
sion of a submodular function. For the matroid constraint, the
approximate ratio of the natural greedy algorithm is proved to
be 1

2
[Horel, 2015] whose proof is based on both the exchange

property of a matroid and the submodularity. In Section 3.4,
we show that the ratio only depends on the submodularity for
our problem and thus simplifies the proof for the α = 1 case.

Formally, the analysis mainly consists of three steps. In the
first step, we show that the agreement function can be com-
puted in polynomial time. In the second step, we prove that
the agreement function is submodular. In the last step, we
demonstrate that the natural greedy algorithm achieves 1

α+1 -
approximation to SMGC with an α-approximate oracle; when
α = 1, it is a 1

2 -approximate algorithm. The detailed descrip-
tion is as follows.

1. We show that given any partial solution S , the value of
agri(S) can be computed in polynomial time for any
i ∈ A. This implies that the cumulative function F in
Algorithm 1 can also be computed in polynomial time.
This part is deferred to Section 3.2.

Lemma 1. Given any partial solution S ⊆ L, there is
an algorithm running in polynomial time that computes
the value of agri(S).

2. We demonstrate that the agreement function agri(·) is a
submodular function. We actually show a stronger re-
sult, i.e., the agreement function is a rank function of
some matroid which also plays an important role in the
arbitrary T case. This part is shown in Section 3.3.

Lemma 2. Consider any agent i ∈ A, the agreement
function agri : 2

L → N≥0 is a submodular function.

3. We prove that greedily picking the element with a good
marginal value from unselected groups achieves 1

α+1 -
approximation for SMGC. This part is in Section 3.4.

Lemma 3. The natural greedy algorithm (Algorithm 2)
achieves 1

α+1 -approximation to the problem of submod-
ular maximization with group constraints and an α-
approximate oracle stated in Definition 1.

The first part of Theorem 1 can be proved by combining
the above lemmas and setting α = 1, and the other part is
based on another result for submodular maximization.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2880

3.2 Agreement Function Computation
In this section, we show that the maximum agreement of any
partial solution can be computed in polynomial time. We fix
an agent i ∈ A and analyze her agreement function agri(·).
For notation convenience, we drop the subscript i for the time.

For an event or job interval, we use s(·) and f(·) to denote
the first and the last time slot occupied by the interval. Given
a partial solution S ⊆ L, let E′ be the scheduled event set.
Define Ψ to be the set of s(j), f(j), s(e), f(e) for all j ∈ J
and e ∈ E′ (remove duplicate values). Note that the size
of Ψ is polynomially bounded regardless of the size of the
time span T . We sort all time slots in Ψ in increasing order
obtaining Ψ = { t1, . . . , tκ }. Then, the time slots in Ψ split
the whole time span into several segments, i.e., every adjacent
two-time slot in Ψ defines a segment ϕ. See the left part of
Figure 2 for an example. Let Φ := {ϕ1, . . . , ϕℓ } be the set
of segments. Note that a segment ϕ may contain more than
one time slot. Let c(ϕ) be the capacity of the segment ϕ, i.e.,
c(ϕ) is the number of time slots that are included in ϕ. Note
that it must be the case that for any segment ϕ ∈ Φ and any
job or event interval I , ϕ is either completely included in I or
ϕ has no overlap with I .

Our algorithm for computing agr(·) is built based on the
min-cost max-flow algorithm. In the following, we first in-
troduce the construction of the flow network and then prove
the correctness. Given any partial solution S and a job set J ,
we first construct the starting point set Ψ and the segment set
Φ. Then, we construct a network G := (s, t, A ∪ B,E) ac-
cording to Ψ and J . (I) For each job j ∈ J , we create a vertex
a in A. (II) For each segment ϕ ∈ Φ, we have one vertex b
in B. (III) There is a directed edge e from a to b if and only
if a’s corresponding job can be scheduled at the time slots in-
cluded in b’s corresponding segment (let E2 be these edges).
(IV) Add a source s and create a directed edge from s to each
vertex in A (let E1 be these edges). (V) Add a sink t and cre-
ate a directed edge from each vertex in B to t (let E3 be these
edges). (VI) Every edge in E1 has the same cost 0 and only
connects one vertex in A. Let pj be e := (s, a)’s capacity
where a’s corresponding job is j. (VII) Every edge in E2 has
the same cost 0, and edges that are connected with the same
job vertex j have the same capacity pj . (VIII) Each edge in
E3 only connects one vertex from B; let c(ϕ) be e := (b, t)’s
capacity where ϕ is the corresponding segment of b; the cost
of e is 1 if there is an event occupying ϕ otherwise the cost of
e is 0. The goal is to find the cheapest way to send

∑
j∈J pj

amount of flows from s to t. An example is shown in Figure 2.
It is well-known that the min-cost max-flow problem can

be solved in polynomial time. The solution to min-cost max-
flow has integral property as long as all capacities are inte-
gral, i.e., there exists an optimal solution to min-cost max-
flow such that all flow values are integral. Lemma 4 captures
the equivalence between the instance of our problem and the
constructed min-cost max-flow instance.

Lemma 4. Given any instance I of our problem with job set
J and partial solution S . Let I ′ be the constructed min-cost
max-flow instance. Then, the constructed min-cost max-flow
instance has a feasible integral flow assignment S′ with cost
ct(S′) if and only if the instance I has a job schedule S with

s

j1

j2

φ1

φ2

φ3

φ4

t

E1

E2A B

G := (s, t, A ∪ B,E)

E3

(2, 0)

(2, 1)

(2, 1)

(1, 1)

φ1 φ2 φ3 φ4

Timeline

Segments

Events

Jobs

e1
e2{

1 2 3 4 5 6 7

j1

j2

Figure 2: An example for min-cost max-flow construction. The left
part of the figure shows the original job set and event schedule with
Ψ = { [1, 2), [3, 4), [4, 5), [6, 7), [7, 8) }. We cut the whole timeline
into a set of segments Φ = { [1, 3), [3, 5), [5, 7), [7, 8) } with poly-
nomial size according to Ψ. The constructed flow network is shown
in the right part of the figure. For each job, we have a vertex in A,
and for each segment, we have a vertex in B. The capacity and the
cost of each edge are designed to ensure that a flow assignment cor-
responds to a job schedule, e.g., (2, 0) of the edge in E3 connecting
ϕ1 and t indicates the capacity of this edge is 2 and cost is 0.

the agreement |st(S)| − ct(S′), where st(S) is a set of time
slots that are occupied by some scheduled event in S .

Lemma 1 can be proved by Lemma 4.

3.3 Submodularity of the Agreement Function
In this section, we show that the agreement function agri(·)
is submodular for any agent i ∈ A. To this end, we fix an
agent i ∈ A and analyze her agreement function. For notation
convenience, we drop the subscript i.

For convenience, each unit of a job is considered as a new
job, i.e., we create pj new jobs with unit length for each job
j. In this way, we can assume that all jobs in J have unit
length. Given any partial solution S ⊆ L, let st(S) be a
set of time slots that are occupied by scheduled events in S ,
so st(S) ⊆ T . Given any schedule of jobs in J , the agree-
ment produced by the partial solution S and the job schedule
is equal to the difference between the size of st(S) and the
number of time slots that are occupied by some jobs in the
job schedule. So, finding the maximum agreement produced
by the partial solution S is equivalent to finding a schedule
of jobs in J that uses the minimum number of time slots in
st(S).

This motivates us to define the following set system, which
is called scheduling matroid (Definition 2). We shall connect
the size of an independent set in the defined set system with
the value of the maximum agreement later.

Definition 2 (Scheduling Matroid). The scheduling matroid
M(J) := (T, I) is defined over the time slot set T for a job
set J , where T is the ground element set and I is a collection
of all independent sets. Each job in J has a release time, unit
processing time, and deadline. A set I ⊆ T is an independent
set if there exists a feasible schedule of J only using time slots
T \ I .

Consider any partial solution S , let I ⊆ st(S) be an inde-
pendent set with the maximum size that is included in st(S).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2881

By definition, |I| is the maximum number of time slots in
st(S) such that all jobs in J can be scheduled in T \ I . Thus,
the size of I is equal to the maximum agreement produced by
the partial solution S since all other time slots in st(S) \ I
have to be used to ensure a feasible job schedule. The above
connection is captured by Observation 1.
Observation 1. Given any partial solution S , let I be a maxi-
mum independent set defined in Definition 2 that are included
in st(S). Then, |I| is equal to the maximum agreement pro-
duced by the partial solution S .

As one may observe, the maximum independent set that is
included in some given element set aligns with the concept
of the rank in matroid theory. The rank function of a matroid
is one of the famous submodular functions. Hence, in the
following, we aim to prove the scheduling matroid defined in
Definition 2 is a matroid. In fact, besides the submodularity,
the polynomial implementation of Algorithm 1 in Section 4
also depends on the property that the scheduling matroid is
a matroid. We start with restating the definition of a matroid
and its rank function in Definition 3.
Definition 3 (Matroid). A set systemM := (U, I) is a ma-
troid if the collection I of subsets of U has the following prop-
erties: (i) ∅ ∈ I; (ii) if A ∈ I and B ⊆ A, then B ∈ I; (iii)
If A,B ∈ I and |B| > |A|, then there exists x ∈ (B\A) such
that A ∪ {x } ∈ I. Given any set S ⊆ U , the rank of S is
defined as the size of the maximum independent set included
in S, i.e., rank(S) := maxI∈I:I⊆S |I|.
Lemma 5. The scheduling matroid is a matroid.

Lemma 2 can be proved by Lemma 5 and Observation 1.

3.4 Submodular Maximization with Group
Constraints and Imperfect Oracle

In this section, we show greedily picking an element with a
“good” marginal value from the unselected groups is a 1

α+1 -
approximate algorithm for SMGC under an α-approximate
oracle g(·, ·) (see Algorithm 2). We cannot find the ele-
ment with the exact maximum marginal value because the
oracle is α-approximate. When α = 1, Algorithm 2 is 1

2 -
approximate, which aligns with the result for submodular
maximization subject to matroid constraint stated in [Horel,
2015]. But our proof only uses the monotone and submodular
properties and thus simplifies the proof in [Horel, 2015]. For
α > 1, our result generalizes the approximation ratio stated
in [Chekuri and Kumar, 2004] where they also consider the
α-approximate oracle but only focus on coverage functions.

4 An Algorithmic Framework for Arbitrary T
In this section, we consider the case where |T | is an arbi-
trary value and present an algorithmic framework for this
case. Given any approximation algorithm for the one-event
instance, the proposed algorithmic framework rooted in Al-
gorithm 1 is able to extend the given approximation algorithm
to the general case by only losing a small constant factor on
the approximation ratio. The formal description can be found
in Theorem 2. The one-event instance is a special case of
PESBA where there is only one event that needs to be sched-
uled; we use PESBA with |E| = 1 to denote this case.

Algorithm 2 Natural Greedy for SMGC

Input: The ground element set U and its group collection
G1, . . . , Gκ; A monotone submodular function f : 2U →
R≥0; The capacity k ∈ N≥0.

Output: A subset S ⊆ U with |S| ≤ k.
1: S ← ∅.
2: while |S| ≤ k do
3: H ← ∅.
4: for each unselected group Gi do
5: ai ← g(S,Gi).
6: H ← H ∪ { ai }.
7: end for
8: a∗ ← maxb∈H f(S ∪ { b })− f(S).
9: S ← S ∪ { a∗ }.

10: end while
11: return S.

Theorem 2. Given any 1
α -approximate algorithm (α ≥ 1)

running in polynomial time for PESBA with |E| = 1,
there is a polynomial time algorithm that achieves 1

α+1 -
approximation for general instances of PESBA.

We remark that, for our problem, it is hard to use the stan-
dard technique to make Algorithm 1 run in polynomial time
for the arbitrary |T | case; see full version [Li et al., 2024] for
discussions.

Algorithmic Ideas. To design an algorithmic framework
that achieves Theorem 2, our idea is to release the full power
of Algorithm 1 and Lemma 3. Recall that in Section 3,
we consider the polynomially bounded |T |, which is equiv-
alent to assuming that we have a 1-approximate oracle for
SMGC (Definition 1). By Lemma 3, as long as we have
an α-approximate oracle, Algorithm 1 with line 5 replaced
(which is Algorithm 4 in full version [Li et al., 2024]) is a
1

α+1 -approximate algorithm. Thus, in this section, we aim
to design such an α-approximate oracle to replace line 5 of
Algorithm 1. To this end, we need to build an algorithm
ALG (Algorithm 3) such that ALG satisfies the following
two properties: (i) ALG runs in polynomial time (Observa-
tion 2); (ii) given any partial solution S and an event e, ALG
returns a position for the event e such that the resulting sched-
ule is 1

α -approximate (Lemma 7).
We shall build the polynomial time oracle based on the

given 1
α -approximate algorithm for PESBA with |E| = 1.

To achieve this, the main obstacle is that the given one-event
instance algorithm only works for the case where there is no
partial solution; this disagrees with the requirement of the or-
acle. Our idea to fix this issue is to construct an equivalent
pure one-event instance so that when we run 1

α -approximate
algorithm on the constructed one-event instance, it is able to
return a good position for the instance with the partial solu-
tion. This method works mainly due to the exchange property
of the scheduling matroid.

Formally, we use OneEvent(·, ·) to represent the given
1
α -approximate algorithm for PESBA with |E| = 1. The
algorithm OneEvent(A, e∗) takes the agent set A (includ-
ing their job sets) and an event e∗ as the input; its output
is a time slot t∗ that indicates the scheduled position for the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2882

given event. By our assumption, the returned time slot t∗
satisfies the following property:

∑
i∈A agri({ (e∗, t∗) }) ≥

1
α · maxt∈T

∑
i∈A agri({ (e∗, t) }). Let GoodPosn(·, ·) be

the desired approximate oracle, and GoodPosn(S, e∗) shall
use the given 1

α -approximate one-event algorithm as a sub-
routine. It takes two parameters as the input: the given
partial solution S and an event e∗, and will return a time
slot that indicates the scheduled time of the given event.
Recall that, given a partial solution S , we need to con-
struct an equivalent pure one-event instance A′ such that
the time slot t∗ returned by OneEvent(A′, e∗) is a good
position for e∗, i.e.,

∑
i∈A agri(S ∪ { (e∗, t∗) }) ≥ 1

α ·
maxt∈T

∑
i∈A agri(S ∪ { (e∗, t) }). The above inequality

shall imply that GoodPosn(·, ·) is exactly the same as the
α-approximate oracle g in Definition 1, which leads to a 1

α+1 -
approximate algorithm by Lemma 3.

In the following, we focus on how to construct such an
equivalent instance A′. We start with an important property
of the scheduling matroid.
Lemma 6. For a scheduling matroid M(J) := (T, I) de-
fined in Definition 2, consider a time slot set S ⊆ T and let
F ∈ I be a maximum independent set that is included in S.
For each time slot in F , create a rigid job and let J ′ be all
these rigid jobs. The job set J ∪ J ′ defines a new scheduling
matroid, denoted byM(J ∪ J ′) := (T, I ′). Consider a time
slot set H ⊆ T and let B ∈ I ′ be a maximum independent
set that is included in H . Then, F ∪ B ∈ I is a maximum
independent set inM(J) that is included in S ∪H .

Given any partial solution S , recall that a maximum inde-
pendent set included in st(S) is a set of time slots with the
maximum size that produces the agreement (Observation 1).
We call these time slots agreement time slots. Thus, Lemma 6
actually suggests a “stability” property of these agreement
time slots. In other words, consider two partial solutions S
and H. The agreement time slot of the partial solution S is a
subset of the agreement time slot of the partial solution S∪H.
This crucial stable property motivates the pure one-event in-
stance construction method, where we shall replace all agree-
ment time slots of partial solution S with many rigid jobs. In
this way, we eliminate the impact of the partial solution S and
focus on finding the maximum agreement of the partial solu-
tion H. Then, by Lemma 6, the union of S’s and H’s agree-
ment time slots shall be the maximum agreement time slots
of the whole solution S ∪ H. The only issue is that we need
to be careful when creating rigid jobs since the number of
constructed rigid jobs is required to be polynomial. This re-
quirement can be satisfied by aggregating all agreement time
slots in each segment when computing the min-cost flow (Al-
gorithm 3). An example is shown in Figure 3.
Observation 2. Algorithm 3 runs in polynomial time, i.e.,
Algorithm 3 creates a polynomial number of rigid jobs.

Lemma 7 states that Algorithm 3 GoodPosn(·, ·) is a valid
α-approximate oracle for the submodular maximization prob-
lem stated in Definition 1. The correctness of Lemma 7
mainly relies on Lemma 6.
Lemma 7. Given any partial solution S and an unsched-
uled event e∗, let t∗ be the time slot returned by Algo-

Algorithm 3 GoodPosn(·, ·)
Input: A partial solution S; An unscheduled event e∗.
Output: A good position t∗ for event e∗.

1: for each agent i ∈ A do
2: Compute a schedule for Ji by min-cost max-flow.
3: for each segment in {ϕ ∈ Φ | ϕ ⊆ st(S) } do
4: Aggregate all agreement time slots forming an

agreement segment ϕ′.
5: Create a rigid job j′ for ϕ′.
6: end for
7: Ji ← Ji ∪ { all created rigid jobs }.
8: end for
9: return t∗ ← OneEvent(A, e∗).

φ1 φ2 φ3

φ′
2

φ′
1

(i) (ii)

φ1 φ2 φ3

Figure 3: Illustration of time slots aggregation (line 4 of Algo-
rithm 3). The subfigure (i) presents an optimal job schedule com-
puted by the min-cost max-flow algorithm. If we do not gather the
agreement time slots, it is possible that the agreement time slots are
separated by the job’s processing. In subfigure (ii), such time slots
producing agreements are aggregated to form agreement segments.
Each segment can have at most one agreement segment.

rithm 3. Then, we have
∑

i∈A agri(S ∪ { (e∗, t∗) }) ≥
1
α ·maxt∈T

∑
i∈A agri(S ∪ { (e∗, t) }).

The complete algorithm for arbitrary |T | (see Algorithm 4
in full version [Li et al., 2024]) just replaces line 5 of Algo-
rithm 1 with Algorithm 3. Theorem 2 is implied by Lemma 3
and Lemma 7. Combing Theorem 4 in full version [Li et al.,
2024] with Theorem 2 implies a 1

2 -approximate algorithm for
the general |T | case.

5 Conclusion
In this paper, we study the problem of public event scheduling
with busy agents, in which a set of public events are required
to be scheduled to let agents attend for a period of time as
long as possible. We present a general algorithmic frame-
work and give a polynomial time algorithm with a constant
approximation ratio for such an NP-hard problem.

This work points out many interesting future directions.
Firstly, it would be interesting to see a better approximation
algorithm or a lower bound. Secondly, our 1

2 -approximate al-
gorithm for general cases uses an involved optimal algorithm
for one-event instances. So, a simplified algorithm for one-
event instances would be beneficial, even if some approxima-
tion ratio needs to be sacrificed. Lastly, the weighted setting
of our problem is also interesting, i.e., different agents hold a
distinct preference for the same event.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2883

Contribution Statement
All authors (ordered alphabetically) have equal contributions
and are corresponding authors.

Acknowledgements
We thank the anonymous reviewers for their many insightful
suggestions. Bo Li is funded by HKSAR RGC (No. PolyU
15224823) and GDSTC (No. 2023A1515010592). Ruilong
Zhang was supported by NSF grant CCF-1844890.

References
[Antoniadis et al., 2020] Antonios Antoniadis, Naveen

Garg, Gunjan Kumar, and Nikhil Kumar. Parallel machine
scheduling to minimize energy consumption. In SODA,
pages 2758–2769. SIAM, 2020.

[Bamas et al., 2021] Étienne Bamas, Paritosh Garg, and Lars
Rohwedder. The submodular santa claus problem in the re-
stricted assignment case. In ICALP, volume 198 of LIPIcs,
pages 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[Bansal and Sviridenko, 2006] Nikhil Bansal and Maxim
Sviridenko. The santa claus problem. In STOC, pages
31–40. ACM, 2006.

[Baptiste, 2006] Philippe Baptiste. Scheduling unit tasks to
minimize the number of idle periods: a polynomial time
algorithm for offline dynamic power management. In
SODA, pages 364–367. ACM Press, 2006.

[Bei et al., 2022] Xiaohui Bei, Xinhang Lu, and Warut Suk-
sompong. Truthful cake sharing. In AAAI, pages 4809–
4817. AAAI Press, 2022.

[Bender et al., 2013] Michael A. Bender, David P. Bunde,
Vitus J. Leung, Samuel McCauley, and Cynthia A.
Phillips. Efficient scheduling to minimize calibrations. In
SPAA, pages 280–287. ACM, 2013.

[Bilò et al., 2020] Vittorio Bilò, Gianpiero Monaco, Luca
Moscardelli, and Cosimo Vinci. Nash social welfare in
selfish and online load balancing. In WINE, volume 12495
of Lecture Notes in Computer Science, pages 323–337.
Springer, 2020.

[Călinescu et al., 2011] Gruia Călinescu, Chandra Chekuri,
Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM
J. Comput., 40(6):1740–1766, 2011.

[Chang et al., 2014] Jessica Chang, Harold N. Gabow, and
Samir Khuller. A model for minimizing active processor
time. Algorithmica, 70(3):368–405, 2014.

[Chau and Li, 2020] Vincent Chau and Minming Li. Active
and busy time scheduling problem: A survey. In Complex-
ity and Approximation, volume 12000 of Lecture Notes in
Computer Science, pages 219–229. Springer, 2020.

[Chau et al., 2020] Vincent Chau, Minming Li, Elaine Yin-
ling Wang, Ruilong Zhang, and Yingchao Zhao. Minimiz-
ing the cost of batch calibrations. Theor. Comput. Sci.,
828-829:55–64, 2020.

[Chekuri and Kumar, 2004] Chandra Chekuri and Amit Ku-
mar. Maximum coverage problem with group budget con-
straints and applications. In APPROX-RANDOM, volume
3122 of Lecture Notes in Computer Science, pages 72–83.
Springer, 2004.

[Chen et al., 2019] Lin Chen, Minming Li, Guohui Lin, and
Kai Wang. Approximation of scheduling with calibrations
on multiple machines (brief announcement). In SPAA,
pages 237–239. ACM, 2019.

[Conitzer et al., 2017] Vincent Conitzer, Rupert Freeman,
and Nisarg Shah. Fair public decision making. In EC,
pages 629–646. ACM, 2017.

[Elkind et al., 2022] Edith Elkind, Sonja Kraiczy, and
Nicholas Teh. Fairness in temporal slot assignment. In
International Symposium on Algorithmic Game Theory,
pages 490–507. Springer, 2022.

[Endriss et al., 2022] Ulle Endriss, Arianna Novaro, and
Zoi Terzopoulou. Representation matters: Characteri-
sation and impossibility results for interval aggregation.
In Thirty-First International Joint Conference on Artifi-
cial Intelligence (IJCAI-22), pages 286–292. International
Joint Conferences on Artificial Intelligence Organization,
2022.

[Fain et al., 2018] Brandon Fain, Kamesh Munagala, and
Nisarg Shah. Fair allocation of indivisible public goods.
In EC, pages 575–592. ACM, 2018.

[Fluschnik et al., 2019] Till Fluschnik, Piotr Skowron,
Mervin Triphaus, and Kai Wilker. Fair knapsack. In
AAAI, pages 1941–1948. AAAI Press, 2019.

[Garey and Johnson, 1979] M. R. Garey and David S. John-
son. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[Garg et al., 2021] Jugal Garg, Pooja Kulkarni, and Aniket
Murhekar. On fair and efficient allocations of indivisible
public goods. In FSTTCS, volume 213 of LIPIcs, pages
22:1–22:19. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2021.

[Horel, 2015] Thibaut Horel. Notes on greedy algorithms for
submodular maximization. CORR, 2015.

[Kumar and Khuller, 2018] Saurabh Kumar and Samir
Khuller. Brief announcement: A greedy 2 approximation
for the active time problem. In SPAA, pages 347–349.
ACM, 2018.

[Lenstra and Shmoys, 2020] Jan Karel Lenstra and David B.
Shmoys. Elements of scheduling. CoRR, abs/2001.06005,
2020.

[Li et al., 2021] Bo Li, Minming Li, and Ruilong Zhang.
Fair scheduling for time-dependent resources. In NeurIPS,
pages 21744–21756, 2021.

[Li et al., 2023] Bo Li, Fangxiao Wang, and Yu Zhou. Fair
allocation of indivisible chores: Beyond additive costs. In
NeurIPS, page to appear, 2023.

[Li et al., 2024] Bo Li, Lijun Li, Minming Li, and Ruilong
Zhang. Public event scheduling with busy agents. CoRR,
abs/2404.11879, 2024.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2884

[Pascual et al., 2018] Fanny Pascual, Krzysztof Rzadca, and
Piotr Skowron. Collective schedules: Scheduling meets
computational social choice. In Seventeenth International
Conference on Autonomous Agents and Multiagent Sys-
tems, 2018.

[Schrijver, 1999] Alexander Schrijver. Theory of linear and
integer programming. Wiley-Interscience series in discrete
mathematics and optimization. Wiley, 1999.

[Springer et al., 2022] Max Springer, MohammadTaghi Ha-
jiaghayi, Debmalya Panigrahi, and Mohammad Reza
Khani. Online algorithms for the santa claus problem. In
NeurIPS, 2022.

[Vinci et al., 2022] Cosimo Vinci, Vittorio Bilò, Gianpiero
Monaco, and Luca Moscardelli. Nash social welfare in
selfish and online load balancing. ACM Trans. Economics
and Comput., 10(2):8:1–8:41, 2022.

[Zhou et al., 2023] Shengwei Zhou, Rufan Bai, and Xiaowei
Wu. Multi-agent online scheduling: MMS allocations for
indivisible items. In ICML, volume 202 of Proceedings of
Machine Learning Research, pages 42506–42516. PMLR,
2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2885

	Introduction
	Our Contributions
	Other Related Works

	Preliminaries
	Algorithms for Polynomial T
	The Complete Algorithm
	Agreement Function Computation
	Submodularity of the Agreement Function
	Submodular Maximization with Group Constraints and Imperfect Oracle

	An Algorithmic Framework for Arbitrary T
	Conclusion

