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Abstract

Knowledge distillation has emerged as a highly
effective method for bridging the representa-
tion discrepancy between large-scale models and
lightweight models. Prevalent approaches involve
leveraging appropriate metrics to minimize the di-
vergence or distance between the knowledge ex-
tracted from the teacher model and the knowl-
edge learned by the student model. Centered
Kernel Alignment (CKA) is widely used to mea-
sure representation similarity and has been applied
in several knowledge distillation methods. How-
ever, these methods are complex and fail to un-
cover the essence of CKA, thus not answering
the question of how to use CKA to achieve sim-
ple and effective distillation properly. This paper
first provides a theoretical perspective to illustrate
the effectiveness of CKA, which decouples CKA
to the upper bound of Maximum Mean Discrep-
ancy (MMD) and a constant term. Drawing from
this, we propose a novel Relation-Centered Ker-
nel Alignment (RCKA) framework, which practi-
cally establishes a connection between CKA and
MMD. Furthermore, we dynamically customize the
application of CKA based on the characteristics
of each task, with less computational source yet
comparable performance than the previous meth-
ods. The extensive experiments on the CIFAR-100,
ImageNet-1k, and MS-COCO demonstrate that our
method achieves state-of-the-art performance on
almost all teacher-student pairs for image classi-
fication and object detection, validating the effec-
tiveness of our approaches. Our code is available in
https://github.com/Klayand/PCKA.

1 Introduction

Tremendous efforts have been made in compressing large-
scale models into lightweight models. Representative meth-
ods include network pruning [Frankle and Carbin, 2019],
model quantization [Wu et al, 2016], neural architec-
ture search [Wan er al., 2020] and knowledge distilla-
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tion (KD) [Hinton et al., 2015]. Among them, KD has re-
cently emerged as one of the most flourishing topics due to
its effectiveness [Liu et al., 2021b; Huang et al., 2022; Gong
et al., 2023; Shao et al., 2023a] and wide applications [Chong
et al., 2022; Chen et al., 2023; Shao et al., 2023b]. Particu-
larly, the core idea of KD is to transfer the acquired repre-
sentations from a large-scale and high-performing model to
a lightweight model by distilling the learning representations
in a compact form, achieving precision and reliable knowl-
edge transfer. There are two mainstream approaches for dis-
tilling knowledge. The first approach is the logit-based dis-
tillation, which aims to minimize the probabilistic prediction
(response) scores between the teacher and student by lever-
aging appropriate metrics [Zhao et al., 2022; Hinton et al.,
2015]. The other is feature-based distillation, which inves-
tigates the knowledge within intermediate representations to
further boost the distillation performance [Yang et al., 2022b;
Liu et al., 2021a; Chen et al., 2021; Ahn et al., 2019]. Among
them, the design of metrics is essential in knowledge trans-
fer and has been attractive from academic research. Specif-
ically, Kornblith ar al [2019] proposes the Centered Kernel
Alignment (CKA) for the quantitative understanding of rep-
resentations between neural networks. CKA not only focuses
on model predictions but also emphasizes high-order feature
representations within the models, providing a comprehen-
sive and enriched knowledge transfer.

Recent studies [Qiu et al., 2022; Saha et al., 2022] intro-
duce CKA to quantitatively narrow the gap of learned repre-
sentations between the teacher model and the student model,
which have achieved significant success. However, their de-
signs are excessively complex and need a large amount of
computational resources, making it challenging to achieve
fine-grained knowledge transfer and leading to low scalabil-
ity. Moreover, these methods fail to uncover the essence of
CKA, lacking an in-depth analysis of CKA in knowledge dis-
tillation. The reason why CKA is effective has not been ex-
plored. Therefore, we focus on the theoretical analysis of
CKA and rethink a more reasonable architecture design that
ensures simplicity and effectiveness while generalizing well
across various tasks.

In this paper, we provide a novel perspective to illustrate
the effectiveness of CKA, where CKA is regarded as the up-
per bound of Maximum Mean Discrepancy (MMD) with a
constant term, specifically. Drawing from this, we propose
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Figure 1: The overall framework of the proposed Relation-based Centered Kernel Alignment (RCKA). We first transform the feature map
from the shape of (B, C, HW) into (B, C HW) and then compute the CKA similarity of feature maps between the teacher and the student.
Besides, we compute the inter-class and intra-class CKA similarity of logits between teacher and student. Here, N refers to the number of
samples, and P refers to the corresponding probability of class to which this sample belongs.

a Relation-Centered Kernel Alignment (RCKA) framework,
which practically establishes a connection between CKA and
MMD. Besides, we dynamically customize the application
of CKA on instance-level tasks, and introduce Patch-based
Centered Kernel Alignment (PCKA), with less computational
source yet competitive performance when compared to pre-
vious methods. Our method is directly applied not only to
logit-based distillation but also to feature-based distillation,
which exhibits superior scalability and expansion. We uti-
lize CKA to compute high-order representation information
both between and within categories, which better motivates
the alleviation of the performance gap between the teacher
and student.

To validate the effectiveness of our approaches, we con-
duct extensive experiments on image classification (CIFAR-
100 [Krizhevsky and Hinton, 2009] and ImageNet-1k [Rus-
sakovsky er al., 2015]), and object detection (MS-COCO [Lin
et al., 2014]) tasks. As a result, our methods achieve state-of-
the-art (SOTA) performance in almost all quantitative com-
parison experiments with fair comparison. Moreover, fol-
lowing our processing architecture, the performance of the
previous distillation methods is further boosted in the object
detection task.

Our contribution can be summarized as follows:

e We rethink CKA in knowledge distillation from a novel
perspective, providing a theoretical reason for why CKA
is effective in knowledge distillation.

e We propose a Relation Centered Kernel Alignment
(RCKA) framework to construct the relationship be-
tween CKA and MMD, with less computational source
yet comparable performance than previous methods,
which verifies our theoretical analysis correctly.

e We further dynamically customize the application of
CKA for instance-level tasks and propose a Patch-based
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Centered Kernel Alignment (PCKA) architecture for
knowledge distillation in object detection, which further
boosts the performance of previous distillation methods.

e We conduct plenty of ablation studies to verify the ef-
fectiveness of our method, which achieves comparable
performance on a range of vision tasks. Besides, we vi-
sualize the characteristic information of CKA and dis-
cover new patterns in it.

2 Related Work

Vanilla Knowledge Distillation [Hinton et al., 2015] proposes
aligning the output distributions of classifiers between the
teacher and student by minimizing the KL-divergence, dur-
ing training the emphasis on negative logits can be fine-tuned
through a temperature coefficient, which serves as a form of
normalization during the training process of a smaller stu-
dent network. Tremendous efforts [Tung and Mori, 2019;
Huang et al., 2022; Qiu et al., 2022; Zagoruyko and Ko-
modakis, 2016; Park et al., 2019] have been made on how
to design a good metric to align the distribution between the
teacher and student.

Designing an suitable alignment method for KD can start
from two typical types: Drawing on representations, numer-
ous methods have made significant strides by aligning the in-
termediate features [Zagoruyko and Komodakis, 2016], the
samples’ correlation matrices [Tung and Mori, 2019], and the
output logits between the teacher and student [Huang e al.,
2022]. From a mathematical standpoint, some measure the-
ories are introduced to illustrate the similarity between the
teacher and student, such as mutual information [Ahn et al.,
2019]. Among these, Centered Kernel Alignment (CKA) is a
valuable function for measuring similarity. It simultaneously
considers various properties during similarity measures, such
as invariance to orthogonal transformations. While the ef-
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fectiveness of CKA in KD has been demonstrated in some
works [Qiu et al., 2022; Saha et al., 20221, the essence of
CKA has not been thoroughly explored, and the unavoid-
able additional computational costs also limit its application
prospect.

In this paper, we will revisit CKA in KD and provide a
novel theoretical perspective to prove its effectiveness and an-
alyze how it functions across various distillation settings.

3 Methodolgy

In this section, we first revisit the paradigm of knowledge
distillation and then introduce the formula of Centered Ker-
nel Alignment (CKA). Specifically, we derive the formula of
the relationship between CKA and Maximum Mean Discrep-
ancy (MMD), where CKA can be decoupled as the upper
bound of MMD with a constant term. In light of the above
deduction, we outline the methodology of our paper. We ap-
ply the proposed methods in image classification and object
detection, dynamically customizing CKA for each task.

3.1 The Paradigm of Knowledge Distillation

The existing KD methods can be categorized into two groups.
Particularly, the logits-based KD methods narrow the gap be-
tween the teacher and student models by aligning the soft
targets between them, which is formulated as following loss
term:

Llogits - Dlogits(Ts (O—(ZS; T))v Tt (U(Zﬁ 7_)))7 (l)

where z; and z; are the logits from students and teachers, re-
spectively. And o(-) is the softmax function that produces
the category probabilities from the logits, and 7 is a non-
negative temperature hyper-parameter to scale the smooth-
ness of the predictive distribution. Specifically, we have
0i(%;7) = softmax(exp(2;/7)). Diogits is a loss function to
capture the discrepancy distributions, e.g. Kullback-Leibler
divergence. And T and T; denote the transformation func-
tions in students and teachers, respectively, which usually
refer to the identity mapping in Vanilla KD [Hinton er al.,
2015].

Similarly, the feature-based KD methods, which aim to
mimic the feature representations between teachers and stu-
dents, are also represented as a loss item:

Lfeat - Dfeat (Ts (Fs)a Tt (Ft))v (2)

where F; and F; denote feature maps from students and
teachers, respectively. Transformation modules Ts and T,
align the dimensions of F and F;. Dy, computes the dis-
tance between two feature maps, such as ¢1- or /5 norm.
Therefore, the KD methods can be represented by a generic
paradigm. The final loss is the weighted sum of the cross-
entropy loss L., the logits distillation loss, and the feature
distillation loss:

L= L+ aLlogits + ﬂLfeata 3)

where « and (3 are hyper-parameters controlling the trade-off
between these three losses.
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3.2 Distilling with the Upper Bound

Centered Kernel Alignment (CKA) has been proposed as a
robust way to measure representational similarity between
neural networks. We first prove that CKA measures the co-
sine similarity of the Gram matrix between teachers and stu-
dents.

Theorem 1 (Proof in Appendix! C.1). Let X and Y be N x P
matrices. The CKA similarity |Y T X||% is equivalent to the
cosine similarity of XX " and YY", which denote the Gram
matrix of X and 'Y, respectively. In other words,

Y TX|E
IXTX| P YTY | r
o vee(XX ) Tvec(YY'T)
= vec(XX ) o [vec(Y Y T2’

where vec operator represents reshaping the matrix to a vec-
tor.

Scka(X,Y) =

We then derive the formula of the relationship between
CKA and MMD, where CKA can be regarded as the upper
bound of MMD with a constant term.

Theorem 2 (Proof in Appendix C.2). Maximizing CKA sim-
ilarity is equivalent to minimizing the upper bound of MMD
distance:

1Y TX||%
| XTX||p[|YTY | p
< =N (B (i, 7)) — Ei [, )] + 2,

where the inequality is given by Jesen’s inequality.

= —NE,;[(zi, ;) — (yi, y;)]” +2

According to Jesen’s inequality, CKA can be decoupled as
the upper bound of MMD with a constant term. The first
term corresponds to minimizing the upper bound of MMD
distance with the RKHS kernel. In contrast, the latter constant
term acts as a weight regularizer, enhancing the influence of
MMD, where it promotes the similarity between features of
the same batch, not only instances in the same class but also
in different classes. On one hand, optimizing the upper bound
of MMD, which has additional stronger constraints, allows it
to converge to the optimal solution more quickly and stably.
On the other hand, the latter term serves as a weight scaling
mechanism, effectively avoiding the challenges of optimiza-
tion caused by excessively small MMD values, which result
in small gradients.

According to the deduction, we successfully transformed
our optimization objective from maximizing CKA to mini-
mizing the upper bound of MMD, which makes our method
more intuitive and concise. Building upon these findings, we
propose our methods, which are more effective than previous
methods.

3.3 Relation-based Centered Kernel Alignment

As illustrated in Fig. 1, we propose a Relation Centered
Kernel Alignment (RCKA) framework in image classifica-
tion. In this framework, we leverage CKA as a loss func-
tion to ensure that the centered similarity matrix is distilled

! Appendix can be referred to https://arxiv.org/abs/2401.11824
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Figure 2: The overall framework of PCKA. We dynamically customize the framework of proposed method based on the characteristics of
object detection. In this framework, we first patch the featuremap of the teacher and student with the patchsize (Pg, Pw ), then transform the
featuremap to obtain the Gram matrix between each patch. Finally, we calculate the loss Lpck a, and get average from dimension C. Here,
B,C, H, W refer to the batchsize, channels, height and width of the featuremap, respectively. Np,,, Np,, denote the number of patches

cutting along the height and width, respectively.

rather than forcing the student to mimic the teacher‘s simi-
larity matrix with a different scale. This is very important
because a model‘s discriminative capability is dependent on
the distribution of its features rather than its scale, which is
inconsequential for class separation [Nguyen er al., 2020;
Orhan and Pitkow, 2017].

Assume we have a large-scale teacher model ¢ and a
lightweight student model s. The activation map from layer

[ of the teacher is denoted as Ft(l) € Rbxexhxw yhereas

the activation map of layer I’ of the student is denoted as

FW) ¢ Rbxe'xh'xw' . b and 4 denote the channel, height,
and width of the teacher, whereas ¢’, A’ and w’ denote that of
the student. The mini-batch size is denoted by b. The logits
of the teacher and student are denoted as z; € RV*F and
zs € RVXP /, where N and P (or P’) refer to the number
of samples and the corresponding probability for which class
this sample belongs to. Therefore, the formula of our method,
similar to Eqn. 3, is represented as:

Lreka = Lok + aLrcka

“
+ B(LlntrafLCKA + LInterfLCKA)a

where « and [ are hyper-parameters controlling the trade-

off between the features loss Lrcka and logits loss

(Lintra—L.cKA + Linter—LCKA)-

The Lrcka, Lintra—Lcka and Linger—Loka are repre-
sented as:
Lrcka = Scka(T(Fy), T(Fy)), (5)
Lintra—Leka = Scka (2t 2s), (6)
Linter—Lcka = Scka (2, 2]), 0

where T in Eqn. 5 refers to the transformation module
becxhxw _>Rb><chw_
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Compared with the previous methods, our method has su-
perior scalability and expansion and can be directly applied
to both feature and logits distillation. We calculate the Gram
matrix to collect high-order inter-class and intra-class rep-
resentations, encouraging the student to learn more useful
knowledge. Also, we provide the relationship between CKA
and MMD in Appendix C.2 to better demonstrate the theoret-
ical support of our method.

Because the value of CKA ranges from [0, 1], at the begin-
ning of the training process, Lo g plays a more important role
than all CKA losses to drive the optimization of the student,
which helps the student avoid matching extremely complex
representations.

3.4 Patch-based Centered Kernel Alignment

In this subsection, we further adapt the proposed RCKA to
instance-level tasks such as object detection. However, di-
rectly applying RCKA to instance-level tasks may deteriorate
performance, as the above tasks are usually trained with a
small size of mini-batches (e.g. 2 or 4 per GPU), causing
the failure of the Gram matrix to collect enough knowledge.
Besides, increasing the mini-batch size requires a significant
amount of computational resources, making it infeasible in
practice. Thus, we dynamically customize our RCKA method
for object detection.

Recent works [Shu et al., 2021; Heo et al., 2019] find that
distilling the representations of intermediate layers is more
effective than distilling the logits in object detection. There-
fore, we adjust our method to only target intermediate lay-
ers. We follow our core idea in the classification task, which
calculates the similarities between different instances by us-
ing CKA. Hence, we divide the image feature maps into sev-
eral patches and compute the similarities between different
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Architecture Same Different
S Teacher RN-110  RN-110  WRN-40-2 WRN-40-2 RN-32x4 VGG-13 | WRN-40-2 RN-32x4 VGG-13
Distillation 74.31 74.31 75.61 75.61 79.42 74.64 75.61 79.42 74.64
Type Student RN-20 RN-32  WRN-40-1 WRN-16-2 RN-8x4 VGG-8 SN-V1 SN-V1 MN-V2

69.06 71.14 71.98 73.26 72.50 70.36 70.50 70.50 64.60

FitNet [2014] 68.99 71.06 72.24 73.58 73.50 71.02 73.73 73.59 64.14

ATKD [2016] 70.22 70.55 72.77 74.08 73.44 71.43 73.32 72.73 59.40

SPKD [2019] 70.04 72.69 72.43 73.83 72.94 72.68 74.52 73.48 66.30

CCKD [2019] 69.48 71.48 72.21 73.56 72.97 70.71 71.38 71.14 64.86

RKD [2019] 69.25 71.82 72.22 73.35 71.90 71.48 72.21 72.28 64.52

Feature-based VID [2019] 70.16 70.38 73.30 74.11 73.09 71.23 73.61 73.38 65.56
CRD [2020] 71.46 73.48 74.14 75.48 75.51 73.94 76.05 75.11 69.73

OFD [2019] - 73.23 74.33 75.24 74.95 73.95 75.85 75.98 69.48

ReviewKD [2021] - 71.89 75.09 76.12 75.63 74.84 77.14 76.93 70.37

ICKD-C [2021a] 7191 74.11 74.63 75.57 75.48 73.88 75.19 74.34 67.55

DPK [2022] 72.44 74.89 75.27 76.42 - 74.96 74.43 76.00 68.63

FCKA(ours) 71.49 73.64 74.70 75.53 74.93 74.35 75.98 75.67 68.97

KD [2015] 70.67 73.08 73.54 74.92 73.33 72.98 74.83 74.07 67.37

DKD [2022] - 74.11 74.81 76.24 76.32 74.68 76.70 76.45 69.71

Logit-based DIST [2022] 69.94 73.55 74.42 75.29 75.79 73.74 75.23 75.23 68.48
IKL-KD [2023] - 74.26 74.98 76.45 76.59 74.88 77.19 76.64 70.40

NKD [2023] 71.26 73.79 75.23 76.37 76.35 74.86 76.59 76.90 70.22

LCKA(ours) 70.87 73.64 74.63 75.78 75.12 74.35 76.12 76.43 69.37

Combined SRRL [2021] 71.51 73.80 74.75 75.96 75.92 74.40 76.61 75.66 69.14
RCKA (ours) 72.26 74.31 75.34 76.51 76.11 74.97 77.21 76.97 70.12

Table 1: Results on the CIFAR-100 test set. “Same” and “Different” in the first row refer to whether the model architecture is the same for
teachers and students. Combined distillation type means that this method transfers the knowledge both on the features and logits. Our methods
surpass almost all algorithms with the same distillation type. “RN”, “WRN”, “SN”, and “MN” denote ResNet, Wide ResNet, ShuffleNet, and

MobileNet, respectively.

Architecture Accuracy Feature-based Logit-based Combined
Teacher Student Teacher Student| OFD CRD ReviewKD ICKD-C MGD [2022b]| KD RKD DKD DIST|SRRL Ours
ResNet-34  ResNet-18 | 1op-1 7331 69.76 [71.08 71.17  71.61 72.19 71.80 70.66 70.34 71.70 72.07|71.73 72.34
) Top-5| 91.42 89.08 [90.07 90.13  90.51 90.72 90.40 89.88 90.37 90.41 90.42|90.60 90.68

. Top-1| 76.16 70.13 [71.25 71.37  72.56 - 72.59 70.68 - 72.05 73.24|72.49 72.79

ResNet-50 MobileNet-V1 i sl 9286 89.49 {9034 90.41  91.00 - 90.74 (9030 - 91.0591.12|90.92 91.01

Table 2: Results on the ImageNet validation set. We use ResNet-34 and ResNet-50 released by Torchvision [Marcel and Rodriguez, 2010] as

our teacher’s pre-training weight.

patches.

Our redesigned method is illustrated in Fig. 2. In this
framework, we first patch the feature maps of the teacher and
student with a patch size of (P, Py ), then transform the fea-
ture maps to get the Gram matrix between each patch. Finally,
we calculate the loss Lpck o and get the average from dimen-
sion C. Here, Np,, and Np,, denote the number of patches
cutting along the height and width, respectively. Therefore,
the Patch-based CKA loss is represented as:

Lpcka = vScka(Np, - Np . Np. - Np, ), (8)

where N3, - Np and N, Np —are denoted as the num-
ber of the student patches and the teacher patches, respec-
tively. Usually, Np - Np = Np ,Np . v refers to the
loss weight factor.

4 Experiments

We conduct extensive experiments on image classification
and object detection benchmarks. The image classification
datasets include CIFAR-100 [Krizhevsky and Hinton, 2009]
and ImageNet-1k [Russakovsky et al., 2015] and the ob-
ject detection dataset includes MS-COCO [Lin et al., 2014].

Moreover, we present various ablations and analyses for the
proposed methods. More details about these datasets are in
Appendix A. We apply a batch size of 128 and an initial
learning rate of 0.1 for the SGD optimizer on CIFAR-100.
And we follow the settings in [Huang ef al., 2022] for the
ResNet34-ResNet18 pair and the ResNet50-MobileNet pair
on ImageNet-1k. The settings of other classification and de-
tection tasks are in Appendix B.

4.1 Image Classification

Classification on CIFAR-100. We compare state-of-the-
art (SOTA) feature-based and logit-based distillation algo-
rithms on 9 student-teacher pairs. Among them, 6 pairs have
the same structure for teachers and students, and the rest of
them have different architectures. The results are presented
in Tab. 1. Our proposed method outperforms all other al-
gorithms on 4 student-teacher pairs and achieves compara-
ble performance on the rest of them, meanwhile requiring
extremely less computational resources and time consump-
tion than the SOTA methods DPK [Qiu et al., 2022] and Re-
viewKD [Chen et al., 2021]. The comparisons of computa-
tional cost are in Appendix F.
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T—S CM RCNN-X101 [2017]—Faster RCNN-R50 [2015] RetinaNet-X101—RetinaNet-R50 [2017] T—S FCOS-R101—FCOS-R50 [2019]
Type Two-stage detectors One-stage detectors Type Anchor-free detectors

Method AP AP5y AP7;;  APs APy AP, AP AP5y AP7;s APy APy AP Method AP AP5y AP7;s APy APy AP
Teacher 456 641 497 262 496 60.0 41.0 609 440 239 452 540 Teacher 40.8 600 440 242 443 524
Student 384 590 420 215 421 50.3 374 567 39.6 20.0 40.7 497 Student 385 577 41.0 219 428 486
KD [2015] 397 612 430 232 433 517 372 565 393 204 404 495 KD 12015] 399 584 428 236 440 511
COFD [2019] 389 60.1 426 21.8 427 50.7 37.8 583 411 216 412 483 FitNet [2014] | 39.9 586 43.1 231 434 522
FKD [2021] 415 622 451 235 450 553 39.6 588 421 227 433 525 GID [2021] 420 604 455 256 458 542
DIST [2022] 404 617 438 239 446 52.6 39.8 595 425 220 437 530 FRS [2021] 409 603 436 257 452 512
DIST+mimic [2022] | 41.8 624 456 234 46.1 55.0 40.1 594 43.0 232 440 536 FGD [2022a] | 42.1 - - 27.0 46.0 54.6
Ours 414 621 452 235 456 54.9 403 599 43.0 233 442 549 Ours 39.8 590 424 222 436 525
Ours + mimic 424 633 461 243 467 56.1 407 604 434 239 447 551 Ours + mimic | 40.7 60.5 43.1 234 448 53.1

Table 3: Results on the COCO validation set (T—S refers to the distillation from T to S). Here, the content in brackets to the right of “Ours”
refers to the methods applied in the distillation process. In addition, CM RCNN-X101 stands for Cascade Mask RCNN-X101.

T—S GFL-R101—GFL-R50 [2020]

Method AP  AP;y, AP;; APg APy AP;
Teacher 449  63.1 490 280 491 572
Student 402 584 433 233 440 522
FT [2014] 407 58.6 440 237 444 532
Inside GT Box | 40.7 58.6 442 23.1 445 535
DeFeat 40.8 58.6 442 243 446 537

Main Region 41.1 587 444 241 446 536
FGFI [2019] 41.1 58.8 448 233 454 531
FGD [2022a] 413 588 448 245 456 53.0
GID [2021] 415 596 452 243 457 536
SKD [2022] 423 602 459 244 467 556
Our 428 612 463 248 471 554

Table 4: Results on the COCO validation set (T—S refers to the
distillation from T to S). Here, the content in brackets to the right
of “Ours” refers to the methods applied in the distillation process.
In addition, “Inside GT Box” means we use the GT boxes with the
same stride on the FPN layers as the feature imitation regions. “Main
Region” means we imitate the features within the main distillation
region.

Classification on ImageNet-1k. We also conduct exper-
iments on the large-scale ImageNet to evaluate our meth-
ods. Our RCKA achieves comparable results with other algo-
rithms, even outperforms them, as shown in Tab. 2. We find
that with the increasing of categories and instances, it is more
challenging for the student to mimic the high-order distribu-
tion of the teacher. Moreover, in Appendix Tab. 8§, we explore
the feature distillation for ViT-based models on ImageNet-1k.
It is noted that our method outperforms other methods, which
indicates that our method achieves better scalability and per-
formance.

4.2 Object Detection

Detection on MS-COCO. Comparison experiments are
run on three kinds of different detectors, i.e., tow-stage de-
tectors, one-stage detectors, and anchor-free detectors. As
shown in Tab. 3, PCKA outperforms the precious methods
almost on all three kinds of metrics, by aligning the high-
order patch-wise presentations. We believe that aligning fea-
ture maps of the student and teacher in low-order could also
improve the performance of PCKA, driven by mimicking
low-order representations in the early stage and then learn-
ing high-order and complex representations gradually. Thus,
we follow [Huang et al., 2022] by adding auxiliary mimic
loss, i.e., translating the student feature maps from the teacher
feature map by a convolution layer and supervising them

5685

utilizing L£y/5E, to the detection distillation task. We con-
clude from Tab. 3 that PCKA-based mimic loss achieves the
best performance on Cascade RCNN-X101-Cascade RCNN-
R50 and RetinaNet-X101-RetinaNet-R50 pairs. We also con-
duct experiments on the other four architectures, as shown in
Tab. 4 and Appendix Tab. 9. These results further validate
the effectiveness of our proposed method.

4.3 Ablations and Visualizations

We conduct ablation studies in three aspects: (a) the effect of
hyper-parameters. (b) effectiveness of the proposed modules.
(¢) unexplored phenomenon during training.

Ablation studies on hyperparameters. As shown in Tab.
16, Tab. 14 and Tab. 17 in Appendix, we conduct the abla-
tion studies on the size of mini-batch, loss scaling factor y on
Lpcka and the number of intermediate layers for distilling.
We find the local optima values are the mini-batch size 12,
loss scaling factor 10, and 3 layers of distillation.

The upper bound of MMD. In Theorem 2, we derive the
relationship between CKA and MMD, where CKA is the up-
per bound of MMD with a constant term. To validate this,
We conduct the experiment, which is shown in Tab. 6, we no-
tice that CKA, which is the upper bound of MMD, has addi-
tional stronger constraints. Because of this, CKA converges
to the optimal solution more quickly and stably, compared
with MMD.

The dimension to average. In PCKA framework, we cut
the activations of the teacher and student in the shape of
(C,Np, - Np,,, B - Py - Py). We also carry out the experi-
ments of averaging on different dimensions, shown in Tab. 5.
We find averaging on channel dimension is the optima.

Patch distillation. We explore the effectiveness of cutting
activations into patches. As shown in Tab. 7, several stan-
dard distillation methods [Hinton et al., 2015; Zagoruyko and
Komodakis, 2016; Huang et al., 2022] all perform well with
patch cutting, validating the effectiveness of cutting patches.
With the smaller representation distribution in patches, it is
easier to align the teacher and student. Thus, the proposed
PCKA architecture amazingly boosts the previous methods.

Visualize the CKA value. We present some visualizations
to show that our method does bridge the teacher-student gap
in logit-level. In particular, we visualize the logit similarity
for 6 teacher-student pairs in Appendix G. We find that our
method significantly improves the logit-similarity.
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T—S RetinaNet-X101—RetinaNet-R50 T—S RetinaNet-X101—RetinaNet-R50
Method AP AP50 AP75 APS APM APL Method AP AP50 AP75 APS APM APL
Teacher 410 609 440 239 452 540 Teacher 410 609 440 239 452 540
Student 374 567 39.6 200 407 49.7 Student 374 567 396 200 40.7 49.7
Batch avg. 385 579 408 207 415 525 KD 372565 393 204 404 495
Spatial avg. | 39.3 587 419 214 413 509 KD w/ patch 393 587 419 214 413 509
Mix-up avg. | 382 58.1 404 213 419 509 AT 344 523 364 177 372 478
Channel ave. | 403 599 43.0 233 442 549 AT w/ patch 374566 399 208 406 498
DIST 398 595 425 220 437 530
Table 5: The ablation study on the COCO validation set (T—S refers DIST w/ patch 402596 432 227 448 539
0 the distillation from T 20 9. H o el i PCKA w/o patch | 364 558 387 20.6 398 487
0 the distillation from (0] ) ere, we explore whnic 1mension PCKA(ours) 40.3 59.9 43.0 233 44.2 54.9

we should choose to get better results. "Mix-up” means the 1st dis-
tilling layer uses Batch avg. method, the 2nd distilling layer uses
Spatial avg. method and the final distilling layer uses Channel avg.
method

Visualize the training process. We further visualize the
training process of different detectors and the patch effect on
the RetinaNet-X101-RetinaNet-R50 pair. The results are in
Tab. 4 and Tab. 3 in the Appendix.

T—S RetinaNet-X101—RetinaNet-R50

Method AP APs5, AP7;; APg APy, APp
Teacher 41.0 609 440 239 452 540
Student 374 567 39.6 200 40.7 49.7
MMD w/ patch | 385 577 409 222 428 513
PCKA 40.3 599 43.0 233 442 549

Table 6: Experiments on the upper bound of MMD. We derive the
formula that CKA is the upper bound of MMD with a constant term.
From these experiments, we can prove that optimizing the upper
bound of MMD can better improve the performance, compared with
MMD.

Visualize the inference outputs. We first visualize the con-
fusion matrix of the proposed method in Fig. 6, and then vi-
sualize the annotated images of training with/without patches
averaging different dimensions in Fig. 7, respectively. These
figures reveal that our method can collect the similarities be-
tween different classes, and also show the effectiveness of our
method on the object detection task.

5 Discussion

PCKA in image classification. We apply PCKA to the
classification task, and it also outperforms well on the meth-
ods with the same distillation type, as shown in Tab. 15 in
Appendix. However, PCKA performs worse on the teacher-
student pairs with different architectures. As cutting activa-
tions of different architectures contain more dissimilar and
harmful representations, bringing difficulty in transferring
knowledge to the student.

Average on the channel, boosting the performance. The
results in Tab. 7 reveal an interesting phenomenon, where the
performance of the previous distillation methods is boosted
by averaging the loss on channel dimension after the acti-
vations are cut into patches. Instead of directly matching
the whole representation distribution in the activations, cut-
ting patches makes the alignment between the teacher and
student easier with a smaller representation distribution in
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Table 7: Ablation study of distillation methods with(w/) or with-
out(w/0) patch on the COCO validation set (T—S refers to the dis-
tillation from T to S). Here, we surprisingly notice that previous dis-
tillation method performance can be improved by image patching.

patches. Besides, cutting into patches follows the idea in
the classification framework, thus PCKA calculates the inter-
class similarities and intra-class similarities in patches. More-
over, due to the superiority of cosine similarity over distance-
based losses [Boudiaf er al., 2020] and high-order distribution
representations collected by the Gram matrix, PCKA outper-
forms DIST and AT.

Positional information loss. In PCKA, we cut the activa-
tion of the teacher and student into patches, and then flatten
them into a vector. Although this operation damages the orig-
inal positional information, performance does not deteriorate.
We suppose that CKA ensures the focus of the optimization
is the shape of the distribution, rather than the raw values in
the Gram matrix, which is vital because a model‘s discrim-
inative capability is dependent on the distribution of its fea-
tures rather than its scale. Besides, at the beginning, the effect
brought by PCKA is smaller, compared with CE loss. There-
fore, CE loss motivates the optimization of the student model
steadily, and starting from a certain moment, PCKA drives
the student model to align complex and high-order represen-
tations, improving the generalization ability.

6 Conclusion

In this paper, we provide a novel theoretical perspective of
CKA in knowledge distillation, which can be simplified as
the upper bound of MMD with a constant term. Besides, we
dynamically customize the application of CKA based on the
characteristics of each task, with less computational source
yet comparable performance than previous methods. Further-
more, we propose a novel processing architecture for knowl-
edge distillation in object detection task, which can further
boost the performance of previous distillation methods. Our
experimental results, including both qualitative and quantita-
tive ones, demonstrate the effectiveness of our methods. In
future research, we will further explore the relationship be-
tween all similarity metric-based distillation methods, and ex-
plore the theoretical reason why averaging on the channel di-
mension with patches can boost the performance of previous
methods.
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