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Abstract
Previous deep multi-view clustering methods usu-
ally design un-shared encoders to explore the clus-
ter information among multi-view data, but they are
difficult to customize the encoders for individual
views and easily increase information loss. To ad-
dress these issues, we propose a simple yet effec-
tive contrastive multi-view clustering framework.
Specifically, different from using feature-level fu-
sion in previous methods, we first propose a data-
level fusion method to fuse multi-view information,
which produces a fused data to replace all views
and thus avoids customizing networks for different
views. Then, we simulate the data noise and un-
availability in multiple views to design two kinds
of data augmentation for the fused data, making
a shared encoder with simple contrastive learning
to learn robust features and achieve the interaction
across views. As a result, our method is a gen-
eral framework and we base on it to conduct feature
clustering and end-to-end clustering. Extensive ex-
periments demonstrate that our method can explore
the discriminative information in multi-view data
and achieve superior clustering performance.

1 Introduction
Multi-View Clustering (MVC) can leverage rich informa-
tion among multiple views to explore comprehensive cluster
structures in multi-view datasets [Bickel and Scheffer, 2004;
Xu et al., 2013; Zhang et al., 2024], so it has been be-
come an important subdomain for the unsupervised cluster-
ing analysis. In MVC, learning representative features from
multi-view data plays a decisive role in clustering perfor-
mance, and works with different feature learning methods
have been proposed [Ren et al., 2022; Zhang and He, 2023;
Chen et al., 2022]. Motivated by the recent success of deep
learning, research interest is largely paid to study deep MVC
with neural networks [Wen et al., 2022; Fang et al., 2023].

According to the methodology for interacting multi-view
information, existing deep MVC methods can be summarized
into two categories, i.e., feature-level fusion in Figure 1(a)
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and feature-level consistency in Figure 1(b). Feature-level fu-
sion first utilizes un-shared encoder networks to learn deep
features of different views, and then establishes a fusion mod-
ule at the feature-level to achieve information fusion across
all views. On the fused feature, early work directly applies
traditional single-view clustering to MVC, such as subspace
methods and spectral methods [Abavisani and Patel, 2018;
Huang et al., 2019], where decoder networks are usually
stacked behind fusion modules to regularize the fused fea-
ture. Subsequent work incorporates weighting or attention
strategies into fusion modules to quantify the importance of
views [Zhou and Shen, 2020; Yin et al., 2020]. Feature-level
consistency similarly employs different encoders to learn
deep features for individual views, but then conducts consis-
tency optimization objective among features to explore their
mutual information, such as CCA methods and contrastive
learning methods [Andrew et al., 2013; Wang et al., 2015;
Tian et al., 2020]. Recently, contrastive learning based deep
MVC showcases great success, where multiple views of a
sample are used to construct positive pairs and their fea-
tures’ consistency is encouraged by minimizing contrastive
loss [Lin et al., 2021; Xu et al., 2023]. For example, [Trosten
et al., 2021] first perform contrastive learning among mul-
tiple features and then fuse them to generate clustering pre-
dictions. [Xu et al., 2022] propose to learn multi-level fea-
tures and clustering predictions for different views without
feature fusion. The contrastive MVC methods could learn
instance-discriminative features by leveraging views to self-
supervise each others, and has inspired a lot of work to
advance different issues in deep MVC [Lin et al., 2022;
Trosten et al., 2023; Liu et al., 2023; Yan et al., 2023;
Jin et al., 2023; Chen et al., 2023; Yang et al., 2023].

While remarkable progress has been made by existing deep
MVC methods, deep MVC still faces significant challenges.
First, the methods including both feature-level fusion and
feature-level consistency need to build un-shared encoder net-
works for different views to learn features. However, the di-
versity of multi-view data (varying dimensions, sparsity, and
data formats) renders the customization of encoders nearly
impossible. Second, existing methods often employ encoders
of the same structure for different views, resulting in subopti-
mal solutions and model redundancy. Third, the features ob-
tained through more encoders might increase the risk of los-
ing inherent information of data, thereby hindering the sub-
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Figure 1: Comparison of deep MVC frameworks. (a) Feature-level fusion. (b) Feature-level consistency. (c) Our SCM: Data-level fusion
obtains the fused data X̄ which maintains the discriminative information across multi-view data {X1, . . . ,XV }. Noise&Missing multi-view
data augmentation (DAn and DAm) produce X̄n and X̄m, which are then fed into a shared encoder for obtaining features Z̄n and Z̄m,
respectively. Contrastive learning makes Z̄n and Z̄m interact with each other to learn discriminative information from multi-view data, as
well as make the model robust to data noise and unavailability. The trained encoder obtains the final feature Z̄ of data X̄ for clustering.

sequent feature-level fusion or consistency operations from
exploring the useful discriminative information across views.

To address the aforementioned issues, we propose a novel
framework entitled SCM: Simple Contrastive Multi-view
clustering with data-level fusion as shown in Figure 1(c).
Firstly, to avoid using multiple encoder networks as in pre-
vious methods, we propose shifting the fusion step from the
feature-level to the data-level. In order to ensure that the fused
data retains the information within multi-view data, we em-
ploy normalization and concatenation operations to achieve
the data-level fusion without other operations. In this way, the
discriminative information of different views can be encapsu-
lated within different dimensions of the fused data, allowing
us to search for data partitions in the fused data space, and
thus handle multi-view learning problems as conveniently as
single-view learning with a shared encoder network. Sec-
ondly, to enhance the robustness of deep model towards data
noise and unavailability in real-world multi-view scenarios,
we propose noise multi-view data augmentation and miss-
ing multi-view data augmentation to process the fused data.
Furthermore, we employ instance-discriminative contrastive
learning on the two types of augmented data, ensuring that
the learned features are conducive to explore cross-view dis-
criminative information while filtering the effect of noisy and
unavailable data. Thirdly, we leverage the foundational SCM
framework to conduct feature clustering and end-to-end clus-
tering with known and unknown class number. Our main con-
tributions are listed as follows:

• We propose a novel deep multi-view clustering frame-
work (SCM) by data-level fusion for processing multi-
view data, which addresses the challenges of network
customization and redundancy in previous methods.

• We develop two multi-view data augmentation tech-
niques that specifically consider data noise and unavail-
ability, marking contrastive learning with a shared en-
coder can effectively learn useful information from data.

• We implement several variants of our SCM framework
equipped with simple network structure. Extensive ex-
periments indicate that our method achieves comparable
or superior clustering performance relative to state-of-

the-art methods. The simplicity of SCM is advantageous
for its extension to other multi-view learning domains.

Notation definition In this paper, we represent matrices with
uppercase bold letters and vectors with lowercase bold letters.
Given a multi-view dataset {Xv ∈ RN×dv}Vv=1, N and V
respectively denote the sample size and the view number, and
dv is the sample dimensionality of the v-th view data Xv .

2 Method
In this paper, we propose our SCM framework as shown in
Figure 1(c), which not only can avoid the model customiza-
tion for different views (this issue will exist in previous deep
MVC methods as Figure 1(a-b)) by our data-level fusion with
a shared network, but also can learn robust features by our
multi-view data augmentation with contrastive learning.

2.1 Data-Level Fusion and Data Augmentation
To begin with, we introduce the basics in SCM framework,
i.e., data-level fusion and multi-view data augmentation.
Data-level fusion Unlike previous methods that perform fu-
sion operations at the feature-level, we advocate for data-level
fusion of multi-view data to synergistically utilize the dis-
criminative information of multiple views. The fused data
will establish a bridge to mitigate the gap between multi-view
learning and single-view learning, and avoid the redundancy
and customization issues of multi-view encoder networks.

Specifically, we express the data-level fusion as a function:

X̄ = F(X1,X2, . . . ,XV )

= [N (X1),N (X2), . . . ,N (XV )],
(1)

where N (·) denotes the min-max normalization that brings
the variables of different views into a uniform scale without
distorting the ranges of values, [·] is the concatenation oper-
ation, and X̄ ∈ RN×D(D =

∑
v dv) is defined as the fused

data for all views. In this way, the discriminative information
of different views can be encapsulated within different dimen-
sions of the fused data. Traditional feature-level fusion after
dimensionality reduction with different encoders might result
in the loss of information due to data processing inequality.
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Hence, in our data-level fusion, we refrain from employing
complex mappings to ensure that the fused data retains the
discriminative information from all views’ raw data.
Multi-view data augmentation Motivated by the benefi-
cial effects of data augmentation [Shorten and Khoshgoftaar,
2019] in computer vision, we propose multi-view data aug-
mentation techniques targeted for the fused data to increase
model representation ability, which simulates the scenarios of
noisy and unavailable data in practical multi-view learning.

Specifically, considering the presence of noisy data within
multi-view datasets, we design the noise multi-view data aug-
mentation by adding noise on some views for each sample:

X̄n = fn
DA(X̄; p, σ) = [N̄1, N̄2, . . . , N̄V ]. (2)

To be specific, we denote the v-th view data in the fused data
as X̄v = N (Xv) ∈ RN×dv . Then, for the i-th data x̄v

i ∈ X̄v ,
its noise-augmented data n̄v

i ∈ N̄v is generated by

n̄v
i =

{
x̄v
i + ϵ, if δvi < p

x̄v
i , else

(3)

where δvi is randomly sampled from an uniform distribution,
and ϵ ∈ Rdv is random noise sampling from a Gaussian distri-
bution N (0, σ2). p is a threshold that controls the proportion
of noise-augmented data within multi-view data.

Further, given the case of data unavailability in multi-view
datasets, we also design the missing multi-view data augmen-
tation by masking values on some views for each sample:

X̄m = fm
DA(X̄; r) = [M̄1, M̄2, . . . , M̄V ]. (4)

To be specific, we denote the v-th view data in the fused data
as X̄v = N (Xv) ∈ RN×dv . Then, for the i-th data x̄v

i ∈ X̄v ,
its missing-augmented data m̄v

i ∈ M̄v is generated by

m̄v
i = x̄v

i · aiv, s.t.
V∑

v=1

aiv > 0, aiv ∈ A, (5)

where A ∈ {0, 1}N×V is a random indicator matrix, which
ensures that for the i-th sample, data from different views can
be zeroed out to simulate the state of data unavailability while
guaranteeing that at least one view remains available. We
have

∑
i(I{

∑
v aiv < V })/N = r where I{·} denotes the

indicator function, and r is a threshold that controls the pro-
portion of missing-augmented data within multi-view data.

The augmented data X̄n and X̄m are dynamically gener-
ated during training and thus will make SCM can be robust
to the data noise and unavailability by the interaction among
multiple views. Moreover, X̄n, X̄m ∈ RN×D are the same
in data format and can be trained with a shared deep model.

2.2 Contrastive Clustering in SCM Framework
Given the fused data and its augmented data, we present our
SCM equipped with contrastive leaning, as well as its variants
with reconstruction regularization and end-to-end clustering.
Contrastive learning For the augmented data X̄n and X̄m,
we utilize a shared encoder Eθ (parameterized by θ) to extract
their features Z̄n ∈ RN×Z and Z̄m ∈ RN×Z , respectively:{

Z̄n = Eθ(X̄
n),

Z̄m = Eθ(X̄
m).

(6)

We then apply instance-discriminative contrastive learning
on Z̄n and Z̄m, to explore discriminative information across
multiple views within the fused data. Specifically, for a mini-
batch samples B, {z̄ni ∈ Z̄n, z̄mi ∈ Z̄m}i=1,...,|B| are |B|
positive pairs. For each z̄ni , its (2|B| − 2) negative pairs is
{z̄ni , z̄vj}

v=n,m
j ̸=i and {z̄vj}

v=n,m
j ̸=i is denoted as a set of s−. The

InfoNCE [Oord et al., 2018] loss for a single positive pair
with multiple negative pairs is given by:

Ln
i = − log

exp(C(z̄ni , z̄
m
i )/τ)

exp(C(z̄ni , z̄
m
i )/τ) +

∑
z̄∈s− exp(C(z̄ni , z̄)/τ)

,

(7)
where τ denotes a temperature parameter and the distance
between two sample features (e.g., z̄ni ∈ Z̄n and z̄mj ∈ Z̄m)
is measured by cosine similarity:

C(z̄ni , z̄
m
j ) =

z̄ni · z̄mj
∥z̄ni ∥2∥z̄mj ∥2

. (8)

The overall InfoNCE loss for the batch is defined as follows:

LCO =
1

|B|

|B|∑
i=1

(Ln
i + Lm

i ). (9)

In this SCM framework, contrastive learning encourages the
encoder to map positive pairs closer together relative to neg-
ative pairs in the feature space, thus learning to discriminate
different samples of the fused data. Specially, the feature Z̄n

can learn from noiseless views in data X̄m, and the feature
Z̄m can learn from available views in data X̄n, so we achieve
the interaction of multi-view information in a shared model
and aim to increase the model robustness. Then, we design
model regularization and end-to-end prediction for clustering.
Reconstruction regularization Since clustering is an unsu-
pervised learning task, using a decoder network to reconstruct
the original data from learned features can naturally create a
self-supervised signal, that encourages the capture of discrim-
inative structures hidden within the data. This reconstruction
regularization has been successfully applied to many deep
MVC methods [Trosten et al., 2023], which typically use un-
shared decoder networks for reconstructing different views.
Within the context of our proposed multi-view data augmen-
tation, we introduce a novel approach by employing a shared
decoder network for achieving reconstruction regularization.

Specifically, we leverage a shared decoder network Dϕ

(parameterized by ϕ) and establish three different reconstruc-
tion losses for the fused data and augmented data as follows:
Ln
RE = 1

|B|
∑|B|

i=1 ∥x̄i −Dϕ(h̄
n
i )∥22, h̄n

i ∈ H̄n,

Lm
RE = 1

|B|
∑|B|

i=1 ∥x̄i −Dϕ(h̄
m
i )∥22, h̄m

i ∈ H̄m,

L−
RE = 1

|B|
∑|B|

i=1 ∥x̄i −Dϕ(h̄i)∥22, h̄i ∈ H̄,

(10)

where H̄n, H̄m, H̄ are the hidden features between data
X̄n, X̄m, X̄ and features Z̄n, Z̄m, Z̄, respectively. θ

′
de-

notes partial network parameters within θ. For example, we
have H̄n = Eθ′ (X̄n) and Z̄n = Eθ(X̄

n) = Eθ\θ′ (H̄n).
It is noteworthy that we impose the reconstruction loss on
H̄n, H̄m, H̄ to avoid the inductive conflicts with the con-
trastive loss applied on Z̄n, Z̄m [Xu et al., 2022]. Then, the
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overall reconstruction loss is formulated as follows:

LRE = Ln
RE + Lm

RE + L−
RE . (11)

This overall reconstruction loss could be viewed as a com-
bination of different reconstruction regularization [Xu et al.,
2023]. Concretely, Ln

RE encourages the hidden feature H̄n to
reconstruct the noiseless data X̄ from noise-augmented data
X̄n. Lm

RE enables the hidden feature H̄m to reconstruct the
available data X̄ from missing-augmented data X̄m. L−

RE

regularizes the hidden feature H̄ obtained by the noiseless
and available data X̄, for usage in subsequent clustering tasks.
End-to-end clustering Existing deep MVC methods for
achieving end-to-end clustering primarily employ two strate-
gies: I) In feature-level fusion methods, they often obtain
cluster pseudo-labels on the fused features and then train a
cluster network through self-training; II) For feature-level
consistency methods, they usually set up separate cluster net-
works for different views and achieve consistent clustering
through contrastive learning. It is worth noting that existing
methods tend to require pre-setting the number of clusters K
to design the dimensionality of the model’s cluster network
for each dataset, and our experiments in Section 3.2 find that
fixed K is harmful for clustering performance. To make our
model architecture compatible with different Ks of datasets,
we propose end-to-end clustering on the basis of our SCM.

Specifically, we add a H-dimensional cluster network be-
hind the feature Z̄ and obtain clustering labels Q̄ ∈ RN×H :

Q̄ = Softmax(Rω(Z̄)), (12)

where Rω is a linear MLP network that organizes the dimen-
sionality of clustering prediction to H . To extract known
clustering structure information from Z̄, we utilize a clus-
tering method that does not depend on class number, such
as Density Peaks [Rodriguez and Laio, 2014], which auto-
matically searches the feature space to obtain a set of an-
chor points A = {aj}|A|

j=1,aj ∈ RZ . Further, through
nearest neighbor assignment, we obtain the clustering labels
P̄ ∈ {0, 1}N×H (pij ∈ P̄) for N samples as follows:{

pij∗ = 1, j∗ = argminj ∥z̄i − aj∥2,
pij = 0, j ̸= j∗.

(13)

Actually, we have P̄ = [{0, 1}N×|A|; {0}N×(H−|A|)]. As
a result, the first |A| dimensions of the matrix P̄ contain
the cluster information in the learned features, and the last
(H − |A|) dimensions are all zeros. To achieve end-to-end
clustering, we minimize the following mean squared error:

LEC =
1

|B|

|B|∑
i=1

∥p̄i − q̄i∥22, p̄i ∈ P̄, q̄i ∈ Q̄. (14)

In implementation, the dimensionality number H can be set
much larger than the potential class number of dataset, thus
decoupling the design of the model’s neural network structure
from specific dataset. The final clustering prediction can still
be obtained as follows, e.g., for the i-th sample:

yi = argmax
j

qij , qij ∈ Q̄. (15)

Algorithm 1: The training steps of SCM framework

Input: Multi-view dataset {X1,X2, . . . ,XV }
Setting: SCM(λ1, λ2 = 0), SCMRE(λ1 = 1, λ2 = 0),
SCMEC(λ1 = 0, λ2 = 1), SCMEC+RE(λ1, λ2 = 1),
rates of data augmentation p, r, std σ, batch size |B|,
network parameters θ, ϕ, ω, learning rate η

Data-level fusion X̄ = F(X1,X2, . . . ,XV )
while not converging do

Sampling mini-batch data X̄B from X̄
X̄n

B = fn
DA(X̄B; p, σ), X̄

m
B = fm

DA(X̄B; r)
Compute H̄n

B, H̄
m
B , H̄B, Z̄

n
B, Z̄

m
B

if λ1 == 0 then
Compute L = LCO

Update θ ← θ − η∇L(θ)
else

Compute L = LCO + LRE

Update θ, ϕ← θ, ϕ− η∇L(θ, ϕ)

if λ2 == 1 then
Compute Z̄ on X̄ and infer P̄ on Z̄
while not converging do

Sampling mini-batch data X̄B from X̄
X̄n

B = fn
DA(X̄B; p, σ), X̄

m
B = fm

DA(X̄B; r)
Compute H̄n

B, H̄
m
B , H̄B, Z̄

n
B, Z̄

m
B , Q̄B

if λ1 == 0 then
Compute L = LCO + LEC

Update θ, ω ← θ, ω − η∇L(θ, ω)
else

Compute L = LCO + LRE + LEC

Update θ, ϕ, ω ← θ, ϕ, ω − η∇L(θ, ϕ, ω)

Output: Z̄ for SCM/SCMRE , Q̄ for SCMEC/EC+RE

Finally, we summarize the loss function in our method as

L = LCO + λ1LRE + λ2LEC . (16)

We leverage λ1, λ2 ∈ {0, 1} to obtain different variants of
SCM framework: SCM(λ1, λ2 = 0), SCMRE(λ1 = 1, λ2 =
0), SCMEC(λ1 = 0, λ2 = 1), SCMEC+RE(λ1, λ2 = 1),
whose training steps are shown in Algorithm 1.

Complexity analysis We let E denote the total training
epochs, V and N are the number of views and the sample
size of a dataset, |B| is the batch size in the mini-batch op-
timization. For each batch, the computational complexity of
multi-view data augmentation is 2O(|B|), that of contrastive
loss, reconstruction loss, and end-to-end clustering loss are
O(|B|2), 3O(|B|), and O(|B|), respectively. The computa-
tional complexity to obtain clustering labels is O(N). For E
training epochs, the computational complexity approximates
to O(N) + (EN/|B|)O(|B|2) which is linear to sample size
N . In terms of the memory consumption of deep model, the
complexity in our SCM is 1/V of that in previous deep MVC
methods, as the deep model in SCM is a shared network while
that of other methods need V individual networks.
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BDGP DIGIT Fashion NGs VOC WebKB DHA COIL-20 Avg.
ACC (mean±std%)

K-Means 44.3±2.9 78.1±2.3 71.2±1.3 20.6±0.2 48.7±0.8 61.7±0.8 65.6±2.9 42.1±3.0 54.0
CPSPAN 69.0±8.7 79.2±0.1 74.1±5.1 35.2±0.2 45.2±2.2 77.1±2.1 66.3±3.3 81.3±2.8 65.9
CVCL 90.7±7.8 99.5±0.1 99.0±0.1 56.8±7.7 31.5±4.1 74.1±3.0 66.2±6.3 100.0±0.0 77.2
DSIMVC 98.3±0.3 98.8±0.5 83.5±3.2 63.0±6.2 21.2±1.7 70.2±1.4 63.5±4.6 78.0±4.2 72.1
DSMVC 52.3±7.9 82.7±3.4 75.3±6.2 35.2±2.7 63.3±3.4 66.3±1.8 76.2±1.3 81.6±3.8 66.6
MFLVC 98.3±1.2 99.6±0.0 99.3±0.0 90.8±0.0 29.2±0.4 67.2±2.1 71.6±1.1 100.0±0.0 82.0
SCM [ours] 96.2±0.3 98.9±0.1 98.0±0.2 96.8±0.4 60.7±4.6 68.9±1.7 81.4±2.1 100.0±0.0 87.6
SCMRE [ours] 97.1±0.4 98.8±0.1 98.0±0.1 96.5±0.1 62.9±0.1 72.5±2.4 80.4±0.1 100.0±0.0 88.3

NMI (mean±std%)
K-Means 57.3±4.1 72.2±1.1 66.8±1.2 1.9±0.3 36.0±2.0 0.2±0.1 79.8±0.1 63.3±1.0 47.2
CPSPAN 63.6±7.7 78.6±2.0 76.9±2.2 21.5±1.5 48.8±1.7 16.6±4.2 77.5±1.0 88.7±1.4 59.0
CVCL 78.5±0.9 98.5±0.2 97.5±0.1 31.7±7.8 31.7±2.6 24.6±2.6 75.4±3.3 100.0±0.0 66.6
DSIMVC 94.4±0.7 96.8±0.8 82.3±1.8 50.2±5.9 20.4±1.1 25.0±1.3 77.8±4.3 90.7±1.7 67.2
DSMVC 39.6±1.0 81.0±3.0 70.8±4.3 8.2±1.3 72.3±4.1 13.4±1.2 83.6±0.8 89.1±2.3 57.3
MFLVC 95.1±0.5 98.7±0.0 98.3±0.0 80.2±0.0 28.0±0.1 24.5±1.4 81.2±0.4 100.0±0.0 75.8
SCM [ours] 88.5±2.7 96.8±1.1 95.8±0.3 90.0±1.2 62.2±4.3 9.4±2.1 84.0±4.1 100.0±0.0 78.3
SCMRE [ours] 91.3±0.2 96.6±0.1 95.7±0.0 89.3±0.1 62.9±1.1 26.8±5.2 84.0±0.1 100.0±0.0 80.8

ARI (mean±std%)
K-Means 25.7±5.8 63.1±1.9 57.4±1.0 21.0±0.0 12.4±3.4 1.4±0.0 59.7±2.7 39.7±2.1 35.1
CPSPAN 51.1±12.4 70.7±2.3 65.1±4.3 9.2±0.5 28.5±1.4 12.5±2.1 62.7±1.5 77.9±1.5 47.2
CVCL 73.4±12.3 98.8±0.2 97.7±0.2 28.1±10.7 18.9±3.3 19.8±3.3 53.6±6.3 100.0±0.0 61.3
DSIMVC 95.7±0.6 97.3±1.0 74.6±3.7 43.9±6.3 10.0±2.2 16.2±2.3 55.6±4.7 74.4±4.0 58.5
DSMVC 26.5±7.4 68.6±3.7 61.5±6.6 5.8±1.2 56.5±3.9 10.6±1.0 60.8±1.1 78.8±3.7 46.1
MFLVC 95.9±0.8 99.1±0.0 98.6±0.0 79.2±0.0 15.8±3.9 4.5±2.1 62.5±0.7 100.0±0.0 69.4
SCM [ours] 90.7±1.7 97.5±0.4 95.6±0.7 92.1±4.7 52.6±0.9 4.7±1.0 70.3±0.2 100.0±0.0 75.4
SCMRE [ours] 93.0±1.0 97.3±0.2 95.6±0.1 91.4±0.2 54.5±0.1 15.5±4.3 70.0±1.1 100.0±0.0 77.2

Table 1: Clustering results with known class number on 8 datasets, where bolded and underlined values, respectively, represent the best and
the second best results. The performance of our SCM and SCMRE is evaluated by K-Means on their learned features.

3 Experiment
3.1 Experimental Setup
Datasets We conduct experiments on 8 public datasets, in-
cluding BDGP [Cai et al., 2012], DIGIT [Peng et al., 2019],
Fashion [Xiao et al., 2017], NGs [Hussain et al., 2010],
VOC [Everingham et al., 2010], WebKB [Sun et al., 2007],
DHA [Lin et al., 2012], and COIL-20 [Nene et al., 1996].
Baselines The comparison methods include K-Means [Mac-
Queen, 1967], Density peak clustering [Rodriguez and Laio,
2014], and deep MVC methods CPSPAN [Jin et al., 2023],
CVCL [Chen et al., 2023], DSIMVC [Tang and Liu, 2022a],
DSMVC [Tang and Liu, 2022b], MFLVC [Xu et al., 2022].
Implementation details To facilitate a fair comparison, we
employed the same network architecture in [Xu et al., 2022;
Tang and Liu, 2022a] to implement SCM. It is important
to note that whereas previous methods necessitated multi-
ple encoder-decoder networks, our SCM framework requires
only one. Specifically, the encoder network structure can be
depicted as a fully connected (Fc) MLP [Rosenblatt and oth-
ers, 1962] with the configuration of X̄ − Fc500 − Fc500 −
Fc2000 − H̄ − Z̄ − Q̄, and the decoder network structure is
H̄ − Fc2000 − Fc500 − Fc500 − X̄. The activation function
for the cluster network Q̄ is Softmax, while ReLU [Nair and
Hinton, 2010] is used for all other activation functions. For
all datasets used in our experiments, the dimensions of H̄,
Z̄, and Q̄ were set to 256, 128, and 64, respectively. The

optimizer was Adam [Kingma and Ba, 2014] with a learn-
ing rate of 0.0003, and the batch size was set to 256. Both
the noise and missing rates of multi-view data augmenta-
tion were set to 0.25, and the noise variance was 0.4. Our
SCM is implemented by PyTorch and its code is available in
https://github.com/SubmissionsIn/SCM.

3.2 Result Analysis
Tables 1 and 2 showcase the clustering results of all compari-
son methods with known and unknown class number, respec-
tively, where mean values of 5 runs are reported. Evaluation
metrics include clustering ACC, NMI, and ARI.
Clustering with known class number When the class num-
ber is known, we report clustering results of comparison
methods as shown in Table 1. Obviously, our methods, in-
cluding vanilla SCM and reconstruction regularized SCMRE ,
achieve superior clustering performance. Specifically, the av-
erage results across 8 datasets indicate that our SCM achieved
the improvement of 5% in ACC and 2% in NMI compared
to the currently best-performing methods, while SCMRE

achieved the improvement of 6% in ACC and 5% in NMI.
In addition to superior clustering performance, our proposed
data-level fusion makes SCM have simple contrastive multi-
view learning paradigm, which can avoid the issues of model
redundancy and network customization in previous methods.
Clustering with unknown class number To further explore
the impact of the unknown class number, we report end-to-
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BDGP DIGIT Fashion NGs VOC WebKB DHA COIL-20 Avg.
ACC (mean±std%)

Density Peaks 21.8±0.0 18.3±0.0 20.0±0.0 21.0±0.0 9.2±0.0 61.4±0.0 13.8±0.0 39.4±0.0 25.6
CPSPANFCN 20.3±2.4 21.9±0.7 28.9±1.8 34.1±2.2 44.2±1.9 27.6±1.7 46.3±1.9 54.1±1.0 34.7
CVCLFCN 29.8±2.0 44.5±2.5 40.9±5.1 19.8±3.2 25.2±2.6 11.0±2.0 40.0±2.2 75.8±5.0 35.9
DSIMVCFCN 27.0±2.8 46.0±2.0 42.5±4.1 19.8±5.6 19.5±1.6 24.3±5.6 37.5±2.6 78.2±3.6 36.9
DSMVCFCN 19.2±1.0 28.6±1.6 28.2±1.2 11.3±0.6 44.1±2.0 8.2±0.4 62.1±1.9 68.0±1.3 33.7
MFLVCFCN 65.2±1.5 90.0±2.2 95.4±0.3 20.5±1.2 28.8±0.8 29.3±2.3 65.7±1.9 99.0±0.6 61.7
SCMEC [ours] 80.3±2.1 96.5±0.2 67.2±1.3 33.5±4.3 71.7±1.7 48.9±4.3 76.2±1.2 94.1±1.3 71.0
SCMEC+RE [ours] 79.8±8.4 97.0±1.8 85.3±0.3 37.3±1.4 72.6±7.6 54.6±2.4 75.7±4.2 94.6±3.1 74.6

NMI (mean±std%)
Density Peaks 6.3±0.0 36.9±0.0 40.2±0.0 21.6±0.0 49.9±0.0 8.8±0.0 69.1±0.0 68.5±0.0 37.7
CPSPANFCN 55.1±2.2 66.3±0.5 62.0±0.3 34.9±1.4 49.0±1.9 20.0±1.2 75.2±1.1 79.6±1.7 55.3
CVCLFCN 53.4±2.8 67.5±2.0 63.2±3.5 32.3±2.8 27.0±2.0 19.7±0.5 64.4±2.5 87.3±2.5 51.8
DSIMVCFCN 58.1±0.8 73.8±0.5 62.9±0.8 37.7±2.1 20.6±0.8 20.2±0.5 61.9±1.3 89.4±4.2 53.1
DSMVCFCN 50.4±0.6 64.3±1.0 57.2±0.5 20.3±1.0 64.5±1.5 8.2±0.8 76.8±0.5 83.5±0.5 53.1
MFLVCFCN 78.3±0.7 84.2±2.2 96.0±0.1 44.2±0.3 27.5±0.2 21.4±0.4 75.4±1.0 99.6±0.2 65.8
SCMEC [ours] 69.5±2.0 94.6±0.4 68.9±0.3 10.5±4.2 66.8±2.0 11.2±5.2 83.7±4.2 96.5±0.1 62.7
SCMEC+RE [ours] 72.3±0.7 95.6±0.5 84.8±0.1 11.9±2.6 66.8±1.1 17.8±1.7 83.4±4.6 96.6±3.6 66.2

ARI (mean±std%)
Density Peaks 0.2±0.0 12.2±0.0 17.4±0.0 1.1±0.0 2.5±0.0 3.9±0.0 7.0±0.0 36.0±0.0 10.0
CPSPANFCN 16.6±1.2 25.0±0.6 30.5±2.4 11.0±2.0 30.8±3.3 7.5±1.0 40.9±1.5 62.1±0.4 28.1
CVCLFCN 24.2±3.0 41.9±3.6 37.7±5.7 9.2±2.5 14.4±4.0 2.6±0.3 28.6±2.8 73.9±5.7 29.1
DSIMVCFCN 23.3±1.6 45.8±2.5 38.6±4.9 13.2±4.2 9.2±1.2 5.7±1.7 28.2±1.8 77.7±2.9 30.2
DSMVCFCN 14.7±0.5 28.3±0.9 26.4±0.3 2.8±1.3 34.2±0.1 1.1±0.1 52.4±1.4 71.3±0.5 28.9
MFLVCFCN 66.2±1.2 90.0±1.4 94.9±0.2 16.0±0.5 15.8±0.6 7.8±0.9 58.6±2.0 99.2±0.4 56.1
SCMEC [ours] 65.2±2.4 94.0±0.3 60.8±1.2 7.1±4.2 61.5±3.1 3.0±4.3 67.8±0.4 93.3±2.2 56.6
SCMEC+RE [ours] 67.8±11.8 95.7±1.3 79.2±0.2 8.6±1.6 63.3±1.0 15.0±4.2 66.7±4.6 93.1±3.6 61.2

Table 2: End-to-end clustering results with unknown class number across 8 datasets, where the methods marked with FCN , our SCMEC ,
and SCMEC+RE have fixed class number in their end-to-end clustering module (i.e., the output dimension of cluster network is set to 64).

BDGP DIGIT Fashion NGs VOC WebKB DHA COIL-20 Avg.
ACC

SCM w/o DA 42.3 49.1 16.5 34.2 56.4 52.7 56.9 45.2 44.2
SCM w/ fm

DA 63.7 98.7 86.9 42.3 57.1 67.6 82.0 100.0 74.8
SCM w/ fn

DA 59.5 57.1 24.0 59.8 62.5 58.7 74.0 54.6 56.3
SCM 96.2 98.9 98.0 96.8 60.7 68.9 81.4 100.0 87.6

NMI
SCM w/o DA 24.7 45.2 4.1 7.7 54.8 0.2 66.5 57.4 32.6
SCM w/ fm

DA 52.9 96.5 88.7 14.4 54.2 21.1 85.2 100.0 64.1
SCM w/ fn

DA 51.1 59.6 15.7 39.8 63.6 1.8 77.9 67.1 47.1
SCM 88.5 96.8 95.8 90.0 62.2 9.4 84.0 100.0 78.3

ARI
SCM w/o DA 16.2 29.0 1.8 5.3 41.6 0.1 39.0 31.2 20.5
SCM w/ fm

DA 40.9 97.2 81.0 11.5 42.9 12.5 71.7 100.0 57.2
SCM w/ fn

DA 35.7 39.7 5.9 32.2 54.7 -0.4 59.4 43.0 33.8
SCM 90.7 97.5 95.6 92.1 52.6 4.7 70.3 100.0 75.4

Table 3: Ablation experiments on multi-view data augmentation.

end clustering results of different methods in Table 2. If the
class number in models is fixed, previous end-to-end deep
MVC methods often yield degraded results. This is because
end-to-end clustering methods typically depend on the truth
class number of datasets to design their model structures.
In contrast, our methods (SCMEC and SCMEC+RE) still
achieve best performance, for instance, the ACC of SCMEC

and SCMEC+RE have 9% and 13% improvements to the best
comparison methods, respectively. The reason is that our
SCM has the decoupled design between the model structure
and the setting of class number, which transfers the problem
of sensitive class number from the model structure to the den-
sity peak algorithm and is beneficial for its applicability.

BDGP DIGIT Fashion NGs VOC WebKB DHA COIL-20 Avg.
ACC

SCMRE 97.1 98.8 98.0 96.5 62.9 72.5 80.4 100.0 88.3
SCMRE w/o LRE 96.2 98.9 98.0 96.8 60.7 68.9 81.4 100.0 87.6
SCMRE w/o LCO 93.7 80.2 77.3 68.6 47.6 51.0 75.0 65.1 69.8
SCMEC+RE 79.8 97.0 85.3 37.3 72.6 54.6 75.7 94.6 74.6
SCMEC+RE w/o LEC 36.8 39.5 24.8 17.6 35.3 17.1 39.1 51.4 32.7

NMI
SCMRE 91.3 96.6 95.7 89.3 62.9 26.8 84.0 100.0 80.8
SCMRE w/o LRE 88.5 96.8 95.8 90.0 62.2 9.4 84.0 100.0 78.3
SCMRE w/o LCO 84.3 73.2 75.6 53.8 53.4 5.9 80.3 81.0 63.4
SCMEC+RE 72.3 95.6 84.8 11.9 66.8 17.8 83.4 96.6 66.2
SCMEC+RE w/o LEC 44.0 42.5 28.6 16.8 39.3 12.0 56.3 62.8 37.8

ARI
SCMRE 93.0 97.3 95.6 91.4 54.5 15.5 70.0 100.0 77.2
SCMRE w/o LRE 90.7 97.5 95.6 92.1 52.6 4.7 70.3 100.0 75.4
SCMRE w/o LCO 85.0 66.7 67.5 47.4 38.3 -4.5 60.7 65.2 53.3
SCMEC+RE 67.8 95.7 79.2 8.6 63.3 15 66.7 93.1 61.2
SCMEC+RE w/o LEC 25.7 24.8 11.5 4.6 18.0 18.0 26.1 37.3 20.7

Table 4: Ablation experiments on loss functions.

3.3 Ablation Study

In this part, we first investigate the key contributions in our
proposed noise and missing multi-view data augmentation,
and then analyze the different components in loss function.
Multi-view data augmentation As shown in Table 3, firstly,
SCM w/o DA is a variant without any data augmentation,
which achieves unsatisfactory clustering performance. Fur-
thermore, SCM w/ fn

DA and SCM w/ fm
DA are variants that

incorporate the noise multi-view data augmentation and the
missing multi-view data augmentation defined in this paper,
respectively, and they both show significant improvements
over SCM w/o DA. Finally, SCM combines two types of data
augmentation and achieves further substantial improvements,
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(a) ACC/NMI/ARI vs. noise rate p (b) ACC/NMI/ARI vs. missing rate r

Figure 2: Clustering performance with different (a) noise rates and (b) missing rates in multi-view data augmentation.

(a) BDGP (b) DIGIT

Figure 3: ACC vs. {λ1, λ2} on (a) BDGP and on (b) DIGIT.

(a) BDGP (b) DIGIT

Figure 4: Loss and clustering curves on (a) BDGP and on (b) DIGIT.

confirming the importance of our specially designed noise
and missing multi-view data augmentation.
Loss components In Table 4, we conduct ablation studies
on three losses using SCMRE and SCMEC+RE as baselines.
Compared to SCMRE , removing the reconstruction regular-
ization loss in variant SCMRE w/o LRE results in a slight
performance decline, while removing the contrastive loss in
variant SCMRE w/o LCO leads to a severe performance de-
crease. Furthermore, compared to the end-to-end clustering
setting of SCMEC+RE , removing the end-to-end clustering
loss in variant SCMEC+RE w/o LEC also significantly de-
grades model performance. These results indicate that LCO

plays the most crucial role in contrastive multi-view cluster-
ing, and LEC is vital for end-to-end clustering, with LRE

serving a supporting role to regularize the feature learning.

3.4 Model Analysis
In this part, we conduct visualization analysis on the parame-
ters and the training process in our SCM framework.

Data augmentation rates {p, r} In SCM framework, we
tune the noise multi-view data augmentation rate p and the
missing multi-view data augmentation rate r within the range
[0, 0.25, 0.5, 0.75, 1.0], with results depicted in Figure 2. We
observe that moderately increasing p and r significantly bene-
fits the model in learning precise clustering structures within
multi-view datasets. The underlying mechanism is that our
noise and missing multi-view data augmentation compel the
model to focus on the interaction and complementarity across
views, thereby making the feature learning more robust to in-
herent noise and unavailable samples in multi-view data. In
comparison experiments, p and r were set to 0.25.
Trade-off parameters {λ1, λ2} In our method, trade-off pa-
rameters λ1, λ2 ∈ {0, 1} control the different settings in SCM
framework. In Figure 3, we adopt the setting of SCMEC+RE

and further explore the sensibility of λ1 and λ2 within the
range of [10−3, 10−2, 10−1, 100, 101, 102, 103]. The optimal
values of λ1 and λ2 are different across different datasets
and this outcome is within expectations. Trade-off parame-
ters generally have a minimal sensibility on the performance
within the range of [10−1, 101]. In all experiments, we did
not specifically tune λ1 and λ2, and their values were fixed at
0 or 1 to implement different variants of SCM.
Training loss and performance In Figure 4, we record the
loss and clustering accuracy curves during the training pro-
cess of SCM. It is observed that the loss curve exhibits a
smooth and consistent decline, indicating that SCM frame-
work has well convergence. Concurrently, the steadily rising
clustering accuracy suggests that the model is progressively
learning the correct clustering structure of the dataset.

4 Conclusion
In this paper, we propose a novel contrastive multi-view
clustering framework with data-level fusion, namely SCM.
Specifically, our proposed data-level fusion effectively inte-
grates multi-view information and avoids the issues of cus-
tomization and redundancy of networks in previous methods.
Moreover, we define two types of multi-view data augmen-
tation approaches based on the data-level fusion, which en-
hances the robustness of model towards noisy and unavailable
views in multi-view data. We apply the SCM framework to
feature clustering and end-to-end clustering with known and
unknown class number, and extensive experiments validate
its effectiveness and superiority. Our SCM simplifies multi-
view contrastive learning with a shared deep network, and we
hope it could bring fresh insights into multi-view learning.
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