

Waikato Local Authority Shared Services (WLASS) / CoLAB LiDAR Data Capture Services LiDAR Processing Report Block A (Rev2)

Contract Number: AU411

Surveyed By: iXblue Pty Ltd / Ocean Infinity

Processing Completed By: WOOLPERT

Document Date: 8 June 2023

Ocean Infinity (Australia) Pty Ltd ABN 61 128 811 978 oceaninfinity.com

© 2023 Ocean Infinity (Australia) Pty Ltd. All Rights Reserved.

Document Control

Woolpert Inc. Representative

Name	Brian Foster
Position	Woolpert Senior Associate
Address	333 North Alabama St. Suite 200 Indianapolis, IN 46204
Telephone	+1 317 809 4685
Email	Brian.Foster@woolpert.com

Ocean Infinity Supervisor

Name	Dave Field
Position	Managing Director
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 277 755 532
Email	david.field@oceaninfinity.com

Ocean Infinity Project Manager

Name	Luke Leydon
Position	NZ Account Manager, Airborne
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 226 511 732
Email	luke.leydon@oceaninfinity.com

Client Representative

Name	Rolf Boswell	
Position	Project Delivery Manager	
Address	6/34D Lake Street, Cambridge 3434 NEW ZEALAND	
Mobile	+64 27 420 0239	
Email	mail rolf.boswell@colabsolutions.govt.nz	

Document Revision

Revision No	Issue Purpose	Prepared	Checked	Approved
0	Issue Block A LiDAR Processing Report	L Leydon	BF/MM	D Field
1	Revise	L Leydon	D Field	L Leydon
2	Revise with latest supply	L Leydon	D Field	L Leydon

Approval for Issue

Name	Signature	Date
Luke Leydon	Jake Jeydon	08 June 2023

Revision History

Item	Description of change	Section	Revision
1	Added extra section to introduction	1.1,	1
2	Added Appendix B	Appendix B	1
3	Overlap flag methodology updated.	2.7	1
4	Figure 10 supplemented by additional figure (11) to reflect most recent supply.	Figure 10/11	1
5	Figure 40 supplemented by additional figure (41) to reflect most recent supply	Figure 40/41	1
6	Contours methodology changed to reflect AAM methodology	4.7	1
7	New flightline shapefile image added.	Figure 42/43	1
8	Added extra section to introduction with supporting figures	1.2	2
9	New LP360 Tables added	Tables 2,3,4	2
10	New Point Cloud Statistics added	Figure 25	2
11	Contours methodology removed, under internal discussion, methodology to be presented to WRC and LINZ prior to generation	4.7	2

Contents

1	Intro	oduction	9
	1.1	Revision 1	9
	1.2	Revision 2	10
2	LiDA	AR Data Processing and Handling	17
	2.1	The ASPRS LAS File format	17
	2.2	Time stamp of navigational data	18
	2.3	Datums and coordinate reference system	19
	2.4	Geometric Calibration	20
	2.5	Positional accuracy validation	20
	2.6	Use of the LAS withheld flag	20
	2.7	Use of the LAS v1.4 Overlap Flag	20
	2.8	Point Classification	21
	2.9	Classification Accuracy	26
	2.10	Classification Consistency	28
	2.11	Classification Consistency – Bridges	29
3	LiDA	AR Hydro-Flattening QAQC	33
4	LiDA	AR Deliverables QAQC	40
	4.1	Reporting and metadata	40
		4.1.1 Project reports	40
		4.1.2 Extents	40
		4.1.3 Flight Lines	42
	4.2	Classified point cloud tiles	43
	4.3	Elevation models	45
		4.3.1 Bare-Earth Digital Elevation Models (DEM)	46
		4.3.2 Digital Surface Models (DSM)	47
	4.4	Break lines	50
	4.5	GNSS data	50
	4.6	Backed up project source data	50
	4.7	Contours	51
5	LiDA	AR QA Tiles	52
	5.1	LAS Tiles QAQC - LASQC	52
	5.2	File naming	53
	5.3	Delivery Folder	54
6	Setb	packs and Solutions	55
	6.1	Missing ground points under vegetation and low vegetation classification difficulties	55
	6.2	Production Delays to Block A	55
	6.3	Review Process	55
	6.4	Data Resupply	55
7	Resu	ults Acceptance & Signoff	56

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Tables

Table 1: Point Classifications	21
Table 2: Representative output from LP360 illustrating LAS file specification compliance	45
Table 3: Condensed output from LP360 illustrating DEM file specification compliance	47
Table 4: Condensed output from LP360 illustrating DSM file specification compliance	49
Table 5: File Naming	53
Table 6: Processing Results Acceptable Signoff	56
Table 7: Processing Results Acceptable Signoff (rev2)	56

Figures

Figure 1: Waikato Survey Area	8
Figure 2: Tile BA34_4930 Prior to break line	
Figure 3: Tile BA34_4930 After addition of break line	
Figure 4: Boulder/vegetation classification in tile BA34_1935 – Original Side profile	
Figure 5: Boulder/vegetation classification in tile BA34_1935 – Original DEMDEM	
Figure 6: Boulder/vegetation classification in tile BA34_1935 – After editing Side profile	
Figure 7: Boulder/vegetation classification in tile BA34_1935 – After editing DEMDEM	
Figure 8: Tile BA34_2732 Prior to editing	
Figure 9: Tile BA34_2732 Post editing	
Figure 10: Tile BC36_2813 prior to editing	
Figure 11: Tile BC36_2813 post editing	
Figure 12: Tiles BA35_1000_3446, BA35_1000_3447, BA35_1000_3546, BA35_1000_3547	
Figure 13: Same location in DEM	
- 5 Figure 14: Prior to repair	
Figure 15: After editing	
Figure 16: LAS 1.4 being specified during project – example	
Figure 17: Project settings used in TerraScan project when importing points into the project	
Figure 18: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools	
Figure 19: Representative examples of LAS point attributes	
Figure 20: Settings used when cutting overlap in Microstation	
Figure 21: Automatic classification macro developed for the project area	
Figure 22: Illustration of iteration angle and iteration distance parameters in the ground routine	
Figure 23: A smaller iteration distance value avoids classification of ground points on low objects	
Figure 24: Statistics showing the classes of all the LAS points within the project area (original)	
Figure 25: Statistics showing the classes of all the LAS points within the project area (latest)	
Figure 26: The green diagonal hatching seen above shows blocks which have been fully checked	
Figure 27: The diagonal hatching seen above shows how the progress was tracked	
Figure 28: The polygons are areas for further investigation	
Figure 29: Example overhead image of DEM over cliffs	
Figure 30: LAS point cloud profile view from previous figurefigure	
Figure 31: Example overhead image of DEM interpolation	
Figure 32: LAS Point cloud view from previous figure	
Figure 33: Tile DEM_AZ34_4944 with LINZ bridge centreline	
Figure 34: Tile BA_35_1000_3720	
Figure 35: Tile AZ34_1000_4011	30
Figure 36: A cutting through steep terrain. Tile BC35_1000_4038	30
Figure 37: This is a road cut into the slope rather than a bridge. Tile BC35_1000_1423	31
Figure 38: Bridge in the LINZ shapefile that has been classified to class 17 but is really a culvert	
Figure 39: Bridge in the LINZ shapefile that is a culvert and is therefore not edited to class 17	
Figure 40: Bridge that shows in LINZ Shapefile but determined to be a ford rather than a bridge	
Figure 41: Tile DEM_BA34_1250	32
Figure 42: Example of a hydro-flattened DEM Coastal Tile DEM_B36_0650	33
Figure 43: Example of Bridge with LINZ bridge centreline	34
Figure 44: Same location as above DEM. Laser with the Ground and Bridge classes (red) visible	
Figure 45: Excerpt of river points used to create the centreline	
Figure 46: Centreline for the stream within the project's survey	
Figure 47: Settings used to export lattice models.	
Figure 48: Pre-filter, overhead view of ground and veg points with hydro lines	
Figure 49: Post-filter, overhead view of ground and veg points with hydro lines	37

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Figure 50: Point cloud - boulder filled stream	38
Figure 51: Imagery – boulder filled stream	38
Figure 52: Example of hydroflattened DEMs: DEM_BB36_1704 and DEM_BB36_1705	
Figure 53: Difference between DSM and DEM indicating consistent ocean heights	<u>3</u> 9
Figure 54: Extent of deliverable data for Block A	4
Figure 56: Flight lines for 4ppm2 data coverage over Block A (Original)4	
Figure 57: Flight lines for 4ppm2 data coverage over Block A (Revised)4	43
Figure 58: WKT of a LAS file shown by LASTools4	
Figure 59: Excerpt from DSM_BB34_2021_1000_33464	48
Figure 60: Script used in ArcMap to achieve a NoData value of -99994	49
Figure 61: Properties of the composite DSM file showing its format and NoData value	49
Figure 62: Stream break line properties in ArcMap.	50

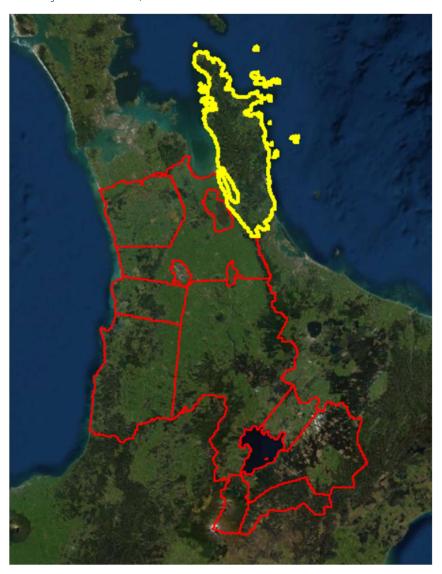


Figure 1: Waikato Survey Area

1 Introduction

Lidar survey projects are broken into three distinct phases. The survey commences with the data acquisition project phase. For matters pertaining to this phase of the project, refer to the document

• AU411_WLASS-Collection_Report-10052021.pdf.

The next phase of the project is the Geopositioning phase, which involves processing the raw sensor and trajectory data to produce a set of point clouds for each flight line.

The point clouds have several geometric optimizations performed, to optimise the relative and absolute spatial accuracy levels.

At completion of the Geopositioning phase, the point cloud geometry is final, and the point cloud classification and production generation project phases follow.

For matters pertaining to this phase of the project, refer to the documents

- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022

The following report covers the data processing project phase and describes the data processing methods used for the lidar classification and product generation, along with the QAQC procedures and results.

This report illustrates compliance with the LINZ PGF specifications sections 6 - 9.

This report pertains to the coverage of Block A, as illustrated in yellow in Figure 1 - Waikato Survey.

11 Revision 1

The dataset was originally uploaded by AAM / Woolpert on 06 December 2022. This was transferred to WRC the following day (07 December 2022). Two tiles were missed and the LAS, DSM and DEM for these products were provided on 14 December 2022 along with Shapefiles and tile index's to suit. Another tiling issue relating to either corrupt files and/or zipping errors was identified and an extra six tiles were supplied on 23 December 2023.

WRC and LINZ then carried out QAQC on the provided dataset. This concluded on January 21, 2023. A spreadsheet was provided and used for tracking the identified issues. This spreadsheet was shared with AAM/ Woolpert and formed the core document (along with shp and gdb files as examples) to use for the fixes and reprovision of the dataset. This spreadsheet underwent a number of revisions tracking the data and was supported by a technical meeting (07 February 2023) between WRC staff, Ocean Infinity and AAM / Woolpert.

The spreadsheet "WRC_Raised_Defect_Tracking_Block_A_v001_20230222-AAM-Responses" detailing the issues and associated fixes has been provided in Appendix B.

The reprovision of Block A was provided after hours on Friday 17 February 2023. This was transferred to WRC on Monday 20 February 2023.

On the $23^{\rm rd}$ of February AAM uploaded extra coastal tiles that were not covered by the LINZ PGF tile layout or contract. These were initially identified by WRC and AAM found extra tiles that contained land and were added to the request. A total of 57 tiles were provided in their various formats. This was

transferred to WRC on the same day. There were some download errors and was resupplied Monday 27 February 2023.

It is noted that some of the items on the Tracking sheets were related to general comments, these were reviewed in greater depth than the individual tiles of concern and changes were made where identified and required.

1.2 Revision 2

The dataset was returned for further rework. This was supported by the spreadsheet 'AU411 WRC_Raised_Defect_Tracking_Block_A_v002_20230316' supplied by WRC in association with LINZ.

The new revision was resupplied by Woolpert Australia to Ocean Infinity on Wednesday 24 May. A Transfer to WRC and LINZ was initiated on the same day.

The total number of supplied LAS tiles:

- 8976

DEMs and DSMs supplied over updated tiles. Tile count differs on purpose; resupply of failed format only that had export issue:

- 2239 DEMs
- 2241 DSMs

As highlighted previously there is no capture over these additional requested tiles (no products generated):

BA36_2105

BA36_2205

BA34_1317

As requested the DEMs and DSMs are flattened to the tile extents even if they aren't completely covered by capture. This includes tiles BA34_1217, BA34_1218, BA34_1317 and BA34_1318, amongst others.

The following Images are supplied showing how feedback was addresses:

Additional Bridge break line tile BA34_4930

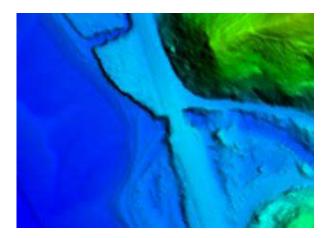


Figure 2: Tile BA34_4930 Prior to break line

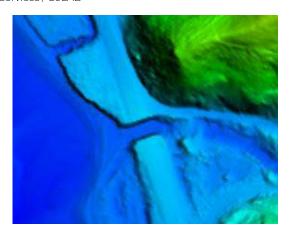


Figure 3: Tile BA34_4930 After addition of break line

Boulder/vegetation classification in tile BA34_1935.

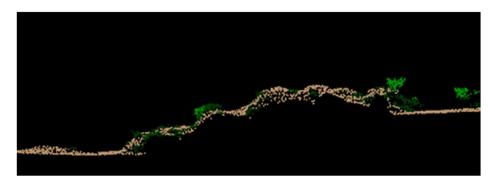


Figure 4: Boulder/vegetation classification in tile BA34_1935 – Original Side profile

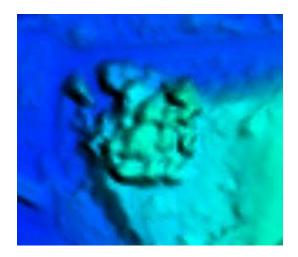


Figure 5: Boulder/vegetation classification in tile BA34_1935 – Original DEM

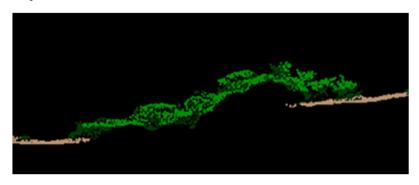


Figure 6: Boulder/vegetation classification in tile BA34_1935 – After editing Side profile

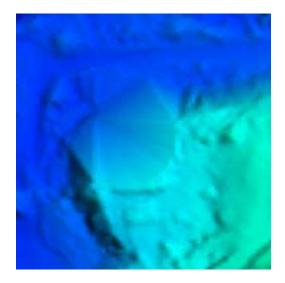


Figure 7: Boulder/vegetation classification in tile BA34_1935 – After editing DEM

Noise in tile BA34_2732

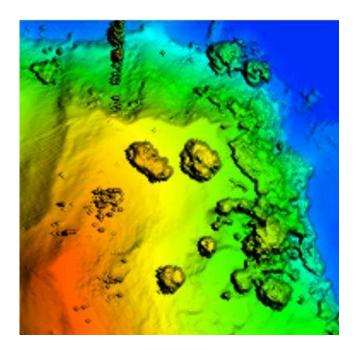


Figure 8: Tile BA34_2732 Prior to editing

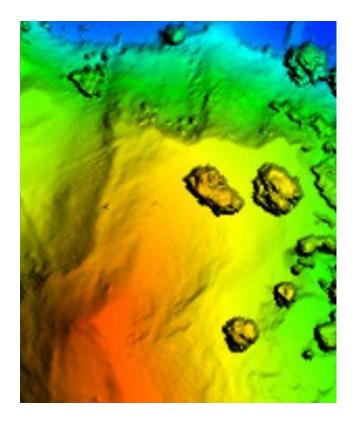


Figure 9: Tile BA34_2732 Post editing

Noise in tile BC36_2813

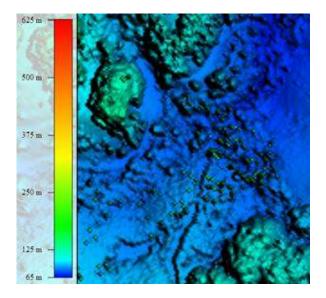


Figure 10: Tile BC36_2813 prior to editing

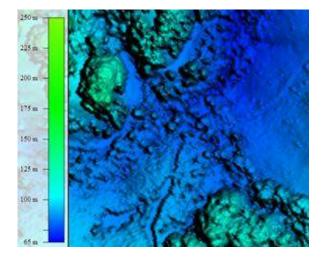


Figure 11: Tile BC36_2813 post editing

DSM-DEM difference example highlighting difference exists over cliffs

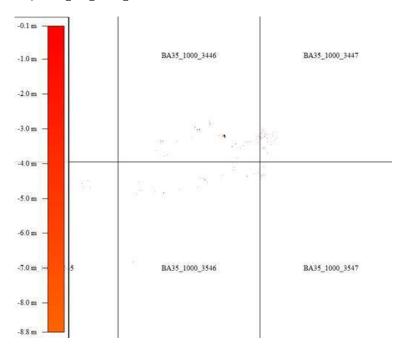


Figure 12: Tiles BA35_1000_3446, BA35_1000_3447, BA35_1000_3546, BA35_1000_3547

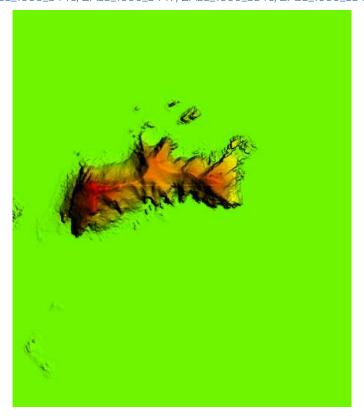


Figure 13: Same location in DEM

Swath matching as identified in '128 GEOMETRIC RESULT POINTS.gpkg'

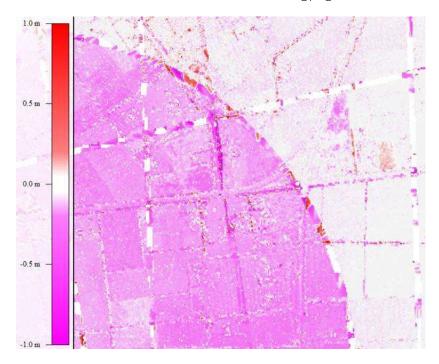


Figure 14: Prior to repair

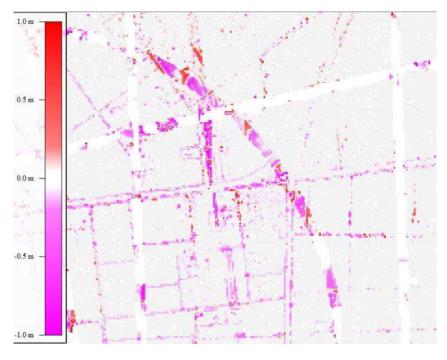


Figure 15: After editing

2 LiDAR Data Processing and Handling

The LiDAR data processing method is described in the Project Method Statement, AU411-FOR-008-R5 Project Method Statement_WLASS. The following sections elaborate further but focus on adherence with compliance to the Linz PGF Specification (JAN 2020).

https://www.linz.govt.nz/system/files_force/media/doc/pgf_version_new_zealand_national_aerial_lidar_base_specification.pdf?download=1

QAQC steps for various workflow tasks have been tracked and recorded and included as an embedded document within Appendix 1.

2.1 The ASPRS LAS File format

LINZ PGF specification 6.1 requires that all point deliverables are required to be fully compliant with LAS Specification Version 1.4, using Point Data Record Format (PDRF) 6, 7, 8, 9 or 10 (referred to as LAS v1.4).

For this project, LAS 1.4 with PDRF 6 is to be delivered.

The LAS files created during the project during the Geopositioning phase and subsequent data cleaning and deliverable products are in ASPRS LAS 1.4 format, with PDRF 6. This was specified during the creation of the project in TerraScan, as shown in a representative image in the figure below:

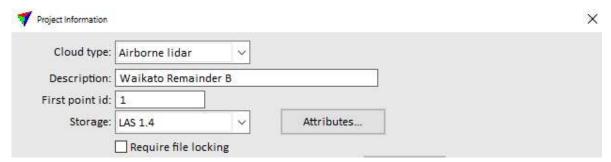


Figure 16: LAS 1.4 being specified during project - example

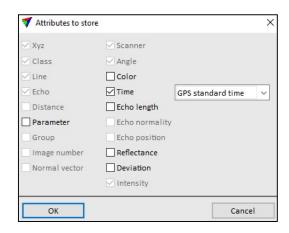


Figure 17: Project settings used in TerraScan project when importing points into the project.

The correct format of LAS is illustrated by use of LASTools, which shows the LAS files are in 1.4 format in the figure below.

Figure 18: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools

To verify that the project deliverables are in the correct LAS file format/version with PDRF, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.2 Time stamp of navigational data

LINZ PGF specification 6.2 requires that Each Global Navigation Satellite System (GNSS) aircraft positional measurement must be time stamped using Adjusted Global Positioning System (GPS) Time, at a precision enough to allow unique timestamps for each LiDAR pulse.

For this project, LAS 1.4 with PDRF 6 has been delivered including, with Global Encoding bit set to 1.

An example of how adjusted GPS time is visualized and monitored is illustrated in Figure 5: LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right).

To verify GPS time is set to adjusted GPS time, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar technical manager reviewed this analysis to ensure that all deliverable LAS files are compliant.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A. Figure 5 below shows representative examples of LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right)

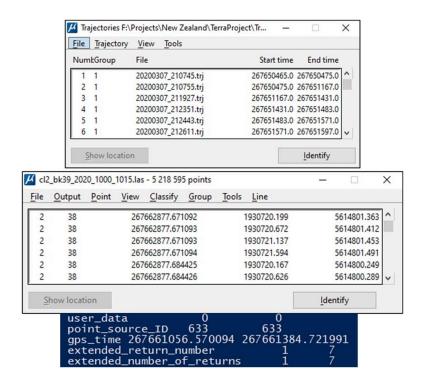


Figure 19: Representative examples of LAS point attributes

2.3 Datums and coordinate reference system

LINZ PGF specification 6.3 requires that the required datum for latitude, longitude, and ellipsoid heights is the New Zealand Geodetic Datum 2000. The required vertical datum for normal-orthometric heights is NZVD2016 (Reference 9). Projected data products are to be delivered in NZTM2000 projection (Reference 10) with NZVD2016 normal-orthometric heights.

The Survey Datums, Ground Control, Check Points and Lidar Geopositioning sections of the Project Methodology Statement describes in detail how the data is transformed and connected to the required project datum.

To verify that the correct datum information is recorded in the LAS 1.4 header, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files have the correct CRS applied in the header.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.4 Geometric Calibration

Following initial sensor data processing, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.

Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error. These calibration adjustments were performed using a combination of automated and manual corrections to the data to develop the geometrically calibrated data set to be utilized for all downstream processes.

2.5 Positional accuracy validation

LINZ PGF specification 6.4 details the positional accuracy verification methods. The Vendor is expected to apply best practice in assessing the project accuracy and achieving compliance with this specification. Before classifying and developing derivative products from the point cloud, the relative vertical, local vertical and horizontal accuracies of the point cloud must be verified. The Vendor must deliver a detailed report of the validation processes used.

Validation of the point cloud positional accuracies is the primary outcome of the Lidar Geopositioning workflow phase, using surveyed ground control & check points. The assessments methods and results of the positional accuracy validation is be reported in the LiDAR Geopositioning QA/QC Report.

2.6 Use of the LAS withheld flag

LINZ PGF specification 6.5 requires that outliers, noise points, geometrically unreliable points near the extreme edge of the swath, and other points the Vendor deems unusable must be identified using the Withheld Flag, as defined in the LAS Specification.

Points classified as low noise (coverage class 7) and high noise (coverage class 18) will have the LAS withheld flag set.

To verify that the withheld flag has been correctly set, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analyst to ensure that the Las withheld flag is correctly applied. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.7 Use of the LAS v1.4 Overlap Flag

LINZ PGF specification 6.6 requires identifying overage points is not required unless requested by the Contract Authority. However, if overage points are explicitly identified using LAS v1.4, they must be identified using the overlap flag.

Classification of the overlap points was done using TerraScan in Microstation. A macro step was created which allowed for points to be classified with the overlap bit by cutting the scan angle at zero degrees.

The step used for the project dataset is illustrated in the figure below. This allowed for the overlap points to be withheld from DEM, DSM and intensity imagery generation. Figure 6 below shows Settings used when cutting overlap in Microstation. Note that the 'Action' is on "Set overlap bit.

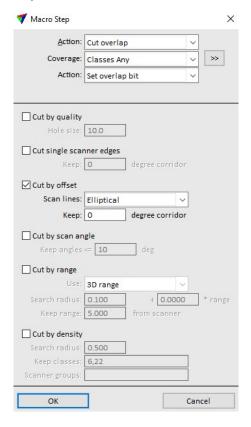


Figure 20: Settings used when cutting overlap in Microstation.

Verification of appropriate overlap flag application is performed using LP360 File Analyst. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.8 Point Classification

LINZ PGF specification 6.7 requires Lidar points are classified to the following coverage classes:

Code	Description
7	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
17	Bridge deck
18	High noise

Table 1: Point Classifications

Point cloud classification is performed by automated classification algorithms developed by Woolpert's senior Lidar analysts and reviewed by the Lidar technical manager.

A first run automatic classification was carried out on the raw LiDAR points using TerraSolid's TerraScan software to classify the LiDAR points into ground hits and non-ground hits. This results in a greater than 80% correct classification. Some of the steps used within this macro can be found within the screenshot below (Figure 7), including 5 of the 8 ground classification steps used on this data set.

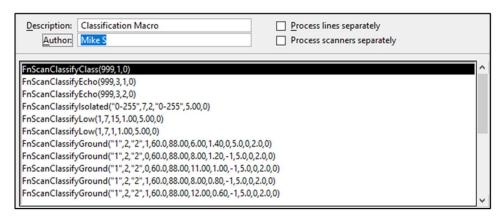


Figure 21: Automatic classification macro developed for the project area.

As documented by TerraSolid, the ground routine classifies ground points by creating a triangulated surface model iteratively. The routine is best suited for classifying ground in airborne laser data sets and in data sets where there is mainly natural terrain. For classifying ground in mobile data sets where the majority of ground is on hard surfaces, such as roads, use the Hard surface routine instead of the ground routine.

The routine is sensitive to low error points in the point cloud. Therefore, you should run one or more classification steps using the Low points routine before classifying ground. A more complex classification strategy is required for classifying ground in photogrammetric point clouds.

The ground routine starts by selecting local low points that are confident hits on the ground. The initial point selection is controlled with the Max building size parameter. If the maximum building size is, for example, set to 60.0 m, the routine assumes that any 60 by 60 m area has at least one point on the ground level and that the lowest point is on the ground level.

Then, the routine builds a surface model (TIN) from the initial ground points. The triangles in this initial model are mostly below the ground level and only the vertices are touching the ground. In the following iterations, the routine molds the model upwards by adding more and more points. Each added point makes the model following the true ground surface more closely.

The iteration parameters of the routine determine how close a point must be to a triangle plane for being accepted as ground point and added to the model. Iteration angle is the maximum angle between a point, its projection on the triangle plane and the closest triangle vertex. This is the main parameter controlling how many points are classified into the ground class. The smaller the Iteration angle, the less eager the routine is to follow variation in the ground level, such as small undulations in terrain or points on low vegetation. Use a smaller angle value (close to 4.0) in flat terrain and a bigger value (close to 10.0) in mountainous terrain.

Iteration distance makes sure that the iteration does not make big jumps upward if triangles are large.

This avoids ground points that are too high, for example within low vegetation or on low buildings.

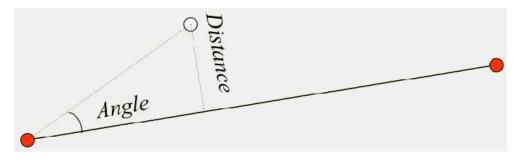


Figure 22: Illustration of iteration angle and iteration distance parameters in the ground routine.

Figure 23: A smaller iteration distance value avoids classification of ground points on low objects.

The iteration angle can be reduced automatically if the triangles become small. This reduces the eagerness to classify more ground points inside small triangles and thus, avoids unnecessary point density of the ground model thus avoiding redundancy of inclusion of unnecessary ground points.

Related to this it is common to see default classified points within a classified ground point cloud surface. The iteration angle inside small triangles approaches zero if the longest triangle edge is shorter than a given Edge length value. Furthermore, the iteration can be stopped completely if triangle edges are shorter than a given limit.

After completion of the automated classification, a strenuous manual classification was carried out over the required area to edit the points thus minimizing gross classification errors that may have occurred in the automatic classification process.

Each block's data was checked in a systematic approach to reduce missing important features. Orthogonal views with background orthoimagery, and profile views are used to review the performance of the automatic classification results.

Tools such as 'Classify using brush', 'Classify above line' and 'Add Point to Ground' (all found within TerraScan) were used during manual classification, to achieve classification accuracy meeting project specifications. Before handover files were created, checks were done on the project's points by viewing statistics within TerraScan as illustrated in the figure below.


```
histogram of classification of points:
          59902 unclassified (1)
     8657753636 ground (2)
     2514117170 low vegetation (3)
    12439875394 medium vegetation (4)
    15508886711 high vegetation (5)
       71648553 building (6)
     1355999971 noise (7)
       27359166 water (9)
         443035 bridge deck (17)
       98241836 Reserved for ASPRS Definition (18)
+-> flagged as extended overlap: 17641564162
 +--->
                 11538 of those are unclassified (1)
          4055437164 of those are ground (2)
 +--->
            1068654592 of those are low vegetation (3)
 +--->
 +--->
          5160855005 of those are medium vegetation (4)
 +--->
          6515360509 of those are high vegetation (5)
 +--->
            33446882 of those are building (6)
 +--->
           781862289 of those are noise (7)
             5670044 of those are water (9)
 +--->
               219683 of those are bridge deck (17)
 +--->
 +--->
              20046456 of those are Reserved for ASPRS Definition (18)
```

Figure 24: Statistics showing the classes of all the LAS points within the project area (original).

```
histogram of classification of points:
          66714 unclassified (1)
     8904919481 ground (2)
     2438760442 low vegetation (3)
    12437483046 medium vegetation (4)
    15521697202 high vegetation (5)
       71642554 building (6)
     1181492747 noise (7)
       28601137 water (9)
         447964 bridge deck (17)
       97900577 Reserved for ASPRS Definition (18)
+-> flagged as withheld: 1279393324
 +---> 1181492747 of those are noise (7)
 +--->
            97900577 of those are Reserved for ASPRS Definition (18)
+-> flagged as extended overlap: 16314331833
                12474 of those are unclassified (1)
 +--->
          3615118188 of those are ground (2)
 +--->
           992616004 of those are low vegetation (3)
 +--->
          4964188526 of those are medium vegetation (4)
 +--->
          6107579150 of those are high vegetation (5)
 +--->
 +--->
            28162806 of those are building (6)
          577858052 of those are noise (7)
 +--->
             9142431 of those are water (9)
 +--->
 +--->
               173190 of those are bridge deck (17)
 +--->
            19481012 of those are Reserved for ASPRS Definition (18)
```

Figure 25: Statistics showing the classes of all the LAS points within the project area (latest).

To keep track of the data cleaning process, a hatching method was used on the DGN within Microstation. It allows the cleaners to systematically mark each tile which has been fully checked and editing, making sure the whole data set has been initially covered.

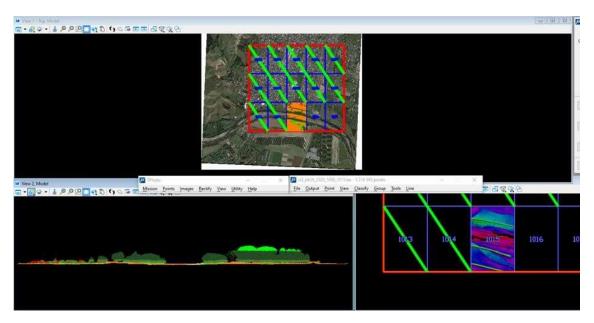


Figure 26: The green diagonal hatching seen above shows blocks which have been fully checked.

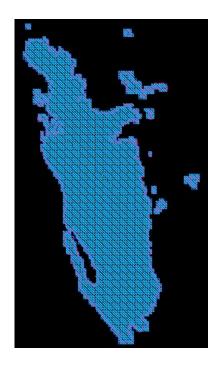


Figure 27: The diagonal hatching seen above shows how the progress was tracked

To verify that only the required coverage classes are present & populated, LP360 File Analyst performs exhaustive testing on the LAS data records, and outputs the analysis results to an excel spreadsheet. Lidar Analysts review this data to ensure that all deliverable LAS files are compliant with the specification coverage classes. Point cloud QAQC/editing is performed by trained Lidar Technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team.

2.9 Classification Accuracy

LINZ PGF specification 6.8 requires that non-withheld points must be classified to a classification accuracy level of 2%. No non-withheld points are to remain as class 0.

Realtime Digital Elevation models are generated using Terrascan/Terramodeler are used to verify ground classified points and lidar technicians review the DEMs to find anomalies such as spikes or pits that imply misclassified points and make corrections.

During DEM review profiles are cut across tiles where potential issues are detected. The Lidar Technician scans the profile view to identify if an issue exists and modifies the classification of points as required.

10% of the data tiles are subject to review by a senior analysis or project manager.

After data cleaning was completed, a comprehensive DEM review is performed to visualize the data over large areas for the purpose of identifying anomalies or areas for further investigation. Any potential errors were identified as shown in the red polygons below and later addressed via additional manual editing.

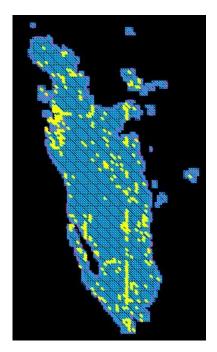


Figure 28: The polygons are areas for further investigation

The indicated areas were revisited and manually classified as appropriate. Below is an example of an issue identified for further investigation. Multiple revisions of the point cloud were performed to address issues common to the terrain and vegetation cover found within the project AOI. Rugged terrain and heavy vegetation across areas within the AOI commonly created unavoidable laser penetration difficulties as well as areas within the DEM that that appear to have a rough surface.

The figures below illustrate such and occurrence. Issues were identified concerning what appeared to be excess noise in areas of gullies. After investigating it was determined the gully areas in question are densely vegetated and located within steep terrain. The sparseness of the consistent ground penetration and steepness of terrain led to points being classified as noise during ground filtering. Additional filtering steps were taken to reclassify points into ground from noise class. The additional ground points added from noise provide improvement to the DEM quality as the points classified from noise to ground were sparsely distributed due to dense vegetation.

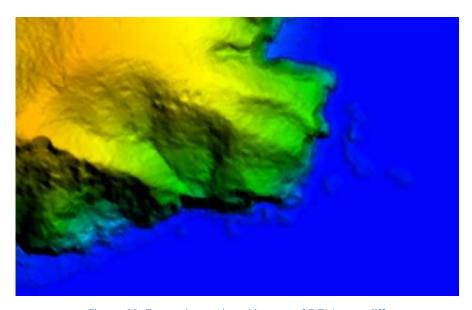


Figure 29: Example overhead image of DEM over cliffs

Figure 30: LAS point cloud profile view from previous figure

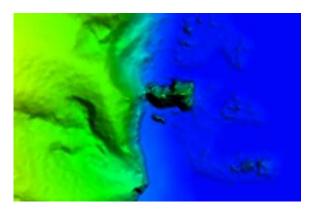


Figure 31: Example overhead image of DEM interpolation

Figure 32: LAS Point cloud view from previous figure

2.10 Classification Consistency

LINZ PGF specification 6.9 requires that point classification must be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, flights, or other unnatural divisions are grounds for rejection of the entire deliverable.

As with classification accuracy there is no analytical means of measuring compliance. As such the classification consistency is reviewed via visual means. To mitigate against inconsistent classification, the following controls were employed:

• Systematic geometric issues that may lead to swath-based inconsistencies are identified by the Lidar Geopositioning process, as documented in the Project Method Statement, specifically in the intraswath, interswath & absolute accuracy analysis steps. Data swaths that do not pass this stage do not progress to later classification steps

- The automated classification process is a series of classification algorithm tools applied in a macro. The macro is designed and optimised to yield high classification accuracy across the variety of land cover types within the project area. Applying the one, optimised and flexible classification macro delivers consistent classification across the entire project area
- To avoid tile edge artefacts, all tile-based workflow steps utilise a buffer of lidar points from surrounding tiles. This allows for a better classification of both ground and vegetation points.
- Lidar Technicians are trained to deliver consistent results and use the same visualisation methods/aids. They are supervised by the Lidar Phase Manager and the 10% of classified point cloud tiles are peer reviewed by a dedicated QAQC team.
- DEM tiles are run after classification has been completed to review possible errors in Ground classification.
- Bridges are checked against a bridge shapefile (supplied by LINZ) to correctly identify and classify the bridges.

2.11 Classification Consistency – Bridges

As mentioned above the dataset was compared against the LINZ bridge shapefile. There was discussion between Ocean Infinity, WRC, Woolpert and AAM around the differentiation of bridges versus culverts. The subject is somewhat open to interpretation. It is noted that the classification of Bridges (or not) has implications for Water flow modelling and hydroflattening. The following images are a visual representation of some of the aspects discussed.

Below example shows DEM Triangulations where a bridge has been removed

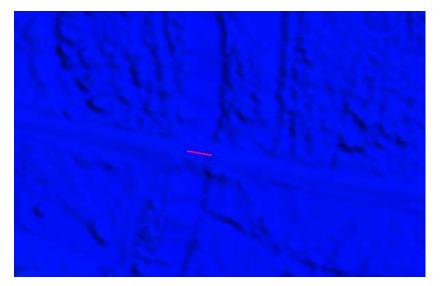


Figure 33: Tile DEM_AZ34_4944 with LINZ bridge centreline

Below examples are bridges edited in the LAS files, but which were not highlighted in the LINZ Shapefile.

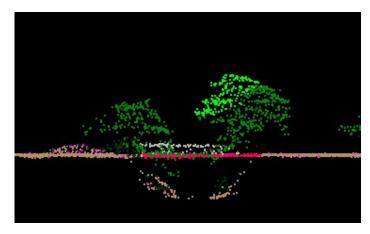


Figure 34: Tile BA_35_1000_3720

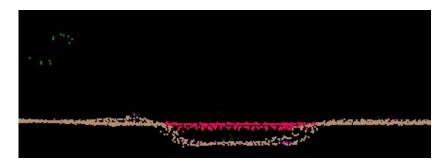


Figure 35: Tile AZ34_1000_4011

Below examples are bridges highlighted in the LINZ Shapefile which were determined not to be bridges.

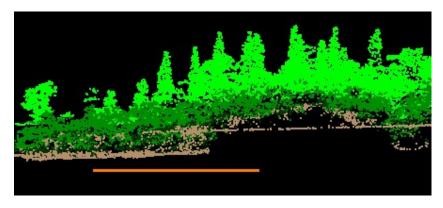


Figure 36: A cutting through steep terrain. Tile BC35_1000_4038

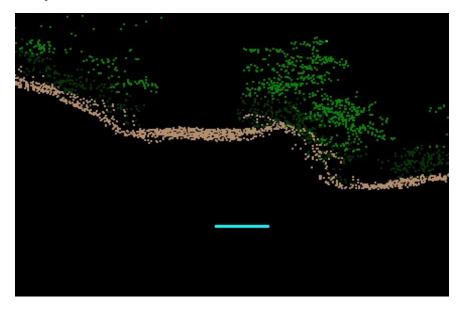


Figure 37: This is a road cut into the slope rather than a bridge. Tile BC35_1000_1423

Below examples are highlighted in the LINZ Shapefile which were subject to different determinations.

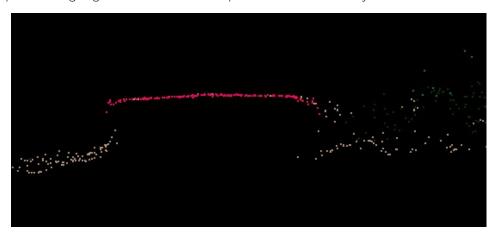


Figure 38: Bridge in the LINZ shapefile that has been classified to class 17 but is really a culvert.

No breakline added. Tile BC36_1000_2807

Figure 39: Bridge in the LINZ shapefile that is a culvert and is therefore not edited to class 17. Tile BC35_1000_3023.

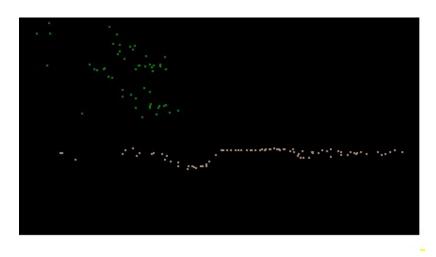


Figure 40: Bridge that shows in LINZ Shapefile but determined to be a ford rather than a bridge. Tile BC35_1000_2145

Below is an example of Ground Surface with bridge classified.

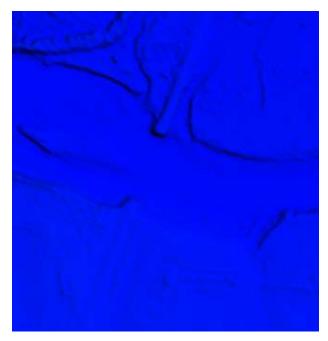


Figure 41: Tile DEM_BA34_1250

3 LiDAR Hydro-Flattening QAQC

LINZ PGF specification 7.0 details at length the requirements for Hydro flattening of Digital Elevation Models.

The methods for Hydro Break line Digitization, Hydro-Flattening and Hydro-Flattening quality control are described in the Lidar Processing and Data presentation section of the Project Method Statement.

Hydro-flattening generation methods will be detailed in the Processing Report.

The pertinent parts of the specification and the means of identifying the required hydro-flattening features are as follows:

- · Permanent islands 5,000 m2 or larger must be delineated
- · Islands of 5000m2 will be included as hole features within the parent hydro-flattening polygon.
- · Inland ponds and lakes water bodies of 10,000m2 or greater at the time of collection must be flattened
- Lake polygon features will be precisely digitized using lidar point cloud with supporting background intensity imagery and supported by open-source imagery as reference.
- Inland streams and rivers of >= 30m nominal width (width of water flow in a single channel at time of capture) must be flattened
- Streams/rivers that fulfil the minimum distance requirement will be identified by visual inspection of the point cloud.

Hydro-flattening was performed upon the project dataset, and hydro break lines were used during the creation of digital elevation models. Hydro Flattening digitizing are performed by Lidar technicians, under the supervision of the Lidar technical manager. The hydrological features were digitised in Microstation using a combination of manual and automatic digitizing ('Display boundary' function in TerraModeler). Stream islands that were 5 000m² or larger in size.

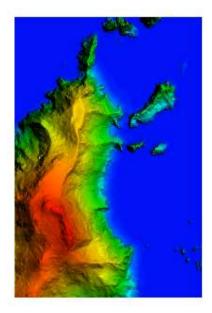


Figure 42: Example of a hydro-flattened DEM Coastal Tile DEM_B36_0650.

When hydro-flattening a stream, the following process is used:

Identify a possible stream feature. Measure the width of the stream from bank to bank, and if greater than 30m wide, begin digitizing the feature. If the stream varies in width, the discretion of the geospatial specialist is applied.

Once the stream outline was completed, and that it was confirmed to be a polygon, a shapefile was imported into ArcMap and a centreline was created using the 'Create Centreline' script, which generates a centreline based on the stream polygon.

The centrelines were then checked for errors which may have occurred during its creation. It was then exported to Microstation where the centreline was then dropped to a surface (created by surrounding ground points). The tool 'Force Downstream Flow' was used to enforce correct elevations for the centreline, ensuring that each point's height was equal to or less than that of the point before it.

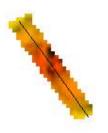


Figure 43: Example of Bridge with LINZ bridge centreline

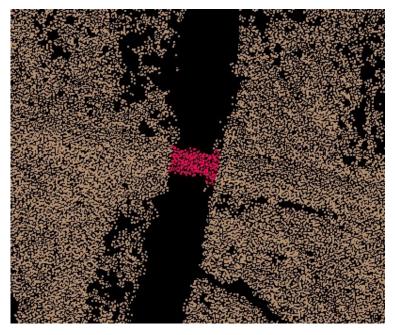


Figure 44: Same location as above DEM. Laser with the Ground and Bridge classes (red) visible.

Shows that the bridge has been classified.

The correct order of point heights was then checked by exporting the co-ordinates out as a text file which would be used for the creation of a new centreline shapefile. Figure 18 shows the example excerpt of river points used to create the centreline after downstream flow was enforced. Figure 19 shows the example highlighted script was used to generate the centreline for the stream within the project's survey.

```
1 1929744.8358 5615128.2638 7.7096
 2 1929746.0769 5615130.8498 7.6863
3 1929746.4280 5615131.5996 7.6796
 4 1929746.5107 5615131.7727 7.678
5 1929746.7841 5615132.3591 7.6728
6 1929748.0794 5615135.0799 7.6483
7 1929748.5703 5615136.1455 7.6388
8 1929749.4246 5615138.0643 7.622
9 1929749.8587 5615139.0742 7.6132
10 1929750.6288 5615140.9327 7.5973
11 1929751.0393 5615141.7916 7.5896
12 1929751.5292 5615142.7809 7.5805
13 1929754.3861 5615148.3485 7.529
14 1929754.7868 5615149.1041 7.5219
15 1929754.7991 5615149.1267 7.5217
16 1929757.3347 5615152.1834 7.4808
17 1929757.8445 5615152.7752 7.4594
```

Figure 45: Excerpt of river points used to create the centreline

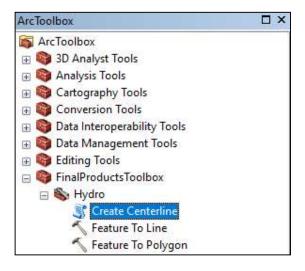


Figure 46: Centreline for the stream within the project's survey

After the new centreline had been created, it was conflated with the stream's shape using LP360 within ArcMap. This matched up the elevation of the stream's outline with that of the centreline. The new stream shape was attached to a DGN and opened in Microstation, exported as co-ordinates, and then read into the project. These points along with ground points were used to output lattice models which show the results of the hydro-flattening. Stream-island break line points were also included to ensure the correct modelling of the stream and its features.

The following settings were used for lattice model creation:

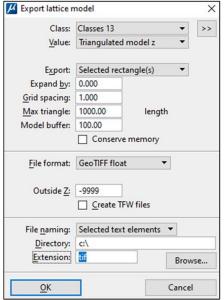


Figure 47: Settings used to export lattice models.

The product undergoes QC by the Lidar Phase Manager and is reviewed for any omissions or blunders. The following project specification are checked against:

- All Hydrologic break lines developed for use in hydro-flattening are in non-tiled ESRI feature class in polylineZ or polygonZ shape file format.
- Water bodies (ponds, lakes, and reservoirs), wide streams and rivers ("double-line"), and other non-tidal water bodies are to be hydro-flattened within the DEM. The resulting pond and lake surfaces will be flat and double line rivers will be flat level bank-to-bank and be gradient.
- It is noted when hydro-flattening streams, significant breaks in water elevation as well as varying degrees of bends in the stream direction will create a triangulated appearance in the DEM. These affects will be minimized to an appropriate extent.
- · The entire water surface edge must be at or below the immediately surrounding terrain.
- · Hydro-flattening break line feature class use the NZTM2000 projection and NZVD0216 height datum
- · Hydro-flattening has applied to all streams that are nominally wider than 30 metres wide, and to all non-tidal boundary waters bordering the project area regardless of size.
- · Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are nominally larger than 10000m2 in area
- Stream channels should break at road crossings (culvert locations). These road fills should not be removed from the DEM.
- Streams and rivers should NOT break at elevated bridges. Bridges are removed from the DEM. When the identification of a feature such as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

A peer review of the Hydro flattening break line data products as well as the hydro-flattened DEM is performed on 10% of the dataset by an independent analyst or project manager.

To distribute and track the progress amongst the editing & QAQC team, an ArcSDE tracker (multiuser database) is employed.

During the QA/QC, it was identified there will be instances of vegetation classifications contained within waterbody polygons. After investigation it was determined much of this occurs from overhanging vegetation from the outside of the hydro features. Occasionally there are instances of vegetation within waterways which is related to islands falling below the required threshold for collection. Additional processing steps were taken to limit the amount of vegetation that exists within the waterway while retaining the overhanging vegetation. This processing step primarily involved classification based on XYZ proximity to existing digitized hydro/island lines. After this process was performed some vegetation classified lidar points will still be present in the waterway.

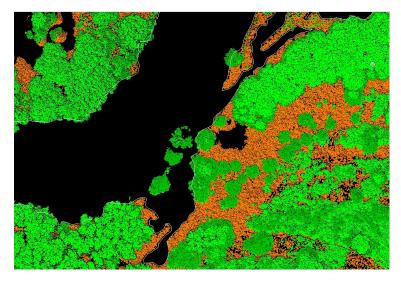


Figure 48: Pre-filter, overhead view of ground and veg points with hydro lines

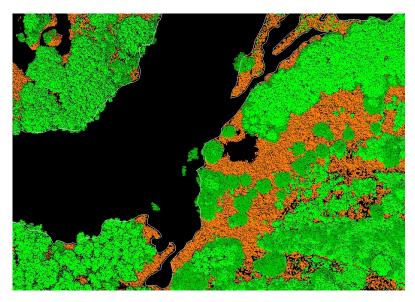


Figure 49: Post-filter, overhead view of ground and veg points with hydro lines

Additionally, during QC data review, it was discovered rocks and boulders within rivers are occasionally classified as vegetation. This is typically observed in high relief areas where water flows down steep terrain, i.e., rapids/white-water. Rivers tend to narrow in these areas and will not likely be caught during the aforementioned processing step based on proximity to linework. These points will continue to be classified as vegetation.

Figure 50: Point cloud - boulder filled stream

Figure 51: Imagery – boulder filled stream

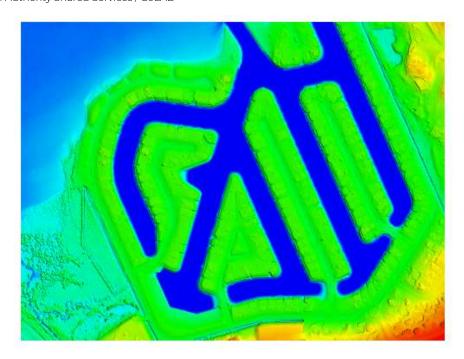


Figure 52: Example of hydroflattened DEMs: DEM_BB36_1704 and DEM_BB36_1705

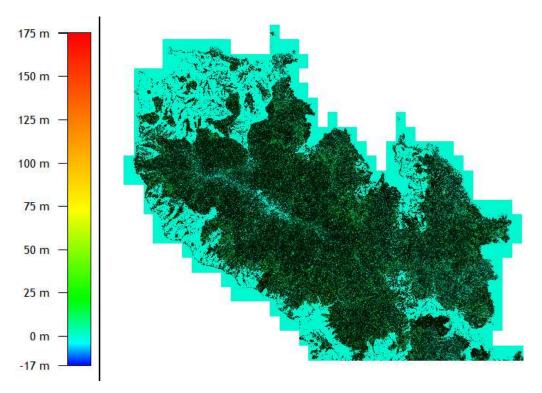


Figure 53: Difference between DSM and DEM indicating consistent ocean heights

4 LiDAR Deliverables QAQC

Section 8 of the LINZ PGF specification details the project reporting, metadata requirements & deliverable requirements.

4.1 Reporting and metadata

4.1.1 Project reports

The following details the reports being delivered for this section of the project:

- Collection Report detailing mission planning and flight logs, including dates of collection
- Details of quality control tests, and conformance against Linz specifications
 - o Refer to AU411_WLASS-Collection_Report-10052021.pdf
- Survey Report detailing the collection of all ground control, including the following:
 - o Control points used to calibrate and process the LiDAR and derivative data
 - o Check sites used to validate the LiDAR point data or any derivative product
 - o Refer to AU411-R1-Waikato LiDAR Ground Control Report of Survey.pdf
- Geopositioning QA/QC Report, detailing analysis, accuracy assessment and validation of the following:
 - o Point cloud data, including a summary of relative (smooth surface repeatability and overlap consistency) and non-vegetated vertical and horizontal local accuracy.
 - o QA/QC analysis of the vertical and horizontal local accuracy assessment will include a table of the product data compared to each check site.
 - o Refer to AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
 - o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022.

Processing Report (This Document) detailing:

- Classification and product generation procedures including methodology used for break line collection, hydro-flattening break line collection, hydro-flattening processing, DEM & DSM creation, and deliverable generation.
- Details of quality control tests, and conformance against each of the relevant Linz specifications including:
 - o Workflow QAQC checklist
 - o Pre-Delivery QAQC worksheet as an embedded document

4.1.2 Extents

LINZ PGF specification 8.1.3 requires that a geo-referenced, digital spatial representation of the detailed extents of each delivered dataset.

The data for Block A was captured using Leica TerrainMapper sensors 513 and 559, flown on days 5th, 15th,24th, 25th, 27th 29th January 2021 and days, 12th, 18th of February 2021 and days 11th,12th, 22nd, 23rd, 24th of March 2021. The extent of Block A can be seen in Figure 25. The flight lines relating to the area can be seen in Figure 28.

This extent was created by creating a surface in Microstation based on all points collected during the survey flight. The tool "Display boundary" was then used to generate the extent, which was then exported into a shapefile and assigned with the necessary horizontal and vertical co-ordinate system.

Another new Shapefile *Waikato_Block-Delivery_Final_NZTM_20230222* was provided to rectify a rounding error on tiles. The AOI changed minimally and is reflected in the figure below.

Figure 54: Extent of deliverable data for Block A

4.1.3 Flight Lines

LINZ PGF specification 8.1.3 requires that Flightline shapefiles as Esri polylines are required. Each flightline must be assigned a unique File Source ID that is equal to the Point Source ID assigned to each point collected during that flightline.

The Sensor trajectory was imported into Terrascan and edited to split the trajectory into discrete flight lines. Each flight line was then assigned discrete flight line ID, in accordance with the project flight plan. Each Lidar point was assigned a flight line ID by matching against its trajectory, using the Adjusted GPS time stored in both the trajectory and lidar point. The trajectories were exported to ESRI shape file format with a File Source ID attribute populated with the trajectory flight line ID value. This process will ensure that specification 8.1.3 is adhered to.

The image below shows the extend of the area covered.

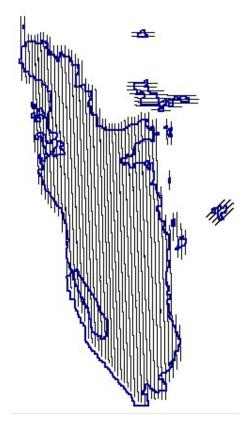


Figure 55: Flight lines for 4ppm2 data coverage over Block A (Original)

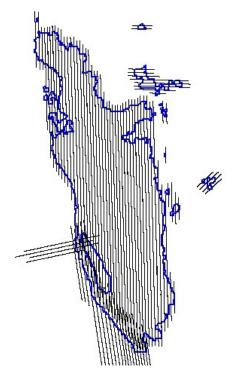


Figure 56: Flight lines for 4ppm2 data coverage over Block A (Revised)

4.2 Classified point cloud tiles

LINZ PGF specification 8.2 details the requirement for the point cloud deliverables, and how adherence to the specifications is measured is listed below. Point cloud deliverable generation methods will be detailed in the Processing Report. Deliverable QC checks are performed both by Lidar technicians, under the supervision of the Lidar Phase Manager and followed by a review of 10% of the data by an independent analyst or project manager:

- (a) Data from all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified, by tiles. Project swaths exclude calibration swaths, crossties, and other swaths not used in product generation.
- (b) Data is provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum.
- (c) Fully compliant LAS v1.4, Point Data Record Format (PDRF) 6-10. All files must have the same PDRF.
- (d) Each point includes a Point Source ID linking it to the flight line File Source ID.
- (e) Correct and properly formatted georeferenced information (EPSG: 2193 + 7839) as Open Geospatial Consortium (OGC) Well Known Text (WKT) included in all LAS file headers.
- (f) File Source ID set to 0 for tiled LAS files.
- (g) GPS times recorded as Adjusted GPS Time at a precision sufficient to allow unique timestamps for each pulse.
- (h) Points are provided in the order in which they were collected.

- (i) Height values reported to three decimal places (nearest mm). (While not significant for accuracy, this supports numerical processing and reduces the number of identical values caused by rounding.)
- (j) Intensity values, normalised to 16-bit by multiplying the value by 65,536/ (intensity range of the sensor) per LAS v1.4. This will result in an intensity range of 0-65,536.
- (k) Classification as required by the Contract Authority (Table 4 at a minimum).
- (I) Tiled delivery, without overlap, per the project tiling scheme in Section 9 Tiles.
- (m) Files named per Section 9 Tiles.

The point cloud tiles created for handover underwent multiple alterations before finalization. After the LAS tiles were created in Microstation, LASTools was used to assign the correct global encoding (17), system identifier and file source ID (0). WKT was also added to the LAS metadata, as illustrated in the figure below. The correct height values were also confirmed in LASTools ensuring that three decimal places were being used. The tiles were also named according to the required naming convention which is discussed in Section 6.

Figure 57: WKT of a LAS file shown by LASTools.

Intensity valued scaled from a range of 100 – 10000 output by HxMap, to full 16-bit dynamic range. Translation value = -100 Scale value = 6.5535

Once the point cloud was classified and was inspected manually in Microstation, the LAS files were loaded into LP360. The global coding, file source ID, WKT, VLRs, file format and LAS version were compared against to the LINZ specifications and after passing QA/QC, the files were renamed in accordance with the LINZ specifications. A condensed version of the LP360's results can be found in the table below. A complete listing of the output from LP360 is included as an embedded document in Appendix A.

					File	
				File	Source	CRS is
File	Points	Coordinate System	Version	Signature	ID	WKT
		NZGD2000 / NZGD2000 / New Zealand	7 01 01 01 1	oigi ia cai o		
CL2_BA34_2021_1000_0138.las	2.977.555	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0139.las	5 553 224	Transverse Mercator 2000 + NZVD2016	14	LASF	0	TRUE
622_6/ 6 (<u>2</u> 262.21666261651166	0,000,22 :	NZGD2000 / NZGD2000 / New Zealand		2 101		11.02
CL2_BA34_2021_1000_0140.las	3.818.768	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
622_3, 5 1_2621666_61 16.id6	0,010,700	NZGD2000 / NZGD2000 / New Zealand		2 101		11102
CL2_BA34_2021_1000_0141.las	6242004	Transverse Mercator 2000 + NZVD2016	14	LASF	0	TRUE
CL2_B/ 54_2021_1000_0141.id3	0,272,007	NZGD2000 / NZGD2000 / New Zealand	1. 1	L (5)	U	TIVOL
CL2_BA34_2021_1000_0142.las	/ _{590.987}	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
CLZ_BAS4_2021_1000_0142.id3	4,550,567	NZGD2000 / NZGD2000 / New Zealand	1	LASI	0	TRUL
CL2_BA34_2021_1000_0143.las	4 982 542	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
CLZ_BA34_2021_1000_0143.ias	4,362,342	NZGD2000 / NZGD2000 / New Zealand	1.4	LASE	U	IRUE
CL2_BA34_2021_1000_0144.las	E 727.000	' '	1.4	LASF	0	TRUE
CL2_BA34_2021_1000_0144.1dS	5,327,000	Transverse Mercator 2000 + NZVD2016	1.44	LASF	U	TRUE
CL2 DA7/ 2021 1000 01/51	6 670 705	NZGD2000 / NZGD2000 / New Zealand	7.7	1.405		TOUE
CL2_BA34_2021_1000_0145.las	6,679,325	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
010 0474 0007 7000 07461	0.053.607	NZGD2000 / NZGD2000 / New Zealand	7.4			T0
CL2_BA34_2021_1000_0146.las	9,951,623	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0147.las	5,496,468	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0148.las	7,864,446	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0149.las	6,044,892	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0150.las	5,780,460	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0231.las	145,374	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0232.las	1,022,439	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0233.las	1,151,686	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0234.las	3,148,049	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0235.las	2,681,102	Transverse Mercator 2000 + NZVD2016	1.4	LASF	0	TRUE
		NZGD2000 / NZGD2000 / New Zealand				
CL2_BA34_2021_1000_0236.las	4,925,163	Transverse Mercator 2000 + NZVD2016	14	LASF	0	TRUE
	.,===,:00	NZGD2000 / NZGD2000 / New Zealand			Ů	
CL2_BA34_2021_1000_0237.las	3.665.857	Transverse Mercator 2000 + NZVD2016	14	LASF	0	TRUE

Table 2: Representative output from LP360 illustrating LAS file specification compliance

Additionally, a pre-delivery script which invokes LASTools was run on all tiles. The script output was imported into a custom Excel Worksheet, which checked specification compliance. For a complete listing of analysis refer to Section 6.1 of this document.

4.3 Elevation models

LINZ PGF specification 8.3 details requirements for raster surface model deliverables. The specification and how adherence to the specifications is measured is listed below. Deliverable QC checks are performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a review of 10% of the data by an independent analysist or project manager:

- (a) Grid spacing: 1m cell size.
- (b) Generated to the limits of the project area
- (c) Raster format: Geotiff (.tif)
- (d) Geo-reference information (EPSG 2193) in each raster file.
- (e) Tiled delivery without overlap.
- (f) NOT clipped using polylines for land-water boundaries from national databases (for example coastlines, river or lake boundaries) as these can be inaccurate and subject to continual geomorphic change.
- (g) Tiles with no edge artefacts or mismatch. A quilted appearance in the overall surface can be grounds for rejection of the entire deliverable whether the rejection is caused by differences in processing quality or character among tiles, swaths, flights, or other unnatural divisions.
- (h) Void areas (for example, areas outside the project area but within the project tiling scheme such as offshore water) coded using "NODATA" value equal to -9999. This value must be identified in the appropriate location within the raster file header.
- (i) Constrained with any additional break lines required by the Contract Authority, such as stopbanks, streams, and narrower rivers.
- (j) Provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum. Additional vertical datums may be specified by the Contract Authority.

4.3.1 Bare-Earth Digital Elevation Models (DEM)

LINZ PGF specification 8.3.1 details additional requirements for Digital Elevation Models. The Bare-Earth DEM is the bare earth that has been classified and edited to remove vegetation and man-made structures within the bounds of the classification accuracy requirements. It must also include or conform to the following:

- (a) Based on Classification level 2 or better ground return points.
- (b) Hydro-flattening as outlined in Section 7 Hydro-Flattening.
- (c) Bridges removed from the surface, while culverts are treated as ground
- (d) Method for removal of buildings, structures or other ground cover/vegetation and interpolation techniques documented.

The Digital Elevation Models were created using a combined model based on both ground surface points and break line points. These break line points were created during the hydro-flattening process mentioned in **Section 4**. By using these classes, a true representation of the ground points can be achieved while still maintaining a smooth water surface which gradually follows the terrain.

To generate DEMs, LAS format data files are loaded into TerraScan, only loading in class 2 points and breaklines. Additional data is referenced to avoid tile edge artefacts. Following import, TerraScan-Export Lattice Model command is used to create a grid file with uniform distances between points from one or more selected point classes. For each grid point, the lattice model file stores XY coordinates and elevation. Within the Export Lattice Models command we utilize "Triangulated model Z" to export the DEM tiffs. This triangulated model z derives an elevation value that is calculated from a TIN

model of the lidar points using ground and breakline classifications.

The elevation grid is generated as a TerraScan Lattice model using the following settings:

- o Grid Method = TIN Model (Triangulated model z)
- o Grid Spacing = 1 meter

Following Lattice model export, the data was processed using Esri to produce GeoTiff

The tiles were loaded into LP360 to check the metadata of the images during both production and QA/QC of the deliverables. A Representative version of LP360's findings is found in the table below. A complete listing of the LP360 results is included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DEM_BB35_2021_1000_4824.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4825.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4826.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4827.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4828.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4829.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4830.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4901.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4902.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4913.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4914.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4915.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4916.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4917.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4918.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4919.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4920.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4921.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4922.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB35_2021_1000_4923.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 3: Condensed output from LP360 illustrating DEM file specification compliance

4.3.2 Digital Surface Models (DSM)

LINZ PGF specification 8.3.2 details additional requirements for Digital Surface Models. The DSM is the heights of the top of the highest feature at each gridpoint, including ground, vegetation, and manmade structures. The DSM is based on first return points after removal of noise.

LAS format data files are loaded into Terrascan only loading in First, First-of-many and Single returns. Additional data is loaded to avoid tile edge artefacts. Only coverage classed 1 to 6 & 17 points will be

used in generation of Digital Surface Models. The elevation grid is generated as a TerraScan Lattice Model using the following settings:

- o Grid Method = Binning (Maximum Value DSM)
- o Grid Spacing = 1 metre

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

To meet the request to produce a DSM representative of the heights of the top of the highest feature at each grid point while incorporating hydro features, the hydro features used to create the DEM deliverables were included to produce a hydro flattened DSM.

Hydro-flattened DEM tiles are overlaid against the DSM tiles to identify and fill gaps in the data (such as the river), and then the tiles were exported in Geotiff format including settings for the datums and null data specifications, using the tile grid to clip & name the data files. The DSM deliverables undergo a visual spot check using Globalmapper.

In areas where valid data gaps (e.g. waterbodies) do not meet the LINZ specification for hydroflattening the surface model will triangulate across these voids to the nearest point per pixel (highest for DSM & lowest for DEM). No intervention is made to flatten or constrain these areas.

Digital surface models are created by combining points with only a single return, and points that have the first return of many (returns) and are then used to generate the DSM model. Figure 28 is an excerpt of one of the DSM tiles created for the project area.

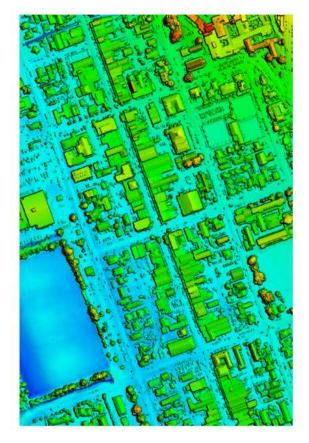


Figure 58: Excerpt from DSM_BB34_2021_1000_3346

The tiles created are in GeoTiff floating 32-bit format and have been adjusted to display a NoData value of -9999 (Figure 29). The composite DSM was produced in 32-bit Geotiff format as requested and both the tiles and the composite had the correct horizontal and vertical co-ordinate systems assigned to the metadata in ArcMap.

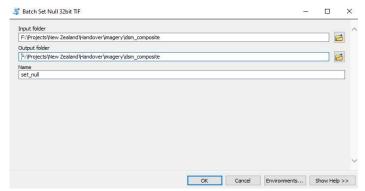


Figure 59: Script used in ArcMap to achieve a NoData value of -9999.

Figure 60: Properties of the composite DSM file showing its format and NoData value

After these files were amended, they were loaded into LP360 to check the necessary metadata of the imagery. The results from LP360 can be found in the table below. A complete listing of the LP360 results are included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DSM_BC35_2021_1000_0501.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0502.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0503.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0504.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0505.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0506.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0517.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0518.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0519.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0520.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0521.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0522.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0523.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0524.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0525.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC35_2021_1000_0526.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 4: Condensed output from LP360 illustrating DSM file specification compliance

4.4 Break lines

LINZ PGF specification 8.4 details requirements for hydro-flattening break lines. Delivery of break lines representing all hydro-flattened features in a project is required. Additional break lines may also be required by the Contract Authority. These are to be delivered as ESRI Shape files (.shp) using the NZTM2000 projection.

Refer to section 7.0 of this document. The workflow methods will be documented in the project Processing Report. The digitized hydro features were included in the handover data set, under the Vector deliverable section. They are in shapefile (.shp) format and are in the NZTM2000 projection.

Stream and stream-island, lake and lake island break lines were delivered, with ocean features falling under the "Lake" feature category due to its uniform height. In figure 31 the geometry type is set to a polygon shape and has vertical and horizontal co-ordinate sets as well as Z values.

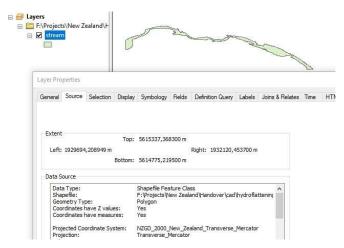


Figure 61: Stream break line properties in ArcMap.

4.5 GNSS data

GNSS data is not a required deliverable for this project.

4.6 Backed up project source data

LINZ PGF specification 8.6 details the requirements for archival and storage of the project data. Raw project source data, such as native format LiDAR files and point cloud swaths, are NOT required for delivery; however, a copy has been provided to CoLAB. It is acknowledged that the Vendor must hold a copy of all relevant raw project data, for a minimum of five years beyond the final delivery of the project deliverables. The vendor must provide this data, with unrestricted copyright, to the Contract Authority on request. The vendor may charge a reasonable access and distribution charge in such instances.

Woolpert and Ocean Infinity will archive all raw & processed data collected for 5 years following project completion.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

4.7 Contours

Contours with an interval of 0.5m will be generated for all project area.

Note Contours will be generated at Project conclusion to ensure there are no line breaks between blocks.

Contours will be generated from the DEM. Contour methodology is undergoing internal discussion and will be agreed with all parties prior to their generation.

5 LiDAR QA Tiles

LINZ PGF specification 9.1 & 9.2 detail the requirements for project tiles geometry & naming convention.

- (a) NZTopo50 subtitles based on NZTM2000 coordinates. The 1-m gridded raster products and point clouds must be delivered at 1:1000 nominal scale (2500 720m high x 480m wide subtiles per full NZTopo50 sheet).
- (b) The origin of the raster tiles must be placed on a whole metre coordinate value of the southwest corner of each tile (for example, 5429500 mN_17490300mE).
- (c) The tiled deliverables must edge-match seamlessly and without gaps.
- (d) The tiled deliverables must conform to the project tiling scheme without overlap.
- (e) File naming must conform with the naming convention described in section 9.2.

A Tile Index must be provided in ESRI shape file format. The file name must be included as an attribute in the Tile Index file.

The Client supplied tiling grid shape file will be used as the tile clipping polygon when exporting the deliverable products. The shape file will have an attribute added for each deliverable type as specified in section 9.2. This attribute will contain the required tile name for each deliverable. This shape file will be used as the means of extracting all project data deliverables, so that the geometric aspects for specification 9.1, and the naming requirements of section 9.2 are fulfilled.

Deliverable QC checks have been performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team:

5.1 LAS Tiles QAQC - LASQC

Prior to delivery, Lidar data tiles have undergone a final analysis, using a custom developed Pre-Delivery QAQC tool called LASQC. This tool uses LASTools 'Lasinfo' in a batchscript called LASExtract, which collates information regarding each tile into an Excel worksheet. The tool analysis and reports compliance on the following items:

- o File naming accuracy
- o Check to ensure lidar points fall inside the extents bounded by the NZTOPO50/1:1000 tile name
- o Adjusted GPS time falling with correct extents for the survey
- o LAS file format, version, file source ID, point data record format & scale factor
- o Point counts by return, illustrating presence of multiple returns
- o Average point density for the tile, excluding overlap
- o Presence of the overlap (not applicable to all tiles) & withheld flags
- o Minimum, maximum & average intensity values.
- o Height above ground for building, low, medium & high vegetation classes

- Note it should be noted that this analysis is not accurate in steep terrain due to the different methods used for triangulation of between Terrascan & LASTools.
- o Check for presence of correct ESPG Codes for geodetic & vertical datums, and map projection
- o Raster Overviews for Point Source ID, Intensity, Point Density and Overlap Analysis

These analysis results will be included as an attachment referenced in Appendix A.

5.2 File naming

Project deliverables have been named in accordance with the project specification illustrated in Table 5.

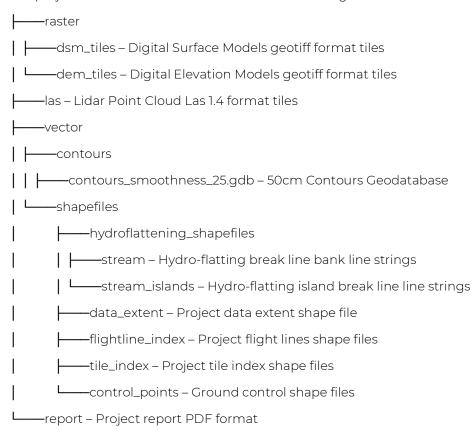

Product	DEM	CL2-Point Cloud Classification Level 2 DEM-Bare Earth Digital Elevation Model DSM-Digital Surface Model DTM-Digital Terrain Model UNC-Unclassified Point Cloud INT-Intensity image CHM - Canopy Height Model IMG-Aerial photography etc
Sheet	BK34	LINZ Topo50 identifier (4 characters)
Year	2016	Year of survey commencement
Scale	1000	Nominal scale of NZTopo50 subtiles
Tile	4118	Row number (41), Column number (18) of tile with respect to an upper left origin
ext	tif	File extension according to format conventions las tif shp etc

Table 5: File Naming

5.3 Delivery Folder

The project deliverables are structured in the following manner:

6 Setbacks and Solutions

During the production of the data sets for the preceding blocks, setbacks were encountered, with a varying impact on production time. Along with these setbacks, new methods of production were created to account for any necessary changes to improve the quality of the data set or save time when amending the data set. These setbacks impacted the delivery date of Block A and other areas.

6.1 Missing ground points under vegetation and low vegetation classification difficulties

During the processing of all Waikato Blocks it is noted there are areas of dense vegetation which limit and often prevent laser penetration to the ground surface. In these situations, it is common for data voids to appear in the DEM surface. In addition, low lying dense vegetation has caused difficulty in assessing the true ground surface. In these situations, it can be difficult to discern if points are part of the ground surface or the lowest part of low-lying vegetation. In these situations, it is common for the ground surface profile to transition to what may or may not be the lowest part of low-lying vegetation. During manual editing, these situations are monitored with the objective being to make the best interpretation of ground.

6.2 Production Delays to Block A

During production, it was determined a new technical team within Woolpert's US and Australian offices was necessary to continue production on the project. This handover from the previous team created project delivery delays as the new team became familiar with the project specifications as well as to address quality assurance workflow requests made by the prime contractor.

6.3 Review Process

Due to uncertainty of deliverable quality and issues associated with the processing procedure Ocean Infinity implemented a layered review process. Woolpert provided the initial DEM and DSM supply along with a results folder. These folders and files were forwarded to Cyient, an independent contractor, for a 100% review. The results of this review were vetted by Ocean Infinity and passed onto Woolpert for their review, comment and repair where deemed necessary. The process has been tracked by a modified LINZ QAQC spreadsheet.

6.4 Data Resupply

After the initial complete supply of data this was followed by extensive QAQC from WRC and LINZ, a number of errors and improvements were required. These were managed and resupplied and tracked using another spreadsheet (Appendix B).

7 Results Acceptance & Signoff

An acceptance and signoff of the project QAQC supervisory review is listed below.

Result Acceptance						
Assessment Criteria	Status	Completed By	Date			
Point cloud classification accuracy	Complete	Woolpert/AAM	07 December 2022			
Point cloud classification consistency	Complete	Woolpert/AAM	07 December 2022			
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	07 December 2022			
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	07 December 2022			
Digital Survey Models	Complete	Woolpert/AAM	07 December 2022			
Contours	Complete	Woolpert/AAM	07 December 2022			
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	07 December 2022			
Project Manager / Supervisor Signoff	Complete	Brian Foster	07 December 2022			
Ocean Infinity Review	Complete	Luke Leydon	12 December 2022			

Table 6: Processing Results Acceptable Signoff

Result Acceptance						
Assessment Criteria	Status	Completed By	Date			
Point cloud classification accuracy	Complete	Woolpert/AAM	24 May 2023			
Point cloud classification consistency	Complete	Woolpert/AAM	24 May 2023			
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	24 May 2023			
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	24 May 2023			
Digital Survey Models	Complete	Woolpert/AAM	24 May 2023			
Contours	Complete	Woolpert/AAM	24 May 2023			
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	24 May 2023			
Project Manager / Supervisor Signoff	Complete	Brian Foster	24 May 2023			
Ocean Infinity Review	Complete	Luke Leydon	08 June 2023			

Table 7: Processing Results Acceptable Signoff (rev2)

Appendix A: Lidar Quality Assurance Results

Provided as separate Documents -

LP360_Results_for_DEM	17/05/2023 5:00 PM	Microsoft Excel W	236 KB
LP360_Results_for_DSM	17/05/2023 5:11 PM	Microsoft Excel W	237 KB
LP360_Results_for_LAS_FINAL	5/06/2023 5:07 PM	Microsoft Excel W	2,367 KB

Appendix B

Provided as separate excel spreadsheets.

WRC_Raised_Defect_Tracking_Block_A_v001_20230222-AAM-Responses
AU411 WRC_Raised_Defect_Tracking_Block_A_v002_20230322

Waikato Local Authority Shared Services (WLASS) / CoLAB LiDAR Data Capture Services LiDAR Processing Report Block B Priority (Rev3)

Contract Number: AU411

Surveyed By: iXblue Pty Ltd / Ocean Infinity Pty Ltd

Processing Completed By: Woolpert USA and Woolpert Australia

Prepared For: Colab (formerly WLASS)

Document Date: 22 June 2023

Ocean Infinity (Australia) Pty Ltd ABN 61 128 811 978 oceaninfinity.com

Document Control

Woolpert Inc. Representative

Name	Brian Foster
Position	Woolpert Senior Associate
Address	333 North Alabama St. Suite 200 Indianapolis, IN 46204
Telephone	+1 317 809 4685
Email	Brian.Foster@woolpert.com

Ocean Infinity Supervisor

Name	Dave Field
Position	Managing Director
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 277 755 532
Email	david.field@oceaninfinity.com

Ocean Infinity Project Manager

Name	Luke Leydon
Position	NZ Account Manager, Airborne
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 226 511 732
Email	<u>luke.leydon@oceaninfinity.com</u>

Client Representative

Name	Rolf Boswell
Position	Project Delivery Manager
Address	6/34D Lake Street, Cambridge 3434 NEW ZEALAND
Mobile	+64 27 420 0239
Email	rolf.boswell@colabsolutions.govt.nz

Document Revision

Revision No	Issue Purpose	Prepared	Checked	Approved
0	Issue Block B LiDAR Processing Report	L Leydon	BF/MM	D Field
1	Report amended	L Leydon	ММ	D Field
2	Report amended for most recent supply	L Leydon	BF	D Field
3	Report amended for most recent supply	L Leydon	BF	D Field

Approval for Issue

Name	Signature	Date
Luke Leydon	Juke Jeydon	22 June 2023

Revision History

Item	Description of change	Section	Revision
1	Revised DEM Methodology	4.3.1	1
2	Added to Introduction	1	2
3	Updated Pointcloud statistics	Figure 10,	2
4	Updated LAS, DEM, DSM LP360 tables	Table 2, Table 3, Table 4	2
5	Added to 6.4 Delivery not meeting specification with example figures of how data was corrected	6.4	2
6	New appendices	Appendices	2
7	Added to Introduction		3
8	Updated Point cloud statistics		3
9	Updated LAS, DEM, DSM LP360 tables	Table 2, Table 3, Table 4	3
10	Added Section 2.9.1 Changes to Classification Accuracy and Filters post LINZ and WRC QA	2.91	3
11	Removed Contours methodology, to be confirmed and discussed with WRC prior to generation	4.7	3
12	Added 6.4.1 Delivery not Meeting Specification – Previous rendition	6.4.1	3
13	New results sign off table	Table 9	3
14	New Appendices	Appendices	3

Contents

1	Intro	duction		8
2	Lida	R Data Processir	ng and Handling	S
	2.1	The ASPRS LAS	S File format	S
	2.2	Time stamp of	navigational data	1C
	2.3	Datums and co	pordinate reference system	11
	2.4	Geometric Cali	bration	1
	2.5	Positional accu	ıracy validation	12
	2.6	Use of the LAS	withheld flag	12
	2.7	Use of the LAS	v1.4 Overlap Flag	12
	2.8	Point Classifica	ition	13
	2.9	Classification A	occuracy	18
		2.9.1 Chang	es to Classification Accuracy and Filters post LINZ and WRC QA	22
	2.10	Classification C	Consistency	23
	2.11	Classification C	Consistency – Priority and Non-Priority blocks	23
3	Lida	R Hydro-Flatten	ing QAQC	24
4	LiDA	R Deliverables Q	AQC	3C
	4.1	Reporting and	metadata	30
		4.1.1 Projec	t reports	30
		4.1.2 Extent	S	30
		4.1.3 Flight	Lines	3
	4.2	Classified point	t cloud tiles	32
	4.3	Elevation mod	els	34
		4.3.1 Bare-E	earth Digital Elevation Models (DEM)	35
		4.3.2 Digital	Surface Models (DSM)	36
	4.4	Break lines		39
	4.5	GNSS data		39
	4.6	Backed up pro	ject source data	39
	4.7	Contours		39
5	LiDA	R QA Tiles		4
	5.1	LAS Tiles QAQ	C - LASQC	4
	5.2	File naming		42
	5.3	Delivery Folder	,	42
6	Setb	icks and Solutio	ns	44
	6.1	Missing ground	d points under vegetation and low vegetation classification difficulties	44
	6.2	Production De	lays to Block B	44
	6.3	Review Proces	S	44
	6.4	Delivery not M	eeting Specification	44
		6.4.1 Delive	ry not Meeting Specification – Previous rendition	51
7	Resu	ts Acceptance 8	& Signoff	52

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Tables

Table 1: Point Classifications	13
Table 2: Condensed output from LP360 illustrating LAS file specification compliance	
Table 3: Condensed output from LP360 illustrating DEM file specification compliance	36
Table 4: Condensed output from LP360 illustrating DSM file specification compliance	38
Table 5: File Naming	42
Table 6: Processing Results Acceptable Signoff	52
Table 7: Processing Results Acceptable signoff (Rev1)	
Table 8: Processing Results Acceptable signoff (Rev2)	
Table 9: Processing Results Acceptable signoff (Rev3)	

Figures

Figure 1: Waikato Survey Area	
Figure 2: LAS 1.4 being specified during project	9
Figure 3: Project settings used in TerraScan project when importing points into the project	9
Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools	10
Figure 5: Representative examples of LAS point attributes	11
Figure 6: Settings used when cutting overlap in Microstation.	13
Figure 7: Automatic classification macro developed for the project area	14
Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine	15
Figure 9: A smaller iteration distance value avoids classification of ground points on low objects	15
Figure 10: Statistics showing the classes of all the LAS points within the project area	16
Figure 11: The green diagonal hatching seen above shows blocks which have been fully checked	17
Figure 12: The diagonal hatching seen above shows how the progress was tracked	
Figure 13: The polygons are areas for further investigation	
Figure 14: Example overhead image of DEM interpolation	19
Figure 15: LAS point cloud profile view from previous figurefigure 15: LAS point cloud profile view from previous figure	
Figure 16: Example overhead image of DEM surface roughness	
Figure 17: LAS point cloud profile view from previous figurefigure 17: LAS point cloud profile view from previous figure	
Figure 18: Tile BC33_1000_3225	
Figure 19: Tile BC33_1000_3225 – Post filter	
Figure 20: Example of a hydro-flattened stream with a stream-island	
Figure 21: Excerpt of river points used to create the centreline	
Figure 22: Centreline for the stream within the project's survey	
Figure 23: Settings used to export lattice models	27
Figure 24: Example of Pre-filter, overhead view of ground and veg points with hydro lines	28
Figure 25: Example of Post-filter, overhead view of ground and veg points with hydro lines	28
Figure 26: Point cloud – boulder filled stream	29
Figure 27: Imagery – boulder filled stream	29
Figure 28: Extent of deliverable data for Priority B (red outline)	
Figure 29: Flight lines for 4ppm2 data coverage over Block B Priority – yellow lines are tidal	
Figure 30: WKT of a LAS file shown by LASTools	
Figure 31: Excerpt from DSM_BB33_2021_1000_4416	
Figure 32: Script used in ArcMap to achieve a NoData value of -9999	38
Figure 33: Properties of the composite DSM file showing its format and NoData value	
Figure 34: Stream break line properties in ArcMap	
Figure 36: Vegetation present in ground class (Tile example BC32_1648)	45
Figure 37: Vegetation subsequently removed from ground class (Tile example BC32_1648)	45
Figure 38: DEM pitting evident in Tile BC32_4001	46
Figure 39: DEM corrections in Tile BC32_4001	
Figure 40: DEM pitting evident in Tile BC33_1406	
Figure 41: DEM post correction in Tile BC33_1406	
Figure 42: DEM spikes evident in Tile BC33_4306	
Figure 43: DEM after spike removal in Tile BC33_4306	
Figure 44: Mottled surface evident in Tile BC32_4137	
Figure 45: Surface post filter in Tile BC32_4137	
Figure 46: Ground Points evident in Tile BB33_5002	
Figure 47: Ground Points & Bridge removed in DEM Tile BB33_5002	
Figure 48: Red is previous coastline. White is updated coastline Tile BC31_3445	51

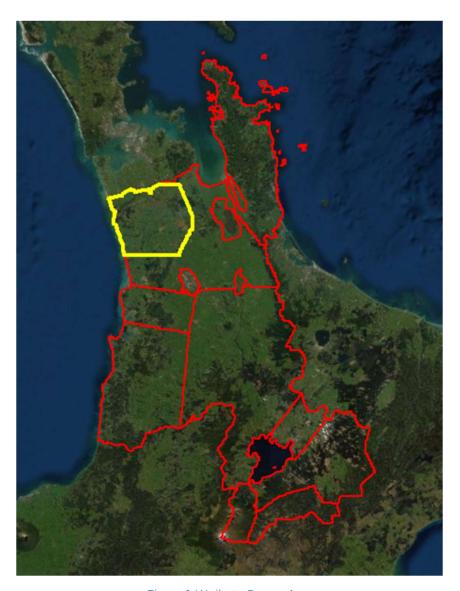


Figure 1: Waikato Survey Area

Block B Priority shown in Yellow on Northwest Section of Block B

1 Introduction

Lidar survey projects are broken into three distinct phases. The survey commences with the data acquisition project phase. For matters pertaining to this phase of the project, refer to the document

AU411_WLASS-Collection_Report-10052021.pdf.

The next phase of the project is the Geopositioning phase, which involves processing the raw sensor and trajectory data to produce a set of point clouds for each flight line.

The point clouds have several geometric optimizations performed, to optimise the relative and absolute spatial accuracy levels.

At completion of the Geopositioning phase, the point cloud geometry is final, and the point cloud classification and production generation project phases follow.

For matters pertaining to this phase of the project, refer to the documents

AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022 AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022

The following report covers the data processing project phase and describes the data processing methods used for the lidar classification and product generation, along with the QAQC procedures and results.

This report illustrates compliance with the LINZ PGF specifications sections 6 - 9.

This report pertains to the coverage of Block B - Priority, as illustrated in yellow in Figure 1 - Waikato Survey.

It is noted that this Priority Block dataset has been subject to several supplies, rework and resupplies. New Appendices have been supplied along with screenshots showing how the previous datasets were affected and then corrected.

The previous rendition of this dataset was supplied on 26 April 2023. This underwent QA with WRC and LINZ. The dataset was ultimately rejected. This was discussed in a Technical Meeting with Ocean Infinity, Woolpert USA, Woolpert Australia (AAM), Waikato Regional Council (WRC) and Land Information New Zealand (LINZ). This meeting occurred on Tuesday 09 May.

One of the major points of discussion in the meeting was the negative influence of the macro introduced to minimise pitting and a corduroy type texture to ground surfaces. Ultimately the decision was made to revert to the previous supplied dataset "Waikato_Block_B_Priority_25012023_Resupply" and fix this as opposed to the most recent supply.

To this end, both Woolpert USA and Australia worked on the dataset and spent over 300 manual, manhours identifying, digitising and placing polygon's around the worst affected areas for manual editing and correction. Both entities QA'd the data prior to resupply.

2 LiDAR Data Processing and Handling

The LiDAR data processing method is described in the Project Method Statement, AU411-FOR-008-R5 Project Method Statement_WLASS. The following sections elaborate further but focus on adherence with compliance to the LINZ PGF Specification (JAN 2020).

https://www.linz.govt.nz/system/files_force/media/doc/pgf_version_new_zealand_national_aerial_lidar_base_specification.pdf?download=1

QAQC steps for various workflow tasks have been tracked and recorded and included as an embedded document within Appendix 1.

2.1 The ASPRS LAS File format

LINZ PGF specification 6.1 requires that all point deliverables are required to be fully compliant with LAS Specification Version 1.4, using Point Data Record Format (PDRF) 6, 7, 8, 9 or 10 (referred to as LAS v1.4).

For this project, LAS 1.4 with PDRF 6 is to be delivered.

The LAS files created during the project during the Geopositioning phase and subsequent data cleaning and deliverable products are in ASPRS LAS 1.4 format, with PDRF 6. This was specified during the creation of the project in TerraScan, as shown in a representative image in the figure below:

Figure 2: LAS 1.4 being specified during project

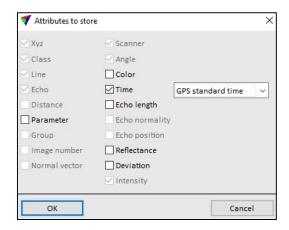


Figure 3: Project settings used in TerraScan project when importing points into the project.

The correct format of LAS is illustrated by use of LASTools, which shows the LAS files are in 1.4 format in the figure below.

Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools

To verify that the project deliverables are in the correct LAS file format/version with PDRF, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.2 Time stamp of navigational data

LINZ PGF specification 6.2 requires that Each Global Navigation Satellite System (GNSS) aircraft positional measurement must be time stamped using Adjusted Global Positioning System (GPS) Time, at a precision enough to allow unique timestamps for each LiDAR pulse.

For this project, LAS 1.4 with PDRF 6 has been delivered including, with Global Encoding bit set to 1.

An example of how adjusted GPS time is visualized and monitored is illustrated in Figure 5: LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right).

To verify GPS time is set to adjusted GPS time, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar technical manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A. Figure 5 below shows representative examples of LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right)

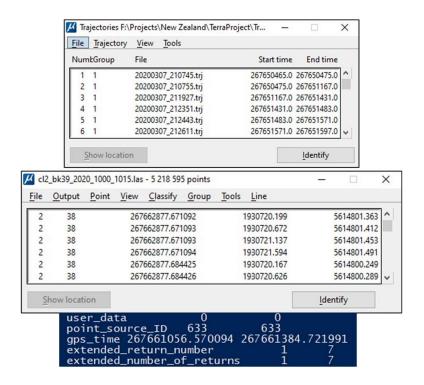


Figure 5: Representative examples of LAS point attributes

2.3 Datums and coordinate reference system

LINZ PGF specification 6.3 requires that the required datum for latitude, longitude, and ellipsoid heights is the New Zealand Geodetic Datum 2000. The required vertical datum for normal-orthometric heights is NZVD2016 (Reference 9). Projected data products are to be delivered in NZTM2000 projection (Reference 10) with NZVD2016 normal-orthometric heights.

The Survey Datums, Ground Control, Check Points and Lidar Geopositioning sections of the Project Methodology Statement describes in detail how the data is transformed and connected to the required project datum.

To verify that the correct datum information is recorded in the LAS 1.4 header, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files have the correct CRS applied in the header. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.4 Geometric Calibration

Following initial sensor data processing, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.

Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error. These calibration adjustments were performed using a combination of automated and manual corrections to the data to develop the geometrically calibrated data set to be utilized for all downstream processes.

2.5 Positional accuracy validation

LINZ PGF specification 6.4 details the positional accuracy verification methods. The Vendor is expected to apply best practice in assessing the project accuracy and achieving compliance with this specification. Before classifying and developing derivative products from the point cloud, the relative vertical, local vertical and horizontal accuracies of the point cloud must be verified. The Vendor must deliver a detailed report of the validation processes used.

Validation of the point cloud positional accuracies is the primary outcome of the Lidar Geopositioning workflow phase, using surveyed ground control & check points. The assessments methods and results of the positional accuracy validation is be reported in the LiDAR Geopositioning QA/QC Report.

2.6 Use of the LAS withheld flag

LINZ PGF specification 6.5 requires that outliers, noise points, geometrically unreliable points near the extreme edge of the swath, and other points the Vendor deems unusable must be identified using the Withheld Flag, as defined in the LAS Specification.

Points classified as low noise (coverage class 7) and high noise (coverage class 18) will have the LAS withheld flag set.

To verify that the withheld flag has been correctly set, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analyst to ensure that the Las withheld flag is correctly applied. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.7 Use of the LAS v1.4 Overlap Flag

LINZ PGF specification 6.6 requires identifying overage points is not required unless requested by the Contract Authority. However, if overage points are explicitly identified using LAS v1.4, they must be identified using the overlap flag.

Classification of the overlap points was done using TerraScan in Microstation. A macro step was created which allowed for points to be classified with the overlap bit by cutting the scan angle at zero degrees. The step used for the project dataset is illustrated in the figure below. This allowed for the overlap points to be withheld from DEM, DSM and intensity imagery generation. Figure 6 below shows Settings used when cutting overlap in Microstation. Note that the 'Action' is on "Set overlap bit.

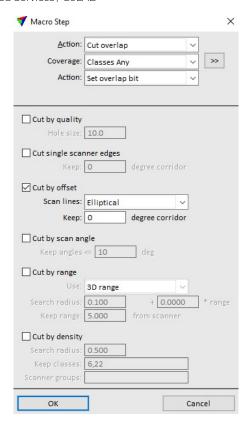


Figure 6: Settings used when cutting overlap in Microstation.

Verification of appropriate overlap flag application is performed using LP360 File Analyst. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.8 Point Classification

LINZ PGF specification 6.7 requires Lidar points are classified to the following coverage classes:

Code	Description
7	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
17	Bridge deck
18	High noise

Table 1: Point Classifications

Point cloud classification is performed by automated classification algorithms developed by Woolpert's senior Lidar analysts and reviewed by the Lidar technical manager.

A first run automatic classification was carried out on the raw LiDAR points using TerraSolid's TerraScan software to classify the LiDAR points into ground hits and non-ground hits. This results in a greater than 80% correct classification. Some of the steps used within this macro can be found within the screenshot below (Figure 7), including 5 of the 8 ground classification steps used on this data set.

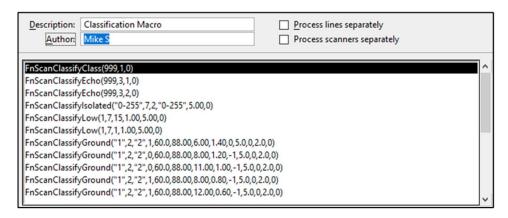


Figure 7: Automatic classification macro developed for the project area.

As documented by TerraSolid, the ground routine classifies ground points by creating a triangulated surface model iteratively. The routine is best suited for classifying ground in airborne laser data sets and in data sets where there is mainly natural terrain. For classifying ground in mobile data sets where the majority of ground is on hard surfaces, such as roads, use the Hard surface routine instead of the ground routine.

The routine is sensitive to low error points in the point cloud. Therefore, you should run one or more classification steps using the Low points routine before classifying ground. A more complex classification strategy is required for classifying ground in photogrammetric point clouds.

The ground routine starts by selecting local low points that are confident hits on the ground. The initial point selection is controlled with the Max building size parameter. If the maximum building size is, for example, set to 60.0 m, the routine assumes that any 60 by 60 m area has at least one point on the ground level and that the lowest point is on the ground level.

Then, the routine builds a surface model (TIN) from the initial ground points. The triangles in this initial model are mostly below the ground level and only the vertices are touching the ground. In the following iterations, the routine molds the model upwards by adding more and more points. Each added point makes the model following the true ground surface more closely.

The iteration parameters of the routine determine how close a point must be to a triangle plane for being accepted as ground point and added to the model. Iteration angle is the maximum angle between a point, its projection on the triangle plane and the closest triangle vertex. This is the main parameter controlling how many points are classified into the ground class. The smaller the Iteration angle, the less eager the routine is to follow variation in the ground level, such as small undulations in terrain or points on low vegetation. Use a smaller angle value (close to 4.0) in flat terrain and a bigger value (close to 10.0) in mountainous terrain.

Iteration distance makes sure that the iteration does not make big jumps upward if triangles are large. This avoids ground points that are too high, for example within low vegetation or on

low buildings.

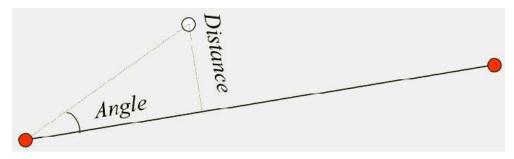


Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine.

Figure 9: A smaller iteration distance value avoids classification of ground points on low objects.

The iteration angle can be reduced automatically if the triangles become small. This reduces the eagerness to classify more ground points inside small triangles and thus, avoids unnecessary point density of the ground model thus avoiding redundancy of inclusion of unnecessary ground points. Related to this it is common to see default classified points within a classified ground point cloud surface. The iteration angle inside small triangles approaches zero if the longest triangle edge is shorter than a given Edge length value. Furthermore, the iteration can be stopped completely if triangle edges are shorter than a given limit. After completion of the automated classification, a strenuous manual classification was carried out over the required area to edit the points thus minimizing gross classification errors that may have occurred in the automatic classification process.

Each block's data was checked in a systematic approach to reduce missing important features. Orthogonal views with background orthoimagery, and profile views are used to review the performance of the automatic classification results.

Tools such as 'Classify using brush', 'Classify above line' and 'Add Point to Ground' (all found within TerraScan) were used during manual classification, to achieve classification accuracy meeting project specifications. Before handover files were created, checks were done on the project's points by viewing statistics within TerraScan as illustrated in the figure below.

Class #	Class	Priority B
1	Unclassified	339884
2	Ground	10419570014
3	Low Veg	715805527
4	Medium Veg	1635087015
5	High Veg	2241538250
6	Building	38350952
7	Noise	624905886
9	Water	29825267
17	Bridge Deck	290803
18	Reserved for ASPRS Definition	32803327
	Flagged as Withheld	657709213
	Flagged as extended overlap	5526447681
W7	Withheld Low Noise	624905886
W18	Withheld High Noise	32803327
01	Overlap Unclassified	94019
02	Overlap Ground	3443700961
03	Overlap Low Veg	248030391
04	Overlap Medium Veg	582868279
05	Overlap High Veg	913339051
06	Overlap Building	12716062
07	Overlap Noise	312767697
09	Overlap Water	6127330
017	Overlap Bridge	87412
OW18	Overlap/Withheld High Noise	6716479

Figure 10: Statistics showing the classes of all the LAS points within the project area.

To keep track of the data cleaning process, a hatching method was used on the DGN within Microstation. It allows the cleaners to systematically mark each tile which has been fully checked and editing, making sure the whole data set has been initially covered.

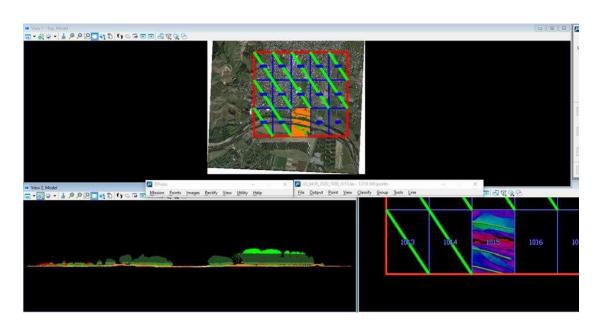


Figure 11: The green diagonal hatching seen above shows blocks which have been fully checked.

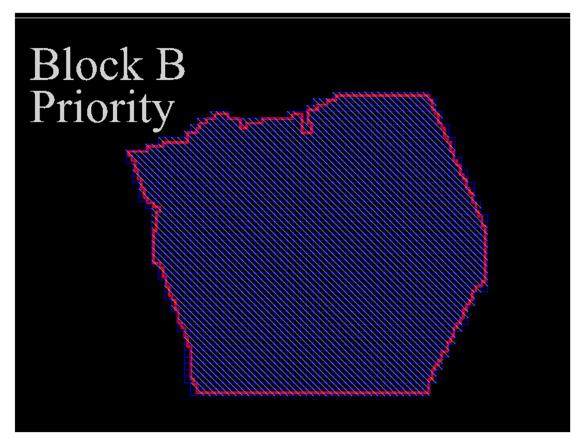


Figure 12: The diagonal hatching seen above shows how the progress was tracked

To verify that only the required coverage classes are present & populated, LP360 File Analyst performs exhaustive testing on the LAS data records, and outputs the analysis results to an excel spreadsheet. Lidar Analysts review this data to ensure that all deliverable LAS files are compliant with the specification coverage classes. Point cloud QAQC/editing is performed by trained Lidar Technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team.

2.9 Classification Accuracy

LINZ PGF specification 6.8 requires that non-withheld points must be classified to a classification accuracy level of 98%. No non-withheld points are to remain as class 0.

Realtime Digital Elevation models are generated using Terrascan/Terramodeler are used to verify ground classified points and lidar technicians review the DEMs to find anomalies such as spikes or pits that imply misclassified points and make corrections.

During DEM review profiles are cut across tiles where potential issues are detected. The Lidar Technician scans the profile view to identify if an issue exists and modifies the classification of points as required.

10% of the data tiles are subject to review by a senior analysis or project manager.

After data cleaning was completed, a comprehensive DEM review is performed to visualize the data over large areas for the purpose of identifying anomalies or areas for further investigation. Any potential errors were identified as shown in the red polygons below and later addressed via additional manual editing.

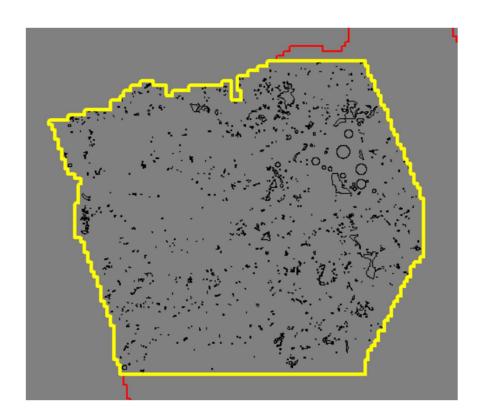


Figure 13: The polygons are areas for further investigation

The indicated areas were revisited and manually classified as appropriate. Below is an example of an issue identified for further investigation. Multiple revisions of the point cloud were performed to address issues common to the terrain and vegetation cover found within the project AOI. Rugged terrain and heavy vegetation across areas within the AOI commonly created unavoidable laser penetration difficulties as well as areas within the DEM that that appear to have a rough surface.

The figures below illustrate such and occurrence. Issues were identified concerning what appeared to be excess noise in areas of gullies. After investigating it was determined the gully areas in question are densely vegetated and located within steep terrain. The sparseness of the consistent ground penetration and steepness of terrain led to points being classified as noise during ground filtering. Additional filtering steps were taken to reclassify points into ground from noise class. The additional ground points added from noise provide improvement to the DEM quality as the points classified from noise to ground were sparsely distributed due to dense vegetation.

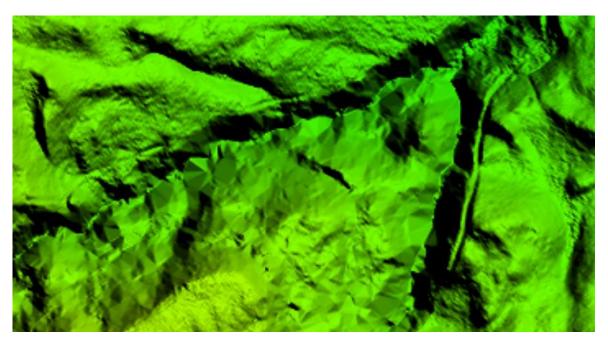


Figure 14: Example overhead image of DEM interpolation

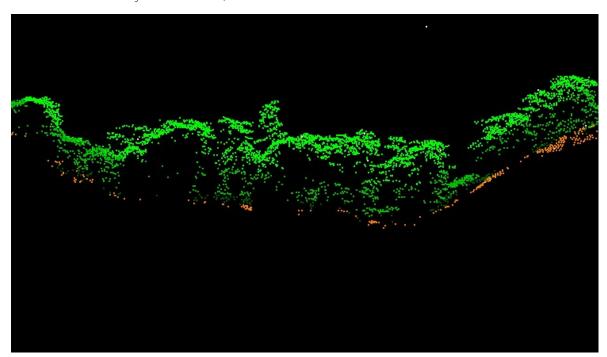


Figure 15: LAS point cloud profile view from previous figure

The figures below illustrate an occurrence of a rough DEM surface indicating possible misclassification. After investigating it was determined the areas in question are densely vegetated with rough and varied terrain characteristics and the DEM was determined to be an acceptable representation.

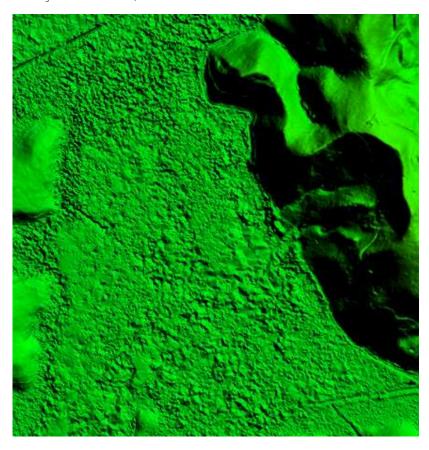


Figure 16: Example overhead image of DEM surface roughness

Figure 17: LAS point cloud profile view from previous figure

2.9.1 Changes to Classification Accuracy and Filters post LINZ and WRC QA

It was observed in the Waikato Priority B DEM/DSM the existence of a texturing/patterning appearance resembling "corduroy". This was also noted by LINZ and WRC as fail points in the QA document "AU411 WRC_Raised_Defect_Tracking_Block_B_Priority_v4_20230505".

Woolpert noted points approximately 20-30 cm above and below the trending ground surface were found to be in classes 1, 2, and 3 instead of class 7. These points manifested in the DEM/DSM as linear spikes/pits. See screenshot below showing the DSM surface screenshot and lidar profile view of texture/patterning/corduroy.

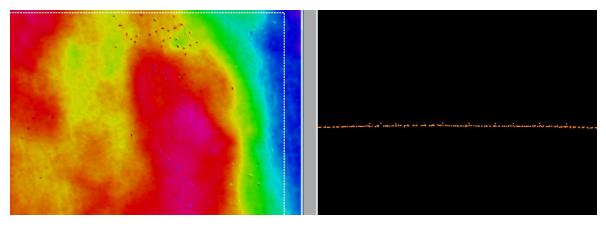


Figure 18: Tile BC33_1000_3225

Efforts were made to address this condition by the following-

- -Manual review of DEM/DSM raster files to identify this condition and polygons around the affected areas. A filter was then applied to the points within these polygons to correct the texturing/patterning and new DEM/DSM products generated.
- -The filter that runs within these polygons contains more aggressive ground filters and low points steps that will classify these points into class 7 noise. See screenshot below showing DSM surface screenshot and lidar profile view of lidar points after filter ran (yellow points are class 7, noise)

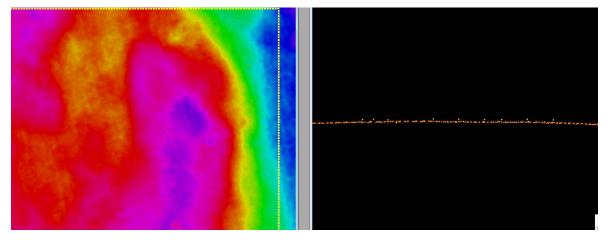


Figure 19: Tile BC33_1000_3225 - Post filter

2.10 Classification Consistency

LINZ PGF specification 6.9 requires that point classification must be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, flights, or other unnatural divisions are grounds for rejection of the entire deliverable.

As with classification accuracy there is no analytical means of measuring compliance. As such the classification consistency is reviewed via visual means. To mitigate against inconsistent classification, the following controls were employed:

- Systematic geometric issues that may lead to swath-based inconsistencies are identified by the Lidar Geopositioning process, as documented in the Project Method Statement, specifically in the intraswath, interswath & absolute accuracy analysis steps. Data swaths that do not pass this stage do not progress to later classification steps
- The automated classification process is a series of classification algorithm tools applied in a macro. The macro is designed and optimised to yield high classification accuracy across the variety of land cover types within the project area. Applying the one, optimised and flexible classification macro delivers consistent classification across the entire project area
- To avoid tile edge artefacts, all tile-based workflow steps utilise a buffer of lidar points from surrounding tiles. This allows for a better classification of both ground and vegetation points.
- Lidar Technicians are trained to deliver consistent results and use the same visualisation methods/aids. They are supervised by the Lidar Phase Manager and the 10% of classified point cloud tiles are peer reviewed by a dedicated QAQC team.
- DEM tiles are run after classification has been completed to review possible errors in Ground classification.
- Bridges are checked against a bridge shapefile (supplied by LINZ) to correctly identify and classify the bridges.

2.11 Classification Consistency – Priority and Non-Priority blocks

Within the Waikato project area, the areas named Priority Area B and Priority Area E were processed in advance of the larger associated blocks of Remainder Area B and Remainder Area E.

While the priority blocks were processed to the New Zealand National Aerial Lidar Base Specification, some noticeable consistency variation was evident between the priority and associated areas.

The differences consisted of variation of classification in the ground, default, and noise classes as well as some tonal differences between the intensity balancing between blocks. Additional processing was performed within the priority areas to reduce this variation and develop a more consistent product across delivery areas.

The additional processing does not affect the useability of the data and maintains a product within the specifications of the project; however it is noted there are occasional and slight differences in classification density and intensity tone between the priority areas and remainder areas. This has for the most part been mitigated by resupplying the data after it had its intensity compared and balanced against Block B Remainder. The Histogram has been balanced the same as much as possible.

3 LiDAR Hydro-Flattening QAQC

LINZ PGF specification 7.0 details at length the requirements for Hydro flattening of Digital Elevation Models.

The methods for Hydro Break line Digitization, Hydro-Flattening and Hydro-Flattening quality control are described in the Lidar Processing and Data presentation section of the Project Method Statement.

Hydro-flattening generation methods will be detailed in the Processing Report.

The pertinent parts of the specification and the means of identifying the required hydro-flattening features are as follows:

- · Permanent islands 5,000 m2 or larger must be delineated
- · Islands of 5000m2 will be included as hole features within the parent hydro-flattening polygon.
- · Inland ponds and lakes water bodies of 10,000m2 or greater at the time of collection must be flattened
- Lake polygon features will be precisely digitized using lidar point cloud with supporting background intensity imagery and supported by open-source imagery as reference.
- Inland streams and rivers of >= 30m nominal width (width of water flow in a single channel at time of capture) must be flattened
- Streams/rivers that fulfil the minimum distance requirement will be identified by visual inspection of the point cloud.

Hydro-flattening was performed upon the project dataset, and hydro break lines were used during the creation of digital elevation models. Hydro Flattening digitizing are performed by Lidar technicians, under the supervision of the Lidar technical manager.

The hydrological features were digitised in Microstation using a combination of manual and automatic digitizing ('Display boundary' function in TerraModeler). Stream islands that were 5 000m² or larger in size.

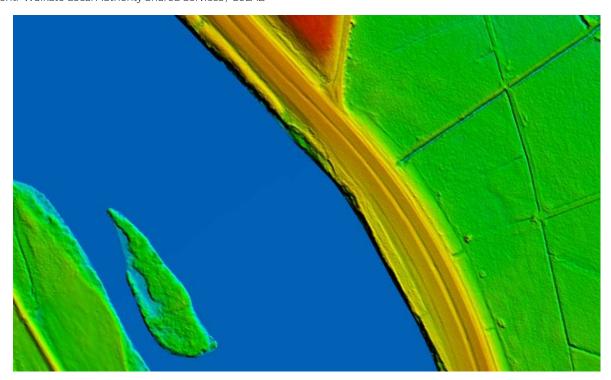


Figure 20: Example of a hydro-flattened stream with a stream-island.

When hydro-flattening a stream, the following process is used:

Identify a possible stream feature. Measure the width of the stream from bank to bank, and if greater than 30m wide, begin digitizing the feature. If the stream varies in width, the discretion of the geospatial specialist is applied.

Once the stream outline was completed, and that it was confirmed to be a polygon, a shapefile was imported into ArcMap and a centreline was created using the 'Create Centreline ´ script, which generates a centreline based on the stream polygon.

The centrelines were then checked for errors which may have occurred during its creation. It was then exported to Microstation where the centreline was then dropped to a surface (created by surrounding ground points). The tool 'Force Downstream Flow' was used to enforce correct elevations for the centreline, ensuring that each point's height was equal to or less than that of the point before it.

The correct order of point heights was then checked by exporting the co-ordinates out as a text file which would be used for the creation of a new centreline shapefile. Figure 18 shows the example excerpt of river points used to create the centreline after downstream flow was enforced. Figure 19 shows the example highlighted script was used to generate the centreline for the stream within the project's survey.

```
1 1929744.8358 5615128.2638 7.7096
2 1929746.0769 5615130.8498 7.6863
3 1929746.4280 5615131.5996 7.6796
4 1929746.5107 5615131.7727 7.678
5 1929746.7841 5615132.3591 7.6728
6 1929748.0794 5615135.0799 7.6483
7 1929748.5703 5615136.1455 7.6388
8 1929749.4246 5615138.0643 7.622
9 1929749.8587 5615139.0742 7.6132
10 1929750.6288 5615140.9327 7.5973
11 1929751.0393 5615141.7916 7.5896
12 1929751.5292 5615142.7809 7.5805
13 1929754.3861 5615148.3485 7.529
14 1929754.7868 5615149.1041 7.5219
15 1929754.7991 5615149.1267 7.5217
16 1929757.3347 5615152.1834 7.4808
17 1929757.8445 5615152.7752 7.4594
```

Figure 21: Excerpt of river points used to create the centreline

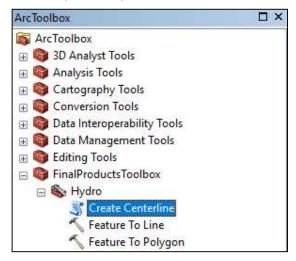


Figure 22: Centreline for the stream within the project's survey

After the new centreline had been created, it was conflated with the stream's shape using LP360 within ArcMap. This matched up the elevation of the stream's outline with that of the centreline. The new stream shape was attached to a DGN and opened in Microstation, exported as co-ordinates, and then read into the project. These points along with ground points were used to output lattice models which show the results of the hydro-flattening. Stream-island break line points were also included to ensure the correct modelling of the stream and its features.

The following settings were used for lattice model creation:

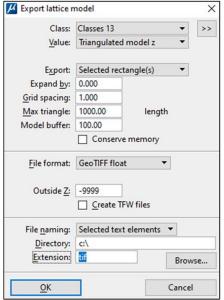


Figure 23: Settings used to export lattice models.

The product undergoes QC by the Lidar Phase Manager and is reviewed for any omissions or blunders. The following project specification are checked against:

- All Hydrologic break lines developed for use in hydro-flattening are in non-tiled ESRI feature class in polylineZ or polygonZ shape file format.
- Water bodies (ponds, lakes, and reservoirs), wide streams and rivers ("double-line"), and other non-tidal water bodies are to be hydro-flattened within the DEM. The resulting pond and lake surfaces will be flat and double line rivers will be flat level bank-to-bank and be gradient.
- It is noted when hydro-flattening streams, significant breaks in water elevation as well as varying degrees of bends in the stream direction will create a triangulated appearance in the DEM. These affects will be minimized to an appropriate extent.
- · The entire water surface edge must be at or below the immediately surrounding terrain.
- · Hydro-flattening break line feature class use the NZTM2000 projection and NZVD0216 height datum
- · Hydro-flattening has applied to all streams that are nominally wider than 30 metres wide, and to all non-tidal boundary waters bordering the project area regardless of size.
- · Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are nominally larger than 10000m2 in area
- Stream channels should break at road crossings (culvert locations). These road fills should not be removed from the DEM.
- Streams and rivers should NOT break at elevated bridges. Bridges are removed from the DEM. When the identification of a feature such as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

A peer review of the Hydro flattening break line data products as well as the hydro-flattened DEM is performed on 10% of the dataset by an independent analyst or project manager. To distribute and

track the progress amongst the editing & QAQC team, an ArcSDE tracker (multiuser database) is employed.

During the QA/QC, it was identified there will be instances of vegetation classifications contained within waterbody polygons. After investigation it was determined much of this occurs from overhanging vegetation from the outside of the hydro features. Occasionally there are instances of vegetation within waterways which is related to islands falling below the required threshold for collection. Additional processing steps were taken to limit the amount of vegetation that exists within the waterway while retaining the overhanging vegetation. This processing step primarily involved classification based on XYZ proximity to existing digitized hydro/island lines. After this process was performed some vegetation classified lidar points will still be present in the waterway.

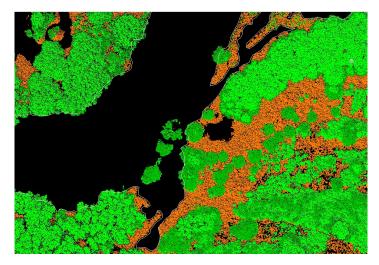


Figure 24: Example of Pre-filter, overhead view of ground and veg points with hydro lines

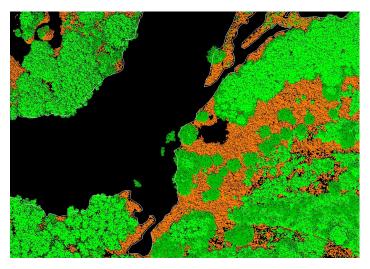


Figure 25: Example of Post-filter, overhead view of ground and veg points with hydro lines

Additionally, during QC data review, it was discovered rocks and boulders within rivers are occasionally classified as vegetation. This is typically observed in high relief areas where water flows down steep terrain, i.e., rapids/white-water. Rivers tend to narrow in these areas and will not likely be caught

during the aforementioned processing step based on proximity to linework. These points will continue to be classified as vegetation.

Figure 26: Point cloud - boulder filled stream

Figure 27: Imagery – boulder filled stream

4 LiDAR Deliverables QAQC

Section 8 of the LINZ PGF specification details the project reporting, metadata requirements & deliverable requirements.

4.1 Reporting and metadata

4.1.1 Project reports

The following details the reports being delivered for this section of the project:

- Collection Report detailing mission planning and flight logs, including dates of collection
- Details of quality control tests, and conformance against Linz specifications
 - o Refer to AU411_WLASS-Collection_Report-10052021.pdf
- Survey Report detailing the collection of all ground control, including the following:
 - o Control points used to calibrate and process the LiDAR and derivative data
 - o Check sites used to validate the LiDAR point data or any derivative product
 - o Refer to AU411-R1-Waikato LiDAR Ground Control Report of Survey.pdf
- Geopositioning QA/QC Report, detailing analysis, accuracy assessment and validation of the following:
 - o Point cloud data, including a summary of relative (smooth surface repeatability and overlap consistency) and non-vegetated vertical and horizontal local accuracy.
 - o QA/QC analysis of the vertical and horizontal local accuracy assessment will include a table of the product data compared to each check site.
 - o Refer to AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
 - o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022.

Processing Report (This Document) detailing:

- Classification and product generation procedures including methodology used for break line collection, hydro-flattening break line collection, hydro-flattening processing, DEM & DSM creation, and deliverable generation.
- Details of quality control tests, and conformance against each of the relevant Linz specifications including:
 - o Workflow QAQC checklist
 - o Pre-Delivery QAQC worksheet as an embedded document

4.1.2 Extents

LINZ PGF specification 8.1.3 requires that a geo-referenced, digital spatial representation of the detailed extents of each delivered dataset.

The data for Block B – Priority was captured using Leica TerrainMapper sensors 513 and 559, flown on days 5th, 15th, 29th and 31st January 2021 and days 3rd, 16th, 17th of February 2021 and days 11th, 13th and 21st of March 2021. The extent of Block B Priority can be seen in Figure 27. The flight lines relating to the area can be seen in Figure 28.

Please note some of the flightlines and associated data that were overlapping with adjoining blocks have been withheld from the supply in this instance. Alternative Block ID shapefile was provided to Waikato on 08 September 2022. The areas have been withheld in order to supply a seamless data set when combined.

This extent was created by creating a surface in Microstation based on all points collected during the survey flight. The tool "Display boundary" was then used to generate the extent, which was then exported into a shapefile and assigned with the necessary horizontal and vertical co-ordinate system.

Figure 28: Extent of deliverable data for Priority B (red outline)

4.1.3 Flight Lines

LINZ PGF specification 8.1.3 requires that Flightline shapefiles as Esri polylines are required. Each flightline must be assigned a unique File Source ID that is equal to the Point Source ID assigned to each point collected during that flightline.

The Sensor trajectory was imported into Terrascan and edited to split the trajectory into discrete flight lines. Each flight line was then assigned discrete flight line ID, in accordance with the project flight plan. Each Lidar point was assigned a flight line ID by matching against its trajectory, using the Adjusted GPS time stored in both the trajectory and lidar point. The trajectories were exported to ESRI shape file format with a File Source ID attribute populated with the trajectory flight line ID value. This process will ensure that specification 8.1.3 is adhered to.

The image below shows the extend of the area covered.

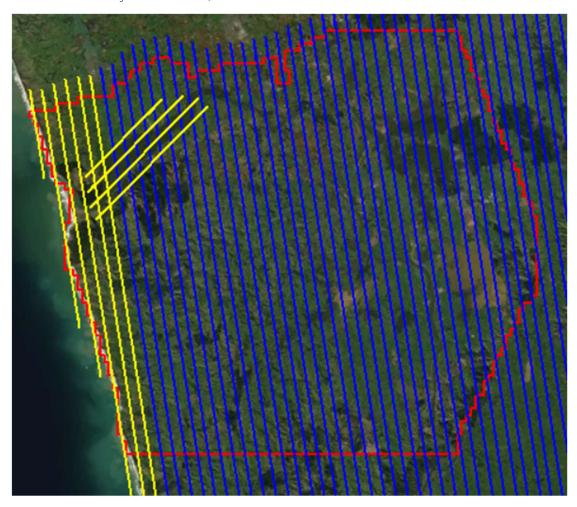


Figure 29: Flight lines for 4ppm2 data coverage over Block B Priority - yellow lines are tidal

4.2 Classified point cloud tiles

LINZ PGF specification 8.2 details the requirement for the point cloud deliverables, and how adherence to the specifications is measured is listed below. Point cloud deliverable generation methods will be detailed in the Processing Report. Deliverable QC checks are performed both by Lidar technicians, under the supervision of the Lidar Phase Manager and followed by a review of 10% of the data by an independent analyst or project manager:

- (a) Data from all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified, by tiles. Project swaths exclude calibration swaths, crossties, and other swaths not used in product generation.
- (b) Data is provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum.
- (c) Fully compliant LAS v1.4, Point Data Record Format (PDRF) 6-10. All files must have the same PDRF.
- (d) Each point includes a Point Source ID linking it to the flight line File Source ID.
- (e) Correct and properly formatted georeferenced information (EPSG: 2193 + 7839) as Open Geospatial Consortium (OGC) Well Known Text (WKT) included in all LAS file headers.

- (f) File Source ID set to 0 for tiled LAS files.
- (g) GPS times recorded as Adjusted GPS Time at a precision sufficient to allow unique timestamps for each pulse.
- (h) Points are provided in the order in which they were collected.
- (i) Height values reported to three decimal places (nearest mm). (While not significant for accuracy, this supports numerical processing and reduces the number of identical values caused by rounding.)
- (j) Intensity values, normalised to 16-bit by multiplying the value by 65,536/ (intensity range of the sensor) per LAS v1.4. This will result in an intensity range of 0-65,536.
- (k) Classification as required by the Contract Authority (Table 4 at a minimum).
- (I) Tiled delivery, without overlap, per the project tiling scheme in Section 9 Tiles.
- (m) Files named per Section 9 Tiles.

The point cloud tiles created for handover underwent multiple alterations before finalization. After the LAS tiles were created in Microstation, LASTools was used to assign the correct global encoding (17), system identifier and file source ID (0). WKT was also added to the LAS metadata, as illustrated in the figure below. The correct height values were also confirmed in LASTools ensuring that three decimal places were being used. The tiles were also named according to the required naming convention which is discussed in Section 6.

Figure 30: WKT of a LAS file shown by LASTools.

Intensity valued scaled from a range of 100 – 10000 output by HxMap, to full 16-bit dynamic range. Translation value = -100 Scale value = 6.5535

Once the point cloud was classified and was inspected manually in Microstation, the LAS files were loaded into LP360. The global coding, file source ID, WKT, VLRs, file format and LAS version were compared against to the LINZ specifications and after passing QA/QC, the files were renamed in accordance with the LINZ specifications. A condensed version of the LP360's results can be found in the table below. A complete listing of the output from LP360 is included as an embedded document in Appendix A.

				File			
File	Points	Version	File Signature	Source ID	SRS Source	System Identifier	
CL2_BC31_2021_1000_4249.las	1,248,386	1.4	I ASF	0	WKT	Leica Terrain Mapper	
CL2_BC31_2021_1000_4250.las	2,559,869	1.4	LASE	0	WKT	Leica Terrain Mapper	
CL2_BC31_2021_1000_4349.las	676,633	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC31_2021_1000_4350.las	2,037,574	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC31_2021_1000_4450.las	1,347,018	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC31_2021_1000_4450.las	641.665	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_4330.las	2,597,542	1.4	LASF	0	WKT	Leica Terrain Mapper	
	, ,	1.4	LASE	0	WKT	Leica Terrain Mapper Leica Terrain Mapper	
CL2_BC32_2021_1000_0102.las	2,932,468			_		' '	
CL2_BC32_2021_1000_0103.las	1,778,666	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0104.las	3,328,893	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0105.las	2,440,255	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0106.las	2,030,583	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0107.las	3,282,435	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0108.las	1,629,978	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0109.las	2,857,975	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0110.las	3,571,174	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0111.las	2,487,738	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0112.las	3,198,191	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0113.las	2,840,889	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0114.las	2,639,726	1.4	LASF	0	WKT	Leica Terrain Mapper	
CL2_BC32_2021_1000_0115.las	4,412,648	1.4	LASF	0	WKT	Leica Terrain Mapper	

Table 2: Condensed output from LP360 illustrating LAS file specification compliance

Additionally, a pre-delivery script which invokes LASTools was run on all tiles. The script output was imported into a custom Excel Worksheet, which checked specification compliance. For a complete listing of analysis refer to Section 6.1 of this document.

4.3 Flevation models

LINZ PGF specification 8.3 details requirements for raster surface model deliverables. The specification and how adherence to the specifications is measured is listed below. Deliverable QC checks are performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a review of 10% of the data by an independent analysist or project manager:

- (a) Grid spacing: 1m cell size.
- (b) Generated to the limits of the project area
- (c) Raster format: Geotiff (.tif)
- (d) Geo-reference information (EPSG 2193) in each raster file.
- (e) Tiled delivery without overlap.

- (f) NOT clipped using polylines for land-water boundaries from national databases (for example coastlines, river or lake boundaries) as these can be inaccurate and subject to continual geomorphic change.
- (g) Tiles with no edge artefacts or mismatch. A quilted appearance in the overall surface can be grounds for rejection of the entire deliverable whether the rejection is caused by differences in processing quality or character among tiles, swaths, flights, or other unnatural divisions.
- (h) Void areas (for example, areas outside the project area but within the project tiling scheme such as offshore water) coded using "NODATA" value equal to -9999. This value must be identified in the appropriate location within the raster file header.
- (i) Constrained with any additional break lines required by the Contract Authority, such as stopbanks, streams, and narrower rivers.
- (j) Provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum. Additional vertical datums may be specified by the Contract Authority.

4.3.1 Bare-Earth Digital Elevation Models (DEM)

LINZ PGF specification 8.3.1 details additional requirements for Digital Elevation Models. The Bare-Earth DEM is the bare earth that has been classified and edited to remove vegetation and man-made structures within the bounds of the classification accuracy requirements. It must also include or conform to the following:

- (a) Based on Classification level 2 or better ground return points.
- (b) Hydro-flattening as outlined in Section 7 Hydro-Flattening.
- (c) Bridges removed from the surface, while culverts are treated as ground
- (d) Method for removal of buildings, structures or other ground cover/vegetation and interpolation techniques documented.

The Digital Elevation Models were created using a combined model based on both ground surface points and break line points. These break line points were created during the hydroflattening process mentioned in **Section 4**. By using these classes, a true representation of the ground points can be achieved while still maintaining a smooth water surface which gradually follows the terrain.

To generate DEMs, LAS format data files are loaded into TerraScan, only loading in class 2 points and breaklines. Additional data is referenced to avoid tile edge artefacts. Following import, TerraScan-Export Lattice Model command is used to create a grid file with uniform distances between points from one or more selected point classes. For each grid point, the lattice model file stores XY coordinates and elevation. Within the Export Lattice Models command we utilize "Triangulated model Z" to export the DEM tiffs. This triangulated model z derives an elevation value that is calculated from a TIN model of the lidar points using ground and breakline classifications.

The elevation grid is generated as a TerraScan Lattice model using the following settings:

- o Grid Method = TIN Model (Triangulated model z)
- o Grid Spacing = 1 meter

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

The tiles were loaded into LP360 to check the metadata of the images during both production and QA/QC of the deliverables. A Representative version of LP360's findings is found in the table below. A complete listing of the LP360 results is included as an embedded document in Appendix1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DEM_BC32_2021_1000_3406.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3407.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3408.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3409.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3410.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3411.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3412.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3413.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3414.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3415.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3416.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3417.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3418.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3419.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3420.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3421.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3422.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3423.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC32_2021_1000_3424.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 3: Condensed output from LP360 illustrating DEM file specification compliance

4.3.2 Digital Surface Models (DSM)

LINZ PGF specification 8.3.2 details additional requirements for Digital Surface Models. The DSM is the heights of the top of the highest feature at each gridpoint, including ground, vegetation, and manmade structures. The DSM is based on first return points after removal of noise.

LAS format data files are loaded into Terrascan only loading in First, First-of-many and Single returns. Additional data is loaded to avoid tile edge artefacts.

Only coverage classed 1 to 6 & 17 points will be used in generation of Digital Surface Models. The elevation grid is generated as a TerraScan Lattice Model using the following settings:

- o Grid Method = Binning (Maximum Value DSM)
- o Grid Spacing = 1 metre

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

To meet the request to produce a DSM representative of the heights of the top of the highest feature at each grid point while incorporating hydro features, the hydro features used to create the DEM deliverables were included to produce a hydro flattened DSM.

Hydro-flattened DEM tiles are overlaid against the DSM tiles to identify and fill gaps in the data (such as the river), and then the tiles were exported in Geotiff format including settings for the datums and null data specifications, using the tile grid to clip & name the data files. The DSM deliverables undergo a visual spot check using Globalmapper.

In areas where valid data gaps (e.g. waterbodies) do not meet the LINZ specification for hydroflattening the surface model will triangulate across these voids to the nearest point per pixel (highest for DSM & lowest for DEM). No intervention is made to flatten or constrain these areas.

Digital surface models are created by combining points with only a single return, and points that have the first return of many (returns) and are then used to generate the DSM model. Figure 29 is an excerpt of one of the DSM tiles created for the project area.

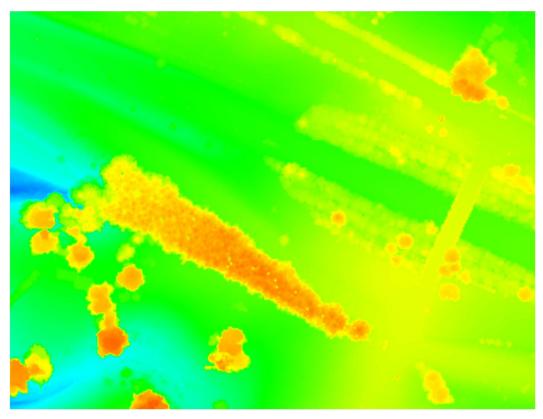


Figure 31: Excerpt from DSM_BB33_2021_1000_4416

The tiles created are in GeoTiff floating 32-bit format and have been adjusted to display a NoData value of -9999 (Figure 29).

The composite DSM was produced in 32-bit Geotiff format as requested and both the tiles and the composite had the correct horizontal and vertical co-ordinate systems assigned to the metadata in ArcMap.

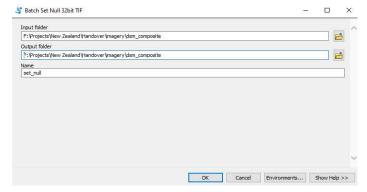


Figure 32: Script used in ArcMap to achieve a NoData value of -9999.

Format	IMAGINE Image			
Source Type	Generic			
Pixel Type	floating point			
Pixel Depth	32 Bit			
NoData Value	-9999			

Figure 33: Properties of the composite DSM file showing its format and NoData value

After these files were amended, they were loaded into LP360 to check the necessary metadata of the imagery. The results from LP360 can be found in the table below. A complete listing of the LP360 results are included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DSM_BC33_2021_1000_2905.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2906.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2907.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2908.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2909.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2910.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2911.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2912.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2913.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2914.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2915.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2916.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2917.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2918.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2919.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2920.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2921.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_2922.tif	GTiff	0	32	1	FLOAT	1	EPSG: 2193

Table 4: Condensed output from LP360 illustrating DSM file specification compliance

44 Break lines

LINZ PGF specification 8.4 details requirements for hydro-flattening break lines. Delivery of break lines representing all hydro-flattened features in a project is required. Additional break lines may also be required by the Contract Authority. These are to be delivered as ESRI Shape files (.shp) using the NZTM2000 projection.

Refer to section 7.0 of this document. The workflow methods will be documented in the project Processing Report. The digitized hydro features were included in the handover data set, under the Vector deliverable section. They are in shapefile (.shp) format and are in the NZTM2000 projection. Stream and stream-island, lake and lake island break lines were delivered, with ocean features falling under the "Lake" feature category due to its uniform height. In figure 31 the geometry type is set to a polygon shape and has vertical and horizontal co-ordinate sets as well as Z values.

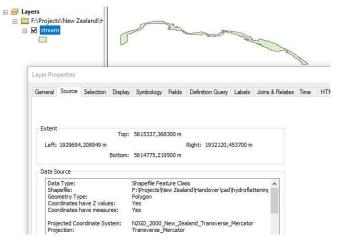


Figure 34: Stream break line properties in ArcMap.

4.5 GNSS data

GNSS data is not a required deliverable for this project.

4.6 Backed up project source data

LINZ PGF specification 8.6 details the requirements for archival and storage of the project data. Raw project source data, such as native format LiDAR files and point cloud swaths, are NOT required for delivery; however, a copy has been provided to CoLAB. It is acknowledged that the Vendor must hold a copy of all relevant raw project data, for a minimum of five years beyond the final delivery of the project deliverables. The vendor must provide this data, with unrestricted copyright, to the Contract Authority on request. The vendor may charge a reasonable access and distribution charge in such instances.

Woolpert and Ocean Infinity will archive all raw & processed data collected for 5 years following project completion.

4.7 Contours

Contours with an interval of 0.5m will be generated for all project area.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Note Contours will be generated at Project conclusion to ensure there are no line breaks between blocks.

Contours will be generated from the DEM. Contour methodology is undergoing internal discussion and will be agreed with all parties prior to their generation.

5 LiDAR QA Tiles

LINZ PGF specification 9.1 & 9.2 detail the requirements for project tiles geometry & naming convention.

- (a) NZTopo50 subtitles based on NZTM2000 coordinates. The 1-m gridded raster products and point clouds must be delivered at 1:1000 nominal scale (2500 720m high x 480m wide subtiles per full NZTopo50 sheet).
- (b) The origin of the raster tiles must be placed on a whole metre coordinate value of the southwest corner of each tile (for example, 5429500 mN_17490300mE).
- (c) The tiled deliverables must edge-match seamlessly and without gaps.
- (d) The tiled deliverables must conform to the project tiling scheme without overlap.
- (e) File naming must conform with the naming convention described in section 9.2.

A Tile Index must be provided in ESRI shape file format. The file name must be included as an attribute in the Tile Index file.

The Client supplied tiling grid shape file will be used as the tile clipping polygon when exporting the deliverable products. The shape file will have an attribute added for each deliverable type as specified in section 9.2. This attribute will contain the required tile name for each deliverable. This shape file will be used as the means of extracting all project data deliverables, so that the geometric aspects for specification 9.1, and the naming requirements of section 9.2 are fulfilled.

Deliverable QC checks have been performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team:

5.1 LAS Tiles QAQC - LASQC

Prior to delivery, Lidar data tiles have undergone a final analysis, using a custom developed Pre-Delivery QAQC tool called LASQC. This tool uses LASTools 'Lasinfo' in a batchscript called LASExtract, which collates information regarding each tile into an Excel worksheet. The tool analysis and reports compliance on the following items:

- o File naming accuracy
- o Check to ensure lidar points fall inside the extents bounded by the NZTOPO50/1:1000 tile name
- o Adjusted GPS time falling with correct extents for the survey
- o LAS file format, version, file source ID, point data record format & scale factor
- o Point counts by return, illustrating presence of multiple returns
- o Average point density for the tile, excluding overlap
- o Presence of the overlap (not applicable to all tiles) & withheld flags
- o Minimum, maximum & average intensity values.
- Height above ground for building, low, medium & high vegetation classes

- Note it should be noted that this analysis is not accurate in steep terrain due to the different methods used for triangulation of between Terrascan & LASTools.
- o Check for presence of correct ESPG Codes for geodetic & vertical datums, and map projection
- o Raster Overviews for Point Source ID, Intensity, Point Density and Overlap Analysis

These analysis results will be included as an attachment referenced in Appendix A.

5.2 File naming

Project deliverables have been named in accordance with the project specification illustrated in Table 5.

Product	DEM	CL2-Point Cloud Classification Level 2 DEM-Bare Earth Digital Elevation Model DSM-Digital Surface Model DTM-Digital Terrain Model UNC-Unclassified Point Cloud INT-Intensity image CHM - Canopy Height Model IMG-Aerial photography etc
Sheet	BK34	LINZ Topo50 identifier (4 characters)
Year	2016	Year of survey commencement
Scale	1000	Nominal scale of NZTopo50 subtiles
Tile	4118	Row number (41), Column number (18) of tile with respect to an upper left origin
ext	tif	File extension according to format conventions las tif shp etc

Table 5: File Naming

5.3 Delivery Folder

The project deliverables are structured in the following manner:

——raster
dsm_tiles - Digital Surface Models geotiff format tiles
dem_tiles - Digital Elevation Models geotiff format tiles
las – Lidar Point Cloud Las 1.4 format tiles
vector
contours
——shapefiles
hydroflattening_shapefiles
L-stream_islands – Hydro-flatting island break line line strings
data_extent - Project data extent shape file
——flightline_index – Project flight lines shape files
tile_index - Project tile index shape files
control_points - Ground control shape files
report – Project report PDF format

6 Setbacks and Solutions

During the production of the data sets for the Block B Priority area, setbacks were encountered, with a varying impact on production time. Along with these setbacks, new methods of production were created to account for any necessary changes to improve the quality of the data set or save time when amending the data set.

6.1 Missing ground points under vegetation and low vegetation classification difficulties

During the processing of all Waikato Blocks it is noted there are areas of dense vegetation which limit and often prevent laser penetration to the ground surface. In these situations, it is common for data voids to appear in the DEM surface. In addition, low lying dense vegetation has caused difficulty in assessing the true ground surface. In these situations, it can be difficult to discern if points are part of the ground surface or the lowest part of low-lying vegetation. In these situations, it is common for the ground surface profile to transition to what may or may not be the lowest part of low-lying vegetation. During manual editing, these situations are monitored with the objective being to make the best interpretation of ground.

6.2 Production Delays to Block B

During production, it was determined a new technical team within Woolpert's US and Australian offices was necessary to continue production on the project. This handover from the previous team created project delivery delays as the new team became familiar with the project specifications as well as to address quality assurance workflow requests made by the prime contractor.

63 Review Process

Due to uncertainty of deliverable quality and issues associated with the processing procedure Ocean Infinity implemented a layered review process. Woolpert provided the initial DEM and DSM supply along with a results folder. These folders and files were forwarded to Cyient, an independent contractor, for a 100% review. The results of this review were vetted by Ocean Infinity and passed onto Woolpert for their review, comment and repair where deemed necessary. The process has been tracked by a modified LINZ QAQC spreadsheet.

6.4 Delivery not Meeting Specification

The original and subsequent supplies of data did not meet specification. There were issues with classification, intensity and interblock consistency. This has been corrected in the latest supply. The following section and associated figures illustrate how the data did not meet specification as identified by both Waikato Regional Council and LINZ and the fixes employed to remedy.

Vegetation present in ground classes and subsequently removed.

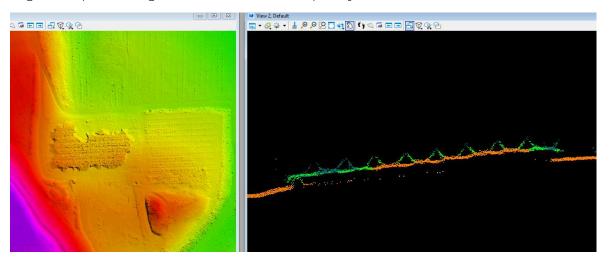


Figure 35: Vegetation present in ground class (Tile example BC32_1648)

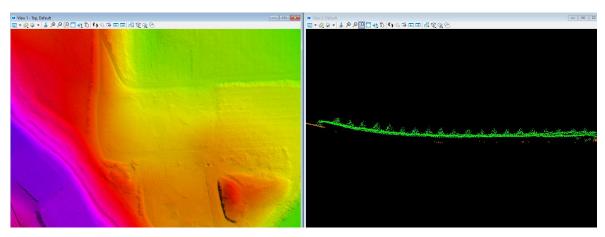


Figure 36: Vegetation subsequently removed from ground class (Tile example BC32_1648)

DEM Pitting. Reclassified points from ground class to noise

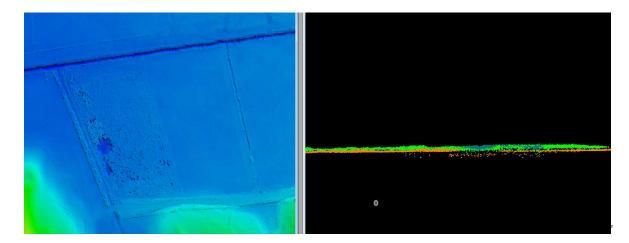


Figure 37: DEM pitting evident in Tile BC32_4001

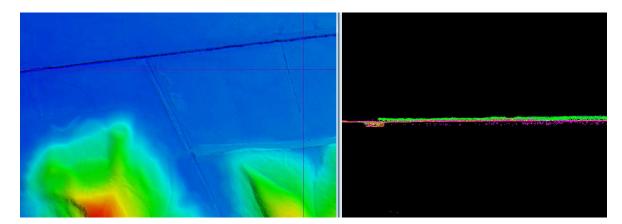


Figure 38: DEM corrections in Tile BC32_4001

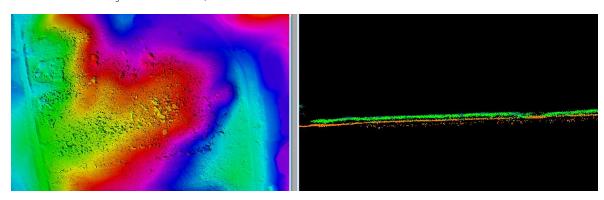


Figure 39: DEM pitting evident in Tile BC33_1406

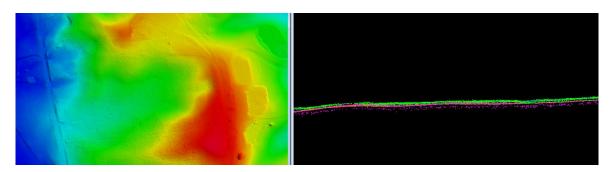


Figure 40: DEM post correction in Tile BC33_1406

DEM Spikes. Reclassify high points from ground class to noise points

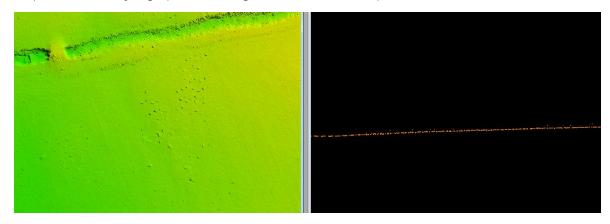


Figure 41: DEM spikes evident in Tile BC33_4306

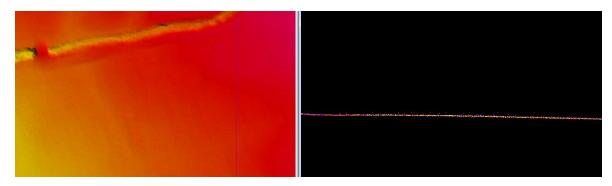


Figure 42: DEM after spike removal in Tile BC33_4306

Corduroy texture. Additional filter ran project wide to address texturing in DEM/DSM to derive more accurate surface.

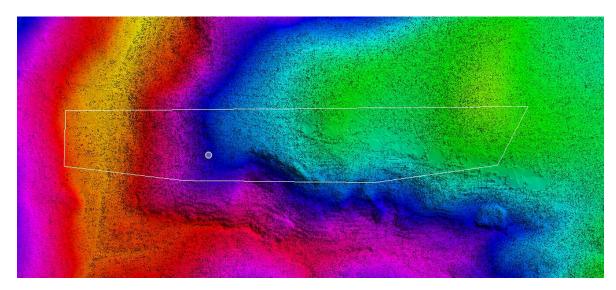


Figure 43: Mottled surface evident in Tile BC32_4137

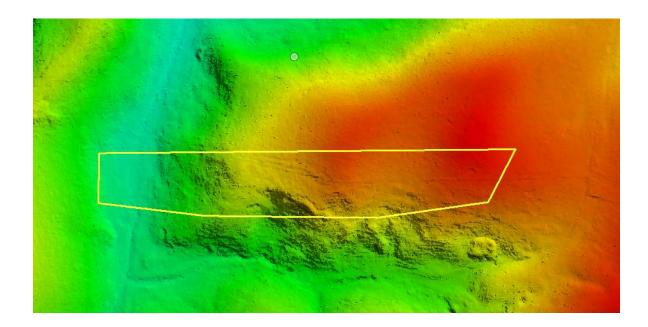


Figure 44: Surface post filter in Tile BC32_4137

Note further and more refined filters have been run on the latest supply of this dataset, further reducing the corduroy texture and remaining artefacts.

Reclassified ground points on bridge deck and regenerated DEM

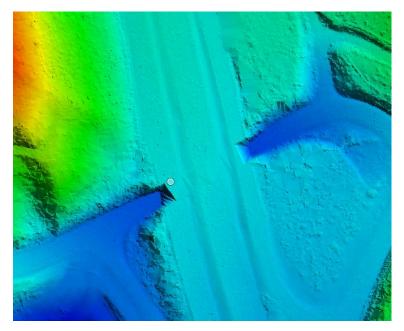


Figure 45: Ground Points evident in Tile BB33_5002

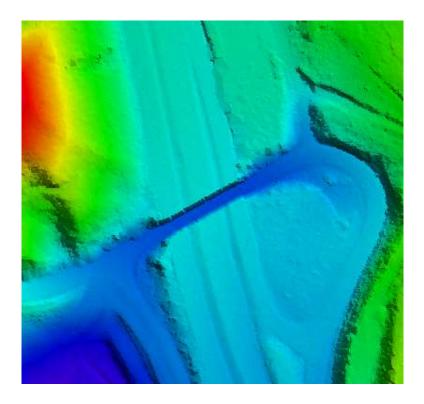


Figure 46: Ground Points & Bridge removed in DEM Tile BB33_5002

Shoreline placement. Horizontal placement was modified to include additional exposed ground.

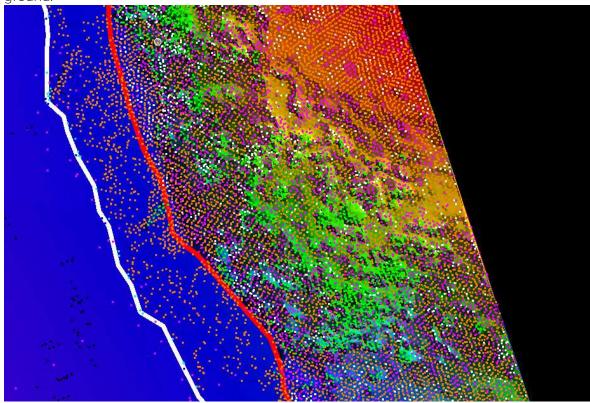


Figure 47: Red is previous coastline. White is updated coastline Tile BC31_3445

6.4.1 Delivery not Meeting Specification – Previous rendition

The last supply of Priority B prior to this supply was uploaded to Amazon S3 under the folder name Waikato_Block_B_Priority_26042023_Resupply. A Technical meeting was held between LINZ, WRC, Ocean Infinity and Woolpert to discuss the results of this dataset QA. It was widely agreed that this supply was of a poorer quality than the previous rendition. It seemed to introduce more errors than it fixed.

This latest supply of Priority B was a corrected version of the supply prior to above (Waikato_Block_B_Priority_25012023_Resupply). This approach was taken as it was deemed easier to fix this one as opposed to the latest resupply.

7 Results Acceptance & Signoff

An acceptance and signoff of the project QAQC supervisory review is listed below.

Result Acceptance				
Assessment Criteria	Status	Completed	Date	
Doint cloud classification accuracy	Campleta	By	08/11/2022	
Point cloud classification accuracy	Complete	Woolpert	1 1	
Point cloud classification consistency	Complete	Woolpert	08/11/2022	
Point Cloud LAS tiled deliverables	Complete	Woolpert	08/11/2022	
Hydro-flattened Digital Elevation Models	Complete	Woolpert	08/11/2022	
Digital Survey Models	Complete	Woolpert	08/11/2022	
Contours	Complete	Woolpert	08/11/2022	
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	08/11/2022	
Project Manager / Supervisor Signoff	Complete	Brian Foster	08/11/2022	
Ocean Infinity Review	Complete	Luke Leydon	10/11/2022	

Table 6: Processing Results Acceptable Signoff

Result Acceptance				
Assessment Criteria	Status	Completed By	Date	
Point cloud classification accuracy	Complete	Woolpert	08/11/2022	
Point cloud classification consistency	Complete	Woolpert	08/11/2022	
Point Cloud LAS tiled deliverables	Complete	Woolpert	08/11/2022	
Hydro-flattened Digital Elevation Models	Complete	Woolpert	08/11/2022	
Digital Survey Models	Complete	Woolpert	08/11/2022	
Contours	Complete	Woolpert	08/11/2022	
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	08/11/2022	
Project Manager / Supervisor Signoff	Complete	Mike Meiser	18/11/2022	
Ocean Infinity Review	Complete	Luke Leydon	18/11/2022	

Table 7: Processing Results Acceptable signoff (Rev1)

Result Acceptance				
Assessment Criteria	Status	Completed By	Date	
Point cloud classification accuracy	Complete	Woolpert	25/04/2023	
Point cloud classification consistency	Complete	Woolpert	25/04/2023	
Point Cloud LAS tiled deliverables	Complete	Woolpert	25/04/2023	
Hydro-flattened Digital Elevation Models	Complete	Woolpert	25/04/2023	
Digital Survey Models	Complete	Woolpert	25/04/2023	
Contours	Complete	Woolpert	25/04/2023	
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	25/04/2023	
Project Manager / Supervisor Signoff	Complete	Brian Foster	25/04/2023	
Ocean Infinity Review	Complete	Luke Leydon	26/04/2023	

Table 8: Processing Results Acceptable signoff (Rev2)

Result Acceptance				
Assessment Criteria	Status	Completed By	Date	
Point cloud classification accuracy	Complete	Woolpert	08/06/2023	
Point cloud classification consistency	Complete	Woolpert	08/06/2023	
Point Cloud LAS tiled deliverables	Complete	Woolpert	08/06/2023	
Hydro-flattened Digital Elevation Models	Complete	Woolpert	08/06/2023	
Digital Survey Models	Complete	Woolpert	08/06/2023	
Contours	Complete	Woolpert	08/06/2023	
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	08/06/2023	
Project Manager / Supervisor Signoff	Complete	Brian Foster	08/06/2023	
Ocean Infinity Review	Complete	Luke Leydon	22/06/2023	

Table 9: Processing Results Acceptable signoff (Rev3)

Appendix A: Lidar Quality Assurance Results

Provided as separate Documents:

Priority_B_deliver_LASQC_Waikato_June2023	14/06/2023 9:56 AM	Microsoft Excel M	17,729 KB
Priority_B_LP360_results_for_DEMs_June2023	14/06/2023 9:56 AM	Microsoft Excel W	563 KB
Priority_B_LP360_results_for_DSMs_June2023	14/06/2023 9:56 AM	Microsoft Excel W	561 KB
Priority_B_LP360_results_point_LAS_June2023	14/06/2023 9:56 AM	Microsoft Excel W	4,317 KB
Priority_B_TSCAN_classes_June2023	14/06/2023 9:56 AM	Microsoft Excel W	10 KB

Waikato Local Authority Shared Services (WLASS) / CoLAB LiDAR Data Capture Services LiDAR Processing Report Block B Remainder

Contract Number: AU411

Surveyed By: iXblue Pty Ltd / Ocean Infinity

Processing Completed By: WOOLPERT

Document Date: 12 December 2022

Ocean Infinity (Australia) Pty Ltd ABN 61 128 811 978 oceaninfinity.com

© 2022 Ocean Infinity (Australia) Pty Ltd. All Rights Reserved.

Document Control

Woolpert Inc. Representative

Name	Brian Foster
Position	Woolpert Senior Associate
Address	333 North Alabama St. Suite 200 Indianapolis, IN 46204
Telephone	+1 317 809 4685
Email	Brian.Foster@woolpert.com

Ocean Infinity Supervisor

Name	Dave Field
Position	Managing Director
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 277 755 532
Email	david.field@oceaninfinity.com

Ocean Infinity Project Manager

Name	Luke Leydon
Position	NZ Account Manager, Airborne
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 226 511 732
Email	<u>luke.leydon@oceaninfinity.com</u>

Client Representative

Name	Rolf Boswell
Position	Project Delivery Manager
Address	6/34D Lake Street, Cambridge 3434 NEW ZEALAND
Mobile	+64 27 420 0239
Email	<u>rolf.boswell@colabsolutions.govt.nz</u>

Document Revision

Revision No	Issue Purpose	Prepared	Checked	Approved
0	Issue Block B LiDAR Processing Report	L Leydon	BF/MM	D Field
1	Revised Report at resupply	L Leydon	BF/MM	D Field
2	Revised DEM section 4.3.1	L Leydon	ММ	D Field
3	Updated at data Resupply	L Leydon	BF	D Feild

Approval for Issue

Name	Signature	Date
Luke Leydon	Juke Jeydon	12-12-2022

Revision History

Item	Description of change	Section	Revision
1	Amendment to Introduction, Additional text added to classification consistency section, Additional text added to DSM section, Section 6.5 added	1,2.11,4.3.2,6.5	1
2	Revised DEM Methodology	4.3.1	2
3	New Appendices supplied to reflect data resupply. Amendment to Introduction. Section 6.5 updated. Update figure 10 – point classification statistics.	1, 6.5, Appendices	3

Contents

1	Intro	oduction	9
2	Lida	AR Data Processing and Handling	10
	2.1	The ASPRS LAS File format	10
	2.2	Time stamp of navigational data	11
	2.3	Datums and coordinate reference system	12
	2.4	Geometric Calibration	12
	2.5	Positional accuracy validation	13
	2.6	Use of the LAS withheld flag	13
	2.7	Use of the LAS v1.4 Overlap Flag	13
	2.8	Point Classification	14
	2.9	Classification Accuracy	18
	2.10	Classification Consistency	22
	2.11	Classification Consistency – Priority and Non-Priority blocks	22
3	Lida	AR Hydro-Flattening QAQC	23
4	Lida	AR Deliverables QAQC	29
	4.1	Reporting and metadata	29
		4.1.1 Project reports	29
		4.1.2 Extents	29
		4.1.3 Flight Lines	30
	4.2	2 Classified point cloud tiles	
	4.3	Elevation models	33
		4.3.1 Bare-Earth Digital Elevation Models (DEM)	34
		4.3.2 Digital Surface Models (DSM)	35
	4.4	Break lines	37
	4.5	GNSS data	38
	4.6	Backed up project source data	38
	4.7	Contours	38
5	LiDAR QA Tiles		
	5.1	LAS Tiles QAQC - LASQC	39
	5.2	File naming	40
	5.3	Delivery Folder	41
6	Setbacks and Solutions		
	6.1	Missing ground points under vegetation and low vegetation classification difficulties.	42

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

	6.2	Production Delays to Block B	42
	6.3	Review Process	42
	6.4	Delivery not Meeting Specification	42
	6.5	Failure of QAQC undertaken by WRC	43
7	Resi	ults Acceptance & Signoff	44

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Tables

Table 1: Point Classifications	14
Table 2: Representative output from LP360 illustrating LAS file specification compliance	33
Table 3: Condensed output from LP360 illustrating DEM file specification compliance	35
Table 4: LP360 Results example table	37
Table 5: File Naming	
Table 6: Processing Results Acceptable Signoff	
Table 7: Processing Results Acceptable Signoff (Revision 1)	
Table 8: Processing Results Acceptable Signoff (Revision 2)	
Table 9: Processing Results Acceptable Signoff (Revision 3)	

Figures

Figure 1: Waikato Survey Area	8
Figure 2: LAS 1.4 being specified during project	10
Figure 3: Project settings used in TerraScan project when importing points into the project	11
Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools	11
Figure 5: Representative examples of LAS point attributes	12
Figure 6: Settings used when cutting overlap in Microstation	14
Figure 7: Automatic classification macro developed for the project areaarea	15
Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine.	16
Figure 9: A smaller iteration distance value avoids classification of ground points on low objects	16
Figure 10: Statistics showing the classes of all the LAS points within the project area	17
Figure 11: The green diagonal hatching seen above shows blocks which have been fully checked	18
Figure 12: The diagonal hatching seen above shows how the progress was tracked	
Figure 13: The polygons are areas for further investigation	19
Figure 14: Example overhead image of DEM Interpolation	20
Figure 15: LAS point cloud view from previous figure	20
Figure 16: Example overhead image of DEM interpolation	21
Figure 17: LAS Point cloud view from previous figure	
Figure 18: Example of a hydro-flattened stream with a stream-island	23
Figure 19: Excerpt of river points used to create the centreline	24
Figure 20: Centreline for the stream within the project's survey	25
Figure 21: Settings used to export lattice models	
Figure 22: Pre-filter, overhead view of ground and veg points with hydro lines	27
Figure 23: Post-filter, overhead view of ground and veg points with hydro lines	27
Figure 24: Point cloud – boulder filled stream	28
Figure 25: Imagery – boulder filled stream	28
Figure 26: Extent of deliverable data for Remainder B (yellow outline)	30
Figure 27: Flight lines for 4ppm2 data coverage over Block B Remainder	31
Figure 28: WKT of a LAS file shown by LASTools.	32
Figure 29: Excerpt from DSM_BD35_2021_1000_2144	36
Figure 30: Script used in ArcMap to achieve a NoData value of -9999	36
Figure 31: Properties of the composite DSM file showing its format and NoData value	
Figure 32: Stream break line properties in ArcMap	
Figure 33: Contour key points settings used in Terrascan	38

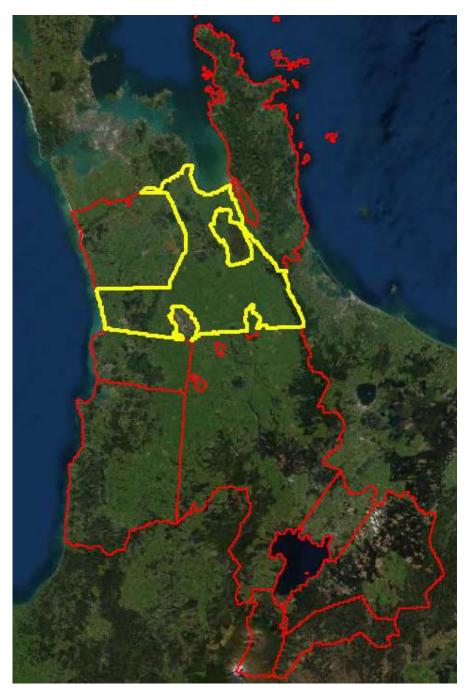


Figure 1: Waikato Survey Area

1 Introduction

Lidar survey projects are broken into three distinct phases. The survey commences with the data acquisition project phase. For matters pertaining to this phase of the project, refer to the document

• AU411_WLASS-Collection_Report-10052021.pdf.

The next phase of the project is the Geopositioning phase, which involves processing the raw sensor and trajectory data to produce a set of point clouds for each flight line.

The point clouds have several geometric optimizations performed, to optimise the relative and absolute spatial accuracy levels.

At completion of the Geopositioning phase, the point cloud geometry is final, and the point cloud classification and production generation project phases follow.

For matters pertaining to this phase of the project, refer to the documents

- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022

The following report covers the data processing project phase and describes the data processing methods used for the lidar classification and product generation, along with the QAQC procedures and results.

This report illustrates compliance with the LINZ PGF specifications sections 6 - 9.

This report pertains to the coverage of Block B - Remainder, as illustrated in yellow in Figure 1 - Waikato Survey.

This report has been revised after the data was resupplied on Saturday 29 October 2022. The initial provision of data failed QAQC by Waikato Regional Council (WRC). A defect tracking spreadsheet was created and amended over the period between initial supply and resupply. In total there were 31 defect issues identified and dealt with. Thanks goes to the WRC Team of Bryan Clements, Dan Borman and Ross Martin for their hard work and perseverance.

This report was further revised after V2 of the defect spreadsheet was provided by WRC and issues addressed by Woolpert / AAM. A copy has been included in the Appendices.

2 LiDAR Data Processing and Handling

The LiDAR data processing method is described in the Project Method Statement, AU411-FOR-008-R5 Project Method Statement_WLASS. The following sections elaborate further but focus on adherence with compliance to the Linz PGF Specification (JAN 2020).

https://www.linz.govt.nz/system/files_force/media/doc/pgf_version_new_zealand_national_aerial_lidar_base_specification.pdf?download=1

QAQC steps for various workflow tasks have been tracked and recorded and included as an embedded document within Appendix 1.

2.1 The ASPRS LAS File format

LINZ PGF specification 6.1 requires that all point deliverables are required to be fully compliant with LAS Specification Version 1.4, using Point Data Record Format (PDRF) 6, 7, 8, 9 or 10 (referred to as LAS v1.4).

For this project, LAS 1.4 with PDRF 6 is to be delivered.

The LAS files created during the project during the Geopositioning phase and subsequent data cleaning and deliverable products are in ASPRS LAS 1.4 format, with PDRF 6. This was specified during the creation of the project in TerraScan, as shown in a representative image in the figure below:

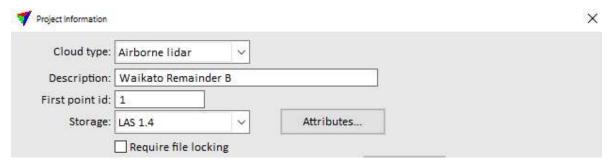


Figure 2: LAS 1.4 being specified during project

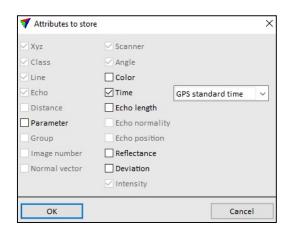


Figure 3: Project settings used in TerraScan project when importing points into the project.

The correct format of LAS is illustrated by use of LASTools, which shows the LAS files are in 1.4 format in the figure below.

Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools

To verify that the project deliverables are in the correct LAS file format/version with PDRF, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.2 Time stamp of navigational data

LINZ PGF specification 6.2 requires that Each Global Navigation Satellite System (GNSS) aircraft positional measurement must be time stamped using Adjusted Global Positioning System (GPS) Time, at a precision enough to allow unique timestamps for each LiDAR pulse.

For this project, LAS 1.4 with PDRF 6 has been delivered including, with Global Encoding bit set to 1.

An example of how adjusted GPS time is visualized and monitored is illustrated in Figure 5: LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right).

To verify GPS time is set to adjusted GPS time, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar technical manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included

as an imbedded document within Appendix A. Figure 5 below shows representative examples of LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right)

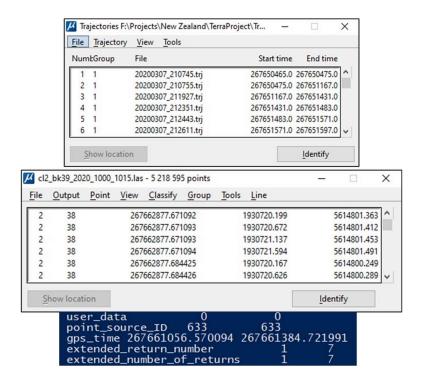


Figure 5: Representative examples of LAS point attributes

2.3 Datums and coordinate reference system

LINZ PGF specification 6.3 requires that the required datum for latitude, longitude, and ellipsoid heights is the New Zealand Geodetic Datum 2000. The required vertical datum for normal-orthometric heights is NZVD2016 (Reference 9). Projected data products are to be delivered in NZTM2000 projection (Reference 10) with NZVD2016 normal-orthometric heights.

The Survey Datums, Ground Control, Check Points and Lidar Geopositioning sections of the Project Methodology Statement describes in detail how the data is transformed and connected to the required project datum.

To verify that the correct datum information is recorded in the LAS 1.4 header, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files have the correct CRS applied in the header. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.4 Geometric Calibration

Following initial sensor data processing, a formal reduction process was performed on the data.

Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift. Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error. These calibration adjustments were performed using a combination of automated and manual corrections to the data to develop the geometrically calibrated data set to be utilized for all downstream processes.

2.5 Positional accuracy validation

LINZ PGF specification 6.4 details the positional accuracy verification methods. The Vendor is expected to apply best practice in assessing the project accuracy and achieving compliance with this specification. Before classifying and developing derivative products from the point cloud, the relative vertical, local vertical and horizontal accuracies of the point cloud must be verified. The Vendor must deliver a detailed report of the validation processes used.

Validation of the point cloud positional accuracies is the primary outcome of the Lidar Geopositioning workflow phase, using surveyed ground control & check points. The assessments methods and results of the positional accuracy validation is be reported in the LiDAR Geopositioning QA/QC Report.

2.6 Use of the LAS withheld flag

LINZ PGF specification 6.5 requires that outliers, noise points, geometrically unreliable points near the extreme edge of the swath, and other points the Vendor deems unusable must be identified using the Withheld Flag, as defined in the LAS Specification.

Points classified as low noise (coverage class 7) and high noise (coverage class 18) will have the LAS withheld flag set.

To verify that the withheld flag has been correctly set, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analyst to ensure that the Las withheld flag is correctly applied. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.7 Use of the LAS v1.4 Overlap Flag

LINZ PGF specification 6.6 requires identifying overage points is not required unless requested by the Contract Authority. However, if overage points are explicitly identified using LAS v1.4, they must be identified using the overlap flag.

Classification of the overlap points was done using TerraScan in Microstation. A macro step was created which allowed for points to be classified with the overlap bit by cutting the scan angle at zero degrees. The step used for the project dataset is illustrated in the figure below. This allowed for the overlap points to be withheld from DEM, DSM and intensity imagery generation. Figure 6 below shows Settings used when cutting overlap in Microstation. Note that the 'Action' is on "Set overlap bit.

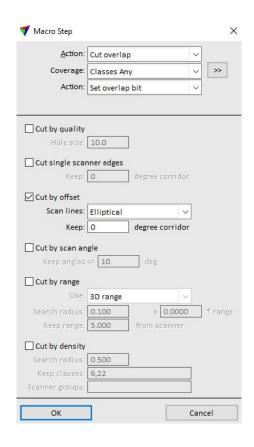


Figure 6: Settings used when cutting overlap in Microstation.

Verification of appropriate overlap flag application is performed using LP360 File Analyst. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.8 Point Classification

LINZ PGF specification 6.7 requires Lidar points are classified to the following coverage classes:

Code	Description
1	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
17	Bridge deck
18	High noise

Table 1: Point Classifications

Point cloud classification is performed by automated classification algorithms developed by Woolpert's senior Lidar analysts and reviewed by the Lidar technical manager.

A first run automatic classification was carried out on the raw LiDAR points using TerraSolid's TerraScan software to classify the LiDAR points into ground hits and non-ground hits. This results in a greater than 80% correct classification. Some of the steps used within this macro can be found within the screenshot below (Figure 7), including 5 of the 8 ground classification steps used on this data set.

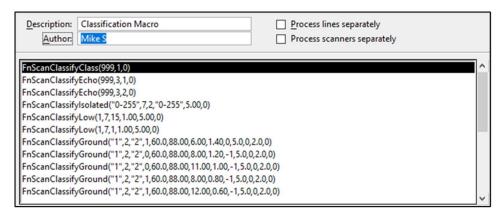


Figure 7: Automatic classification macro developed for the project area.

As documented by TerraSolid, the ground routine classifies ground points by creating a triangulated surface model iteratively. The routine is best suited for classifying ground in airborne laser data sets and in data sets where there is mainly natural terrain. For classifying ground in mobile data sets where the majority of ground is on hard surfaces, such as roads, use the Hard surface routine instead of the ground routine.

The routine is sensitive to low error points in the point cloud. Therefore, you should run one or more classification steps using the Low points routine before classifying ground. A more complex classification strategy is required for classifying ground in photogrammetric point clouds.

The ground routine starts by selecting local low points that are confident hits on the ground. The initial point selection is controlled with the Max building size parameter. If the maximum building size is, for example, set to 60.0 m, the routine assumes that any 60 by 60 m area has at least one point on the ground level and that the lowest point is on the ground level.

Then, the routine builds a surface model (TIN) from the initial ground points. The triangles in this initial model are mostly below the ground level and only the vertices are touching the ground. In the following iterations, the routine molds the model upwards by adding more and more points. Each added point makes the model following the true ground surface more closely.

The iteration parameters of the routine determine how close a point must be to a triangle plane for being accepted as ground point and added to the model. Iteration angle is the maximum angle between a point, its projection on the triangle plane and the closest triangle vertex. This is the main parameter controlling how many points are classified into the ground class. The smaller the Iteration angle, the less eager the routine is to follow variation in the ground level, such as small undulations in terrain or points on low vegetation. Use a smaller angle value (close to 4.0) in flat terrain and a bigger value (close to 10.0) in mountainous terrain.

Iteration distance makes sure that the iteration does not make big jumps upward if triangles

are large. This avoids ground points that are too high, for example within low vegetation or on low buildings.

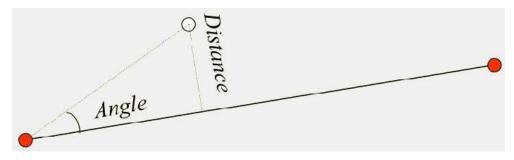


Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine.

Figure 9: A smaller iteration distance value avoids classification of ground points on low objects.

The iteration angle can be reduced automatically if the triangles become small. This reduces the eagerness to classify more ground points inside small triangles and thus, avoids unnecessary point density of the ground model thus avoiding redundancy of inclusion of unnecessary ground points. Related to this it is common to see default classified points within a classified ground point cloud surface. The iteration angle inside small triangles approaches zero if the longest triangle edge is shorter than a given Edge length value. Furthermore, the iteration can be stopped completely if triangle edges are shorter than a given limit. After completion of the automated classification, a strenuous manual classification was carried out over the required area to edit the points thus minimizing gross classification errors that may have occurred in the automatic classification process.

Each block's data was checked in a systematic approach to reduce missing important features. Orthogonal views with background orthoimagery, and profile views are used to review the performance of the automatic classification results.

Tools such as 'Classify using brush', 'Classify above line' and 'Add Point to Ground' (all found within TerraScan) were used during manual classification, to achieve classification accuracy meeting project specifications. Before handover files were created, checks were done on the project's points by viewing statistics within TerraScan as illustrated in the figure below.

Class #	Class	Count
1	Unclassified	30686649
2	Ground	19756365059
3	Low Veg	1066086938
4	Medium Veg	2894068914
5	High Veg	4954331584
6	Building	79988352
9	Water	15286408
17	Bridge Deck	556184
W7	Witheld Low Noise	1673690020
W18	Witheld High Noise	50629487
01	Overlap Unclassified	9850325
02	Overlap Ground	7622487971
03	Overlap Low Veg	403539841
04	Overlap Medium Veg	1025451110
05	Overlap High Veg	1751872720
06	Overlap Building	28537166
017	Overlap Bridge	177654
OW7	Overlap/Witheld Low Noise	894838077
OW18	Overlap/Witheld High Noise	10621542

Figure 10: Statistics showing the classes of all the LAS points within the project area.

To keep track of the data cleaning process, a hatching method was used on the DGN within Microstation. It allows the cleaners to systematically mark each tile which has been fully checked and editing, making sure the whole data set has been initially covered.

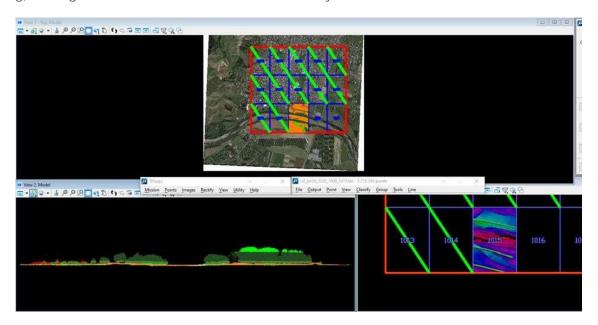


Figure 11: The green diagonal hatching seen above shows blocks which have been fully checked.

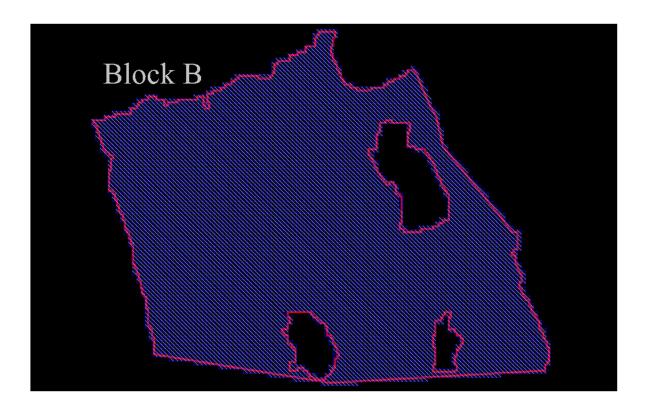


Figure 12: The diagonal hatching seen above shows how the progress was tracked

To verify that only the required coverage classes are present & populated, LP360 File Analyst performs exhaustive testing on the LAS data records, and outputs the analysis results to an excel spreadsheet. Lidar Analysts review this data to ensure that all deliverable LAS files are compliant with the specification coverage classes. Point cloud QAQC/editing is performed by trained Lidar Technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team.

2.9 Classification Accuracy

LINZ PGF specification 6.8 requires that non-withheld points must be classified to a classification accuracy level of 2%. No non-withheld points are to remain as class 0.

Realtime Digital Elevation models are generated using Terrascan/Terramodeler are used to verify ground classified points and lidar technicians review the DEMs to find anomalies such as spikes or pits that imply misclassified points and make corrections.

During DEM review profiles are cut across tiles where potential issues are detected. The Lidar Technician scans the profile view to identify if an issue exists and modifies the classification of points as required.

10% of the data tiles are subject to review by a senior analysis or project manager.

After data cleaning was completed, a comprehensive DEM review is performed to visualize the data over large areas for the purpose of identifying anomalies or areas for further investigation. Any potential errors were identified as shown in the red polygons below and later addressed via additional manual editing.

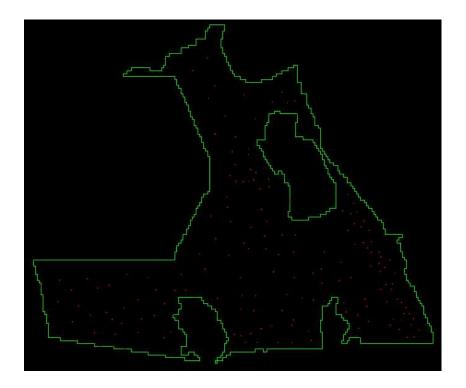


Figure 13: The polygons are areas for further investigation

The indicated areas were revisited and manually classified as appropriate. Below is an example of an issue identified for further investigation. Multiple revisions of the point cloud were performed to address issues common to the terrain and vegetation cover found within the project AOI. Rugged terrain and heavy vegetation across areas within the AOI commonly created unavoidable laser penetration difficulties as well as areas within the DEM that that appear to have a rough surface.

The figures below illustrate such and occurrence. Issues were identified concerning what appeared to be excess noise in areas of gullies. After investigating it was determined the gully areas in question are densely vegetated and located within steep terrain. The sparseness of the consistent ground penetration and steepness of terrain led to points being classified as noise during ground filtering. Additional filtering steps were taken to reclassify points into ground from noise class. The additional ground points added from noise provide improvement to the DEM quality as the points classified from noise to ground were sparsely distributed due to dense vegetation.

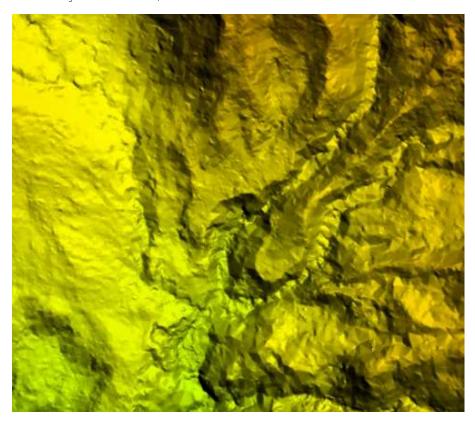


Figure 14: Example overhead image of DEM Interpolation

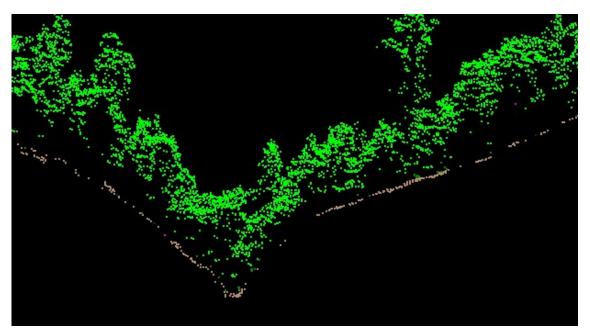


Figure 15: LAS point cloud view from previous figure

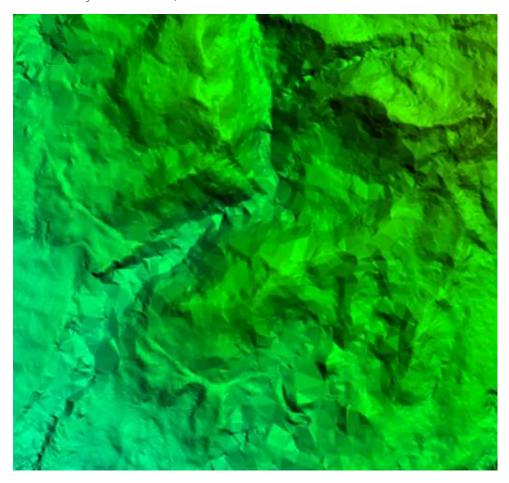


Figure 16: Example overhead image of DEM interpolation

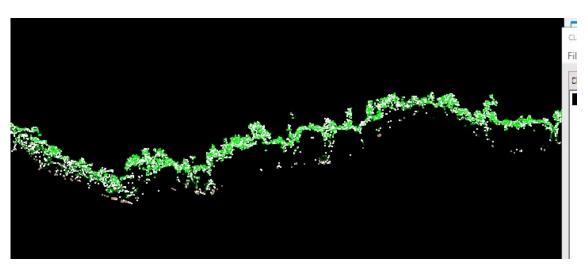


Figure 17: LAS Point cloud view from previous figure

2.10 Classification Consistency

LINZ PGF specification 6.9 requires that point classification must be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, flights, or other unnatural divisions are grounds for rejection of the entire deliverable.

As with classification accuracy there is no analytical means of measuring compliance. As such the classification consistency is reviewed via visual means. To mitigate against inconsistent classification, the following controls were employed:

- Systematic geometric issues that may lead to swath-based inconsistencies are identified by the Lidar Geopositioning process, as documented in the Project Method Statement, specifically in the intraswath, interswath & absolute accuracy analysis steps. Data swaths that do not pass this stage do not progress to later classification steps
- The automated classification process is a series of classification algorithm tools applied in a macro. The macro is designed and optimised to yield high classification accuracy across the variety of land cover types within the project area. Applying the one, optimised and flexible classification macro delivers consistent classification across the entire project area
- To avoid tile edge artefacts, all tile-based workflow steps utilise a buffer of lidar points from surrounding tiles. This allows for a better classification of both ground and vegetation points.
- Lidar Technicians are trained to deliver consistent results and use the same visualisation methods/aids. They are supervised by the Lidar Phase Manager and the 10% of classified point cloud tiles are peer reviewed by a dedicated QAQC team.
- DEM tiles are run after classification has been completed to review possible errors in Ground classification.
- $\,\cdot\,\,$ Bridges are checked against a bridge shapefile (supplied by LINZ) to correctly identify and classify the bridges.

2.11 Classification Consistency – Priority and Non-Priority blocks

Within the Waikato project area, the areas named Priority Area B and Priority Area E were processed in advance of the larger associated blocks of Remainder Area B and Remainder Area E.

While the priority blocks were processed to the New Zealand National Aerial Lidar Base Specification, some noticeable consistency variation was evident between the priority and associated areas.

The differences consisted of variation of classification in the ground, default, and noise classes as well as some tonal differences between the intensity balancing between blocks. Additional processing was performed within the priority areas to reduce this variation and develop a more consistent product across delivery areas.

The additional processing does not affect the useability of the data and maintains a product within the specifications of the project; however it is noted there are occasional and slight differences in classification density and intensity tone between the priority areas and remainder areas. This has for the most part been mitigated by resupplying the data after it had its intensity compared and balanced against Block B Remainder. The Histogram has been balanced the same as much as possible.

3 LiDAR Hydro-Flattening QAQC

LINZ PGF specification 7.0 details at length the requirements for Hydro flattening of Digital Elevation Models.

The methods for Hydro Break line Digitization, Hydro-Flattening and Hydro-Flattening quality control are described in the Lidar Processing and Data presentation section of the Project Method Statement.

Hydro-flattening generation methods will be detailed in the Processing Report.

The pertinent parts of the specification and the means of identifying the required hydro-flattening features are as follows:

- · Permanent islands 5,000 m2 or larger must be delineated
- · Islands of 5000m2 will be included as hole features within the parent hydro-flattening polygon.
- · Inland ponds and lakes water bodies of 10,000m2 or greater at the time of collection must be flattened
- Lake polygon features will be precisely digitized using lidar point cloud with supporting background intensity imagery and supported by open-source imagery as reference.
- Inland streams and rivers of >= 30m nominal width (width of water flow in a single channel at time of capture) must be flattened
- Streams/rivers that fulfil the minimum distance requirement will be identified by visual inspection of the point cloud.

Hydro-flattening was performed upon the project dataset, and hydro break lines were used during the creation of digital elevation models. Hydro Flattening digitizing are performed by Lidar technicians, under the supervision of the Lidar technical manager.

The hydrological features were digitised in Microstation using a combination of manual and automatic digitizing ('Display boundary' function in TerraModeler). Stream islands that were 5 000m² or larger in size.

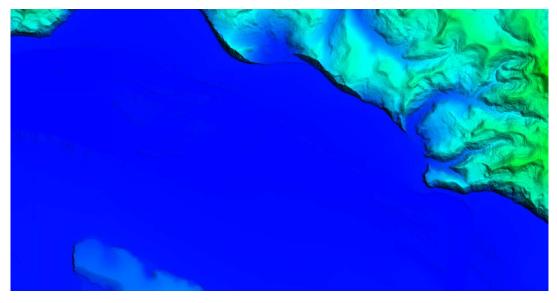


Figure 18: Example of a hydro-flattened stream with a stream-island.

When hydro-flattening a stream, the following process is used:

Identify a possible stream feature. Measure the width of the stream from bank to bank, and if greater than 30m wide, begin digitizing the feature. If the stream varies in width, the discretion of the geospatial specialist is applied.

Once the stream outline was completed, and that it was confirmed to be a polygon, a shapefile was imported into ArcMap and a centreline was created using the 'Create Centreline' script, which generates a centreline based on the stream polygon.

The centrelines were then checked for errors which may have occurred during its creation. It was then exported to Microstation where the centreline was then dropped to a surface (created by surrounding ground points). The tool 'Force Downstream Flow' was used to enforce correct elevations for the centreline, ensuring that each point's height was equal to or less than that of the point before it.

The correct order of point heights was then checked by exporting the co-ordinates out as a text file which would be used for the creation of a new centreline shapefile. Figure 18 shows the example excerpt of river points used to create the centreline after downstream flow was enforced. Figure 19 shows the example highlighted script was used to generate the centreline for the stream within the project's survey.

```
1 1929744.8358 5615128.2638 7.7096
 2 1929746.0769 5615130.8498 7.6863
 3 1929746.4280 5615131.5996 7.6796
 4 1929746.5107 5615131.7727 7.678
 5 1929746.7841 5615132.3591 7.6728
 6 1929748.0794 5615135.0799 7.6483
 7 1929748.5703 5615136.1455 7.6388
 8 1929749.4246 5615138.0643 7.622
 9 1929749.8587 5615139.0742 7.6132
10 1929750.6288 5615140.9327 7.5973
11 1929751.0393 5615141.7916 7.5896
12 1929751.5292 5615142.7809 7.5805
13 1929754.3861 5615148.3485 7.529
14 1929754.7868 5615149.1041 7.5219
15 1929754.7991 5615149.1267 7.5217
16 1929757.3347 5615152.1834 7.4808
17 1929757.8445 5615152.7752 7.4594
```

Figure 19: Excerpt of river points used to create the centreline

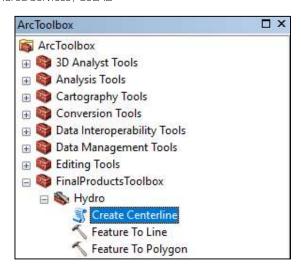


Figure 20: Centreline for the stream within the project's survey

After the new centreline had been created, it was conflated with the stream's shape using LP360 within ArcMap. This matched up the elevation of the stream's outline with that of the centreline. The new stream shape was attached to a DGN and opened in Microstation, exported as co-ordinates, and then read into the project. These points along with ground points were used to output lattice models which show the results of the hydro-flattening. Stream-island break line points were also included to ensure the correct modelling of the stream and its features.

The following settings were used for lattice model creation:

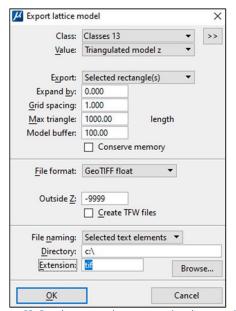


Figure 21: Settings used to export lattice models.

The product undergoes QC by the Lidar Phase Manager and is reviewed for any omissions or blunders. The following project specification are checked against:

- All Hydrologic break lines developed for use in hydro-flattening are in non-tiled ESRI feature class in polylineZ or polygonZ shape file format.
- Water bodies (ponds, lakes, and reservoirs), wide streams and rivers ("double-line"), and other non-tidal water bodies are to be hydro-flattened within the DEM. The resulting pond and lake surfaces will be flat and double line rivers will be flat level bank-to-bank and be gradient.
- It is noted when hydro-flattening streams, significant breaks in water elevation as well as varying degrees of bends in the stream direction will create a triangulated appearance in the DEM. These affects will be minimized to an appropriate extent.
- · The entire water surface edge must be at or below the immediately surrounding terrain.
- · Hydro-flattening break line feature class use the NZTM2000 projection and NZVD0216 height datum
- · Hydro-flattening has applied to all streams that are nominally wider than 30 metres wide, and to all non-tidal boundary waters bordering the project area regardless of size.
- · Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are nominally larger than 10000m2 in area
- Stream channels should break at road crossings (culvert locations). These road fills should not be removed from the DEM.
- Streams and rivers should NOT break at elevated bridges. Bridges are removed from the DEM. When the identification of a feature such as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

A peer review of the Hydro flattening break line data products as well as the hydro-flattened DEM is performed on 10% of the dataset by an independent analyst or project manager. To distribute and track the progress amongst the editing & QAQC team, an ArcSDE tracker (multiuser database) is employed.

During the QA/QC, it was identified there will be instances of vegetation classifications contained within waterbody polygons. After investigation it was determined much of this occurs from overhanging vegetation from the outside of the hydro features. Occasionally there are instances of vegetation within waterways which is related to islands falling below the required threshold for collection. Additional processing steps were taken to limit the amount of vegetation that exists within the waterway while retaining the overhanging vegetation. This processing step primarily involved classification based on XYZ proximity to existing digitized hydro/island lines. After this process was performed some vegetation classified lidar points will still be present in the waterway.

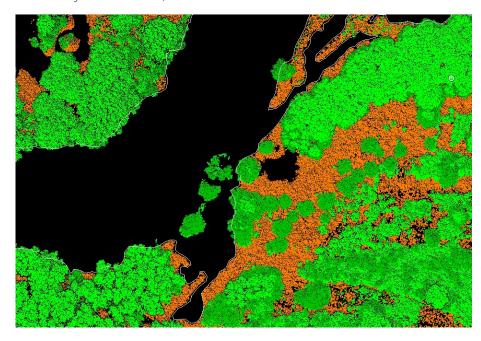


Figure 22: Pre-filter, overhead view of ground and veg points with hydro lines

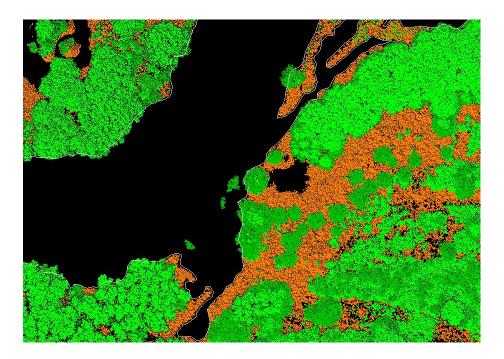


Figure 23: Post-filter, overhead view of ground and veg points with hydro lines

Additionally, during QC data review, it was discovered rocks and boulders within rivers are occasionally classified as vegetation. This is typically observed in high relief areas where water flows down steep terrain, i.e., rapids/white-water. Rivers tend to narrow in these areas and will not likely be caught during the aforementioned processing step based on proximity to linework. These points will continue to be classified as vegetation.

Figure 24: Point cloud – boulder filled stream

Figure 25: Imagery – boulder filled stream

4 LiDAR Deliverables QAQC

Section 8 of the LINZ PGF specification details the project reporting, metadata requirements & deliverable requirements.

4.1 Reporting and metadata

4.1.1 Project reports

The following details the reports being delivered for this section of the project:

- Collection Report detailing mission planning and flight logs, including dates of collection
- Details of quality control tests, and conformance against Linz specifications
 - o Refer to AU411_WLASS-Collection_Report-10052021.pdf
- Survey Report detailing the collection of all ground control, including the following:
 - o Control points used to calibrate and process the LiDAR and derivative data
 - o Check sites used to validate the LiDAR point data or any derivative product
 - o Refer to AU411-R1-Waikato LiDAR Ground Control Report of Survey.pdf
- Geopositioning QA/QC Report, detailing analysis, accuracy assessment and validation of the following:
 - o Point cloud data, including a summary of relative (smooth surface repeatability and overlap consistency) and non-vegetated vertical and horizontal local accuracy.
 - o QA/QC analysis of the vertical and horizontal local accuracy assessment will include a table of the product data compared to each check site.
 - o Refer to AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
 - o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022.

Processing Report (This Document) detailing:

- Classification and product generation procedures including methodology used for break line collection, hydro-flattening break line collection, hydro-flattening processing, DEM & DSM creation, and deliverable generation.
- Details of quality control tests, and conformance against each of the relevant Linz specifications including:
 - o Workflow QAQC checklist
 - o Pre-Delivery QAQC worksheet as an embedded document

4.1.2 Extents

LINZ PGF specification 8.1.3 requires that a geo-referenced, digital spatial representation of the detailed extents of each delivered dataset.

The data for Block B - Remainder was captured using Leica TerrainMapper sensors 513 and 559, flown on days 5th, 15th, 27th, 28th, 29th 30th and 31st January 2021 and days 3rd, 12th, 16th, 17th, 18th, of February 2021 and days 11th, 13th, 21st, 22nd, 23rd, 24th, 25th of March 2021. The extent of Block B Remainder can be seen in Figure 25. The flight lines relating to the area can be seen in Figure 28.

Please note some of the flightlines and associated data that were overlapping with adjoining blocks have been withheld from the supply in this instance. Alternative Block ID shapefile was provided to Waikato on 08 September 2022. The areas have been withheld in order to supply a seamless data set when combined.

This extent was created by creating a surface in Microstation based on all points collected during the survey flight. The tool "Display boundary" was then used to generate the extent, which was then exported into a shapefile and assigned with the necessary horizontal and vertical co-ordinate system.

Figure 26: Extent of deliverable data for Remainder B (yellow outline)

Note Block B – Priority is on The Northwest Section of this AOI Bordered by yellow and red outlines

4.1.3 Flight Lines

LINZ PGF specification 8.1.3 requires that Flightline shapefiles as Esri polylines are required. Each flightline must be assigned a unique File Source ID that is equal to the Point Source ID assigned to each point collected during that flightline.

The Sensor trajectory was imported into Terrascan and edited to split the trajectory into discrete flight lines. Each flight line was then assigned discrete flight line ID, in accordance with the project flight plan. Each Lidar point was assigned a flight line ID by matching against its trajectory, using the Adjusted GPS time stored in both the trajectory and lidar point. The trajectories were exported to ESRI shape file format with a File Source ID attribute populated with the trajectory flight line ID value. This process will ensure that specification 8.1.3 is adhered to.

The image below shows the extend of the area covered.

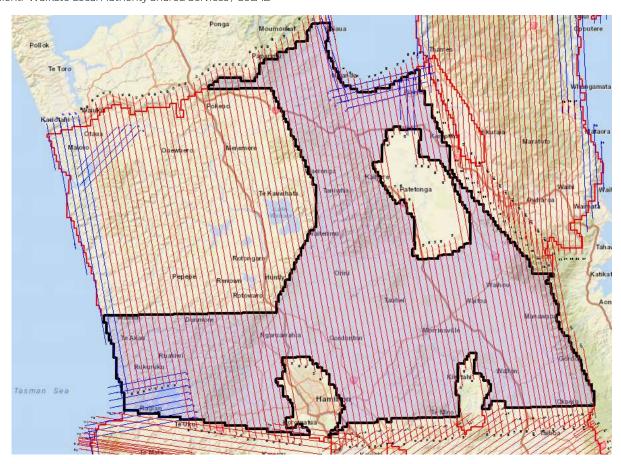


Figure 27: Flight lines for 4ppm2 data coverage over Block B Remainder

4.2 Classified point cloud tiles

LINZ PGF specification 8.2 details the requirement for the point cloud deliverables, and how adherence to the specifications is measured is listed below. Point cloud deliverable generation methods will be detailed in the Processing Report. Deliverable QC checks are performed both by Lidar technicians, under the supervision of the Lidar Phase Manager and followed by a review of 10% of the data by an independent analyst or project manager:

- (a) Data from all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified, by tiles. Project swaths exclude calibration swaths, crossties, and other swaths not used in product generation.
- (b) Data is provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum.
- (c) Fully compliant LAS v1.4, Point Data Record Format (PDRF) 6-10. All files must have the same PDRF.
- (d) Each point includes a Point Source ID linking it to the flight line File Source ID.
- (e) Correct and properly formatted georeferenced information (EPSG: 2193 + 7839) as Open Geospatial Consortium (OGC) Well Known Text (WKT) included in all LAS file headers.
- (f) File Source ID set to 0 for tiled LAS files.

- (g) GPS times recorded as Adjusted GPS Time at a precision sufficient to allow unique timestamps for each pulse.
- (h) Points are provided in the order in which they were collected.
- (i) Height values reported to three decimal places (nearest mm). (While not significant for accuracy, this supports numerical processing and reduces the number of identical values caused by rounding.)
- (j) Intensity values, normalised to 16-bit by multiplying the value by 65,536/ (intensity range of the sensor) per LAS v1.4. This will result in an intensity range of 0-65,536.
- (k) Classification as required by the Contract Authority (Table 4 at a minimum).
- (I) Tiled delivery, without overlap, per the project tiling scheme in Section 9 Tiles.
- (m) Files named per Section 9 Tiles.

The point cloud tiles created for handover underwent multiple alterations before finalization. After the LAS tiles were created in Microstation, LASTools was used to assign the correct global encoding (17), system identifier and file source ID (0). WKT was also added to the LAS metadata, as illustrated in the figure below. The correct height values were also confirmed in LASTools ensuring that three decimal places were being used. The tiles were also named according to the required naming convention which is discussed in Section 6.

Figure 28: WKT of a LAS file shown by LASTools.

Intensity valued scaled from a range of 100 – 10000 output by HxMap, to full 16-bit dynamic range. Translation value = -100 Scale value = 6.5535

Once the point cloud was classified and was inspected manually in Microstation, the LAS files were loaded into LP360. The global coding, file source ID, WKT, VLRs, file format and LAS version were compared against to the LINZ specifications and after passing QA/QC, the files were renamed in accordance with the LINZ specifications. A condensed version of the LP360's results can be found in the table below. A complete listing of the output from LP360 is included as an embedded document in Appendix A.

			File	File	CRS is	
File	Points	Version	Signature	Source ID	WKT	System Identifier
CL2 BB33 2021 1000 2446.las	4,447,397	1.4	LASE	0	TRUE	Leica Terrain Mapper
CLZ_BB33_2021_1000_2440.id3	7,447,557	1	LASI		INOL	Leiea Terraii Tiviappei
CL2_BB33_2021_1000_2447.las	2,563,807	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2448.las	3,530,507	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2449.las	5,076,742	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2450.las	3,519,328	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2545.las	2,562,712	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2546.las	4,397,136	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2547.las	3,039,872	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2548.las	3,981,573	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2549.las	4,100,164	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2550.las	4,228,343	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2446.las	3,493,064	1.4	LASF	0	TRUE	Leica Terrain Mapper
CL2_BB33_2021_1000_2644.las	4,447,397	1.4	LASF	0	TRUE	Leica Terrain Mapper

Table 2: Representative output from LP360 illustrating LAS file specification compliance

Additionally, a pre-delivery script which invokes LASTools was run on all tiles. The script output was imported into a custom Excel Worksheet, which checked specification compliance. For a complete listing of analysis refer to Section 6.1 of this document.

4.3 Elevation models

LINZ PGF specification 8.3 details requirements for raster surface model deliverables. The specification and how adherence to the specifications is measured is listed below. Deliverable QC checks are performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a review of 10% of the data by an independent analysist or project manager:

- (a) Grid spacing: 1m cell size.
- (b) Generated to the limits of the project area
- (c) Raster format: Geotiff (.tif)
- (d) Geo-reference information (EPSG 2193) in each raster file.
- (e) Tiled delivery without overlap.
- (f) NOT clipped using polylines for land-water boundaries from national databases (for example coastlines, river or lake boundaries) as these can be inaccurate and subject to continual geomorphic change.
- (g) Tiles with no edge artefacts or mismatch. A quilted appearance in the overall surface can be grounds for rejection of the entire deliverable whether the rejection is caused by differences in processing quality or character among tiles, swaths, flights, or other unnatural divisions.

- (h) Void areas (for example, areas outside the project area but within the project tiling scheme such as offshore water) coded using "NODATA" value equal to -9999. This value must be identified in the appropriate location within the raster file header.
- (i) Constrained with any additional break lines required by the Contract Authority, such as stopbanks, streams, and narrower rivers.
- (j) Provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum. Additional vertical datums may be specified by the Contract Authority.

4.3.1 Bare-Earth Digital Elevation Models (DEM)

LINZ PGF specification 8.3.1 details additional requirements for Digital Elevation Models. The Bare-Earth DEM is the bare earth that has been classified and edited to remove vegetation and man-made structures within the bounds of the classification accuracy requirements. It must also include or conform to the following:

- (a) Based on Classification level 2 or better ground return points.
- (b) Hydro-flattening as outlined in Section 7 Hydro-Flattening.
- (c) Bridges removed from the surface, while culverts are treated as ground
- (d) Method for removal of buildings, structures or other ground cover/vegetation and interpolation techniques documented.

The Digital Elevation Models were created using a combined model based on both ground surface points and break line points. These break line points were created during the hydro-flattening process mentioned in **Section 4**. By using these classes, a true representation of the ground points can be achieved while still maintaining a smooth water surface which gradually follows the terrain.

To generate DEMs, LAS format data files are loaded into TerraScan, only loading in class 2 points and breaklines. Additional data is referenced to avoid tile edge artefacts. Following import, TerraScan-Export Lattice Model command is used to create a grid file with uniform distances between points from one or more selected point classes. For each grid point, the lattice model file stores XY coordinates and elevation. Within the Export Lattice Models command we utilize "Triangulated model Z" to export the DEM tiffs. This triangulated model z derives an elevation value that is calculated from a TIN model of the lidar points using ground and breakline classifications.

The elevation grid is generated as a TerraScan Lattice model using the following settings:

- o Grid Method = TIN Model (Triangulated model z)
- o Grid Spacing = 1 meter

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

The tiles were loaded into LP360 to check the metadata of the images during both production and QA/QC of the deliverables. A Representative version of LP360's findings is found in the table below. A complete listing of the LP360 results is included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DEM_BB33_2021_1000_2450.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BB33_2021_1000_4043.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC33_2021_1000_0343.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC34_2021_1000_2326.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BC34_2021_1000_4237.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BD32_2021_1000_0729.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BD32_2021_1000_3043.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BD33_2021_1000_1509.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BD33_2021_1000_3618.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BD34_2021_1000_1025.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BD34_2021_1000_2025.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BD35_2021_1000_0104.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 3: Condensed output from LP360 illustrating DEM file specification compliance

4.3.2 Digital Surface Models (DSM)

LINZ PGF specification 8.3.2 details additional requirements for Digital Surface Models. The DSM is the heights of the top of the highest feature at each gridpoint, including ground, vegetation, and manmade structures. The DSM is based on first return points after removal of noise.

LAS format data files are loaded into Terrascan only loading in First, First-of-many and Single returns. Additional data is loaded to avoid tile edge artefacts. Only coverage classed 1 to 6 & 17 points will be used in generation of Digital Surface Models. The elevation grid is generated as a TerraScan Lattice Model using the following settings:

- o Grid Method = Binning (Maximum Value DSM)
- o Grid Spacing = 1 metre

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

To meet the request to produce a DSM representative of the heights of the top of the highest feature at each grid point while incorporating hydro features, the hydro features used to create the DEM deliverables were included to produce a hydro flattened DSM.

Hydro-flattened DEM tiles are overlaid against the DSM tiles to identify and fill gaps in the data (such as the river), and then the tiles were exported in Geotiff format including settings for the datums and null data specifications, using the tile grid to clip & name the data files. The DSM deliverables undergo a visual spot check using Globalmapper.

In areas where valid data gaps (e.g. waterbodies) do not meet the LINZ specification for hydroflattening the surface model will triangulate across these voids to the nearest point per pixel (highest for DSM & lowest for DEM). No intervention is made to flatten or constrain these areas.

Digital surface models are created by combining points with only a single return, and points that have the first return of many (returns) and are then used to generate the DSM model. Figure 28 is an excerpt of one of the DSM tiles created for the project area.

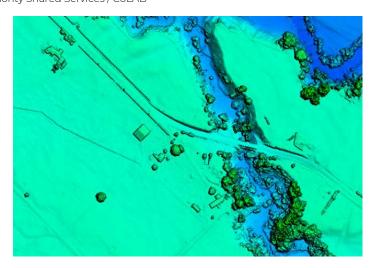


Figure 29: Excerpt from DSM_BD35_2021_1000_2144.

The tiles created are in GeoTiff floating 32-bit format and have been adjusted to display a NoData value of -9999 (Figure 29). The composite DSM was produced in 32-bit Geotiff format as requested and both the tiles and the composite had the correct horizontal and vertical co-ordinate systems assigned to the metadata in ArcMap.

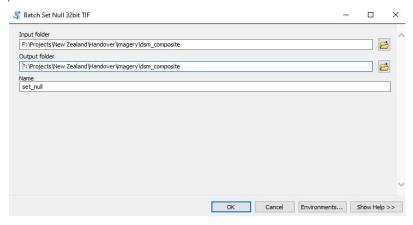


Figure 30: Script used in ArcMap to achieve a NoData value of -9999.

Format	IMAGINE Image		
Source Type	Generic		
Pixel Type	floating point		
Pixel Depth	32 Bit		
NoData Value	-9999		

Figure 31: Properties of the composite DSM file showing its format and NoData value

After these files were amended, they were loaded into LP360 to check the necessary metadata of the imagery. The results from LP360 can be found in the table below. A complete listing of the LP360 results are included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DSM_BB33_2021_1000_2450.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BB33_2021_1000_4043.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC33_2021_1000_0343.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC34_2021_1000_2326.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BC34_2021_1000_4237.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BD32_2021_1000_0729.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BD32_2021_1000_3043.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BD33_2021_1000_1509.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BD33_2021_1000_3618.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BD34_2021_1000_1025.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BD34_2021_1000_2025.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BD35_2021_1000_0104.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 4: LP360 Results example table

4.4 Break lines

LINZ PGF specification 8.4 details requirements for hydro-flattening break lines. Delivery of break lines representing all hydro-flattened features in a project is required. Additional break lines may also be required by the Contract Authority. These are to be delivered as ESRI Shape files (.shp) using the NZTM2000 projection.

Refer to section 7.0 of this document. The workflow methods will be documented in the project Processing Report. The digitized hydro features were included in the handover data set, under the Vector deliverable section. They are in shapefile (.shp) format and are in the NZTM2000 projection. Stream and stream-island, lake and lake island break lines were delivered, with ocean features falling under the "Lake" feature category due to its uniform height. In figure 31 the geometry type is set to a polygon shape and has vertical and horizontal co-ordinate sets as well as Z values.

Figure 32: Stream break line properties in ArcMap.

4.5 GNSS data

GNSS data is not a required deliverable for this project.

4.6 Backed up project source data

LINZ PGF specification 8.6 details the requirements for archival and storage of the project data. Raw project source data, such as native format LiDAR files and point cloud swaths, are NOT required for delivery; however, a copy has been provided to CoLAB. It is acknowledged that the Vendor must hold a copy of all relevant raw project data, for a minimum of five years beyond the final delivery of the project deliverables. The vendor must provide this data, with unrestricted copyright, to the Contract Authority on request. The vendor may charge a reasonable access and distribution charge in such instances.

Woolpert and Ocean Infinity will archive all raw & processed data collected for 5 years following project completion.

4.7 Contours

Contours with an interval of 0.5m will be generated for project areas using Terramodeler and generated using the following settings:

Note Contours will be generated at Project conclusion to ensure there are no line breaks between blocks.

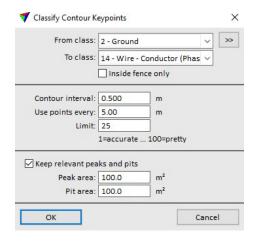


Figure 33: Contour key points settings used in Terrascan.

Once these contours are generated, they are extracted out as shapefiles and imported into Global Mapper and the attributes Elevation, INDEX2P5, INDEX10 & INDEX100 added. Each contour is then assigned a "Y" or "N" value depending on the elevation of that contour. These contours are then tiled out according to the LINZ tile specification, and once reviewed in ArcMap they are placed into a geodatabase using ArcGIS Pro for QA/QC and then delivery.

5 LiDAR QA Tiles

LINZ PGF specification 9.1 & 9.2 detail the requirements for project tiles geometry & naming convention.

- (a) NZTopo50 subtitles based on NZTM2000 coordinates. The 1-m gridded raster products and point clouds must be delivered at 1:1000 nominal scale (2500 720m high x 480m wide subtiles per full NZTopo50 sheet).
- (b) The origin of the raster tiles must be placed on a whole metre coordinate value of the southwest corner of each tile (for example, 5429500 mN_17490300mE).
- (c) The tiled deliverables must edge-match seamlessly and without gaps.
- (d) The tiled deliverables must conform to the project tiling scheme without overlap.
- (e) File naming must conform with the naming convention described in section 9.2.

A Tile Index must be provided in ESRI shape file format. The file name must be included as an attribute in the Tile Index file.

The Client supplied tiling grid shape file will be used as the tile clipping polygon when exporting the deliverable products. The shape file will have an attribute added for each deliverable type as specified in section 9.2. This attribute will contain the required tile name for each deliverable. This shape file will be used as the means of extracting all project data deliverables, so that the geometric aspects for specification 9.1, and the naming requirements of section 9.2 are fulfilled.

Deliverable QC checks have been performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team:

5.1 LAS Tiles QAQC - LASQC

Prior to delivery, Lidar data tiles have undergone a final analysis, using a custom developed Pre-Delivery QAQC tool called LASQC. This tool uses LASTools 'Lasinfo' in a batchscript called LASExtract, which collates information regarding each tile into an Excel worksheet. The tool analysis and reports compliance on the following items:

- o File naming accuracy
- o Check to ensure lidar points fall inside the extents bounded by the NZTOPO50/1:1000 tile name
- o Adjusted GPS time falling with correct extents for the survey
- o LAS file format, version, file source ID, point data record format & scale factor
- o Point counts by return, illustrating presence of multiple returns
- o Average point density for the tile, excluding overlap
- o Presence of the overlap (not applicable to all tiles) & withheld flags
- o Minimum, maximum & average intensity values.
- o Height above ground for building, low, medium & high vegetation classes

- Note it should be noted that this analysis is not accurate in steep terrain due to the different methods used for triangulation of between Terrascan & LASTools.
- o Check for presence of correct ESPG Codes for geodetic & vertical datums, and map projection
- o Raster Overviews for Point Source ID, Intensity, Point Density and Overlap Analysis

These analysis results will be included as an attachment referenced in Appendix A.

5.2 File naming

Project deliverables have been named in accordance with the project specification illustrated in Table 5.

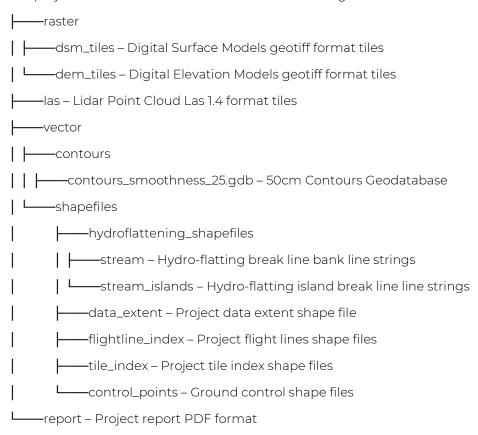

Product	DEM	CL2-Point Cloud Classification Level 2 DEM-Bare Earth Digital Elevation Model DSM-Digital Surface Model DTM-Digital Terrain Model UNC-Unclassified Point Cloud INT-Intensity image CHM - Canopy Height Model IMG-Aerial photography etc
Sheet	BK34	LINZ Topo50 identifier (4 characters)
Year	2016	Year of survey commencement
Scale	1000	Nominal scale of NZTopo50 subtiles
Tile	4118	Row number (41), Column number (18) of tile with respect to an upper left origin
ext	tif	File extension according to format conventions las tif shp etc

Table 5: File Naming

5.3 Delivery Folder

The project deliverables are structured in the following manner:

6 Setbacks and Solutions

During the production of the data sets for the Block B Remainder area, setbacks were encountered, with a varying impact on production time. Along with these setbacks, new methods of production were created to account for any necessary changes to improve the quality of the data set or save time when amending the data set.

6.1 Missing ground points under vegetation and low vegetation classification difficulties

During the processing of all Waikato Blocks it is noted there are areas of dense vegetation which limit and often prevent laser penetration to the ground surface. In these situations, it is common for data voids to appear in the DEM surface. In addition, low lying dense vegetation has caused difficulty in assessing the true ground surface. In these situations, it can be difficult to discern if points are part of the ground surface or the lowest part of low-lying vegetation. In these situations, it is common for the ground surface profile to transition to what may or may not be the lowest part of low-lying vegetation. During manual editing, these situations are monitored with the objective being to make the best interpretation of ground.

6.2 Production Delays to Block B

During production, it was determined a new technical team within Woolpert's US and Australian offices was necessary to continue production on the project. This handover from the previous team created project delivery delays as the new team became familiar with the project specifications as well as to address quality assurance workflow requests made by the prime contractor.

6.3 Review Process

Due to uncertainty of deliverable quality and issues associated with the processing procedure Ocean Infinity implemented a layered review process. Woolpert provided the initial DEM and DSM supply along with a results folder. These folders and files were forwarded to Cyient, an independent contractor, for a 100% review. The results of this review were vetted by Ocean Infinity and passed onto Woolpert for their review, comment and repair where deemed necessary. The process has been tracked by a modified LINZ QAQC spreadsheet.

6.4 Delivery not Meeting Specification

The original supply of data included filenames that did not meet specification. This was rectified by a resupply. There was also an issue with missing Z values in the hydroflattening shapefiles – this too was resupplied. There was also issue where Woolpert have withheld parts of the AOI which intersect with adjoining AOI's. An alternative block ID Shapefile has been provided.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

6.5 Failure of QAQC undertaken by WRC

This data set was extensively QAQC'd by WRC staff. As previously mentioned, Thanks must go to this team for their work.

A defect tracking spreadsheet was created and amended over the period between initial supply and resupply. In total there were 31 defect issues identified and dealt with. This was an effective means of tracking the defects and their unique solutions.

A new LiDAR Manager – Luke Graham (AAM – A Woolpert Company) has been tasked with all the Waikato non-priority blocks, his input has had a positive influence on the project, and he has made changes to workflows and procedures which should not see the same issues reproduced in future deliveries.

It is noted that as of 10 November further defects have been found, added to the defect spreadsheet and repaired. WRC have advised they will be providing more feedback that will require more rework. As such, this report and appendices will be updated thereafter.

A further defect spreadsheet was provided (V2) the issues contained within were dealt with prior to the latest data supply. A copy with commentary has been included in the appendices.

7 Results Acceptance & Signoff

An acceptance and signoff of the project QAQC supervisory review is listed below.

Result Acceptance					
Assessment Criteria	Status	Completed By	Date		
Point cloud classification accuracy	Complete	Woolpert	10 August 2022		
Point cloud classification consistency	Complete	Woolpert	20 August 2022		
Point Cloud LAS tiled deliverables	Complete	Woolpert	20 August 2022		
Hydro-flattened Digital Elevation Models	Complete	Woolpert	20 August 2022		
Digital Survey Models	Complete	Woolpert	20 August 2022		
Contours	Complete	Woolpert	20 August 2022		
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	20 August 2022		
Project Manager / Supervisor Signoff	Complete	Brian Foster	20 August 2022		
Ocean Infinity Review	Complete	Luke Leydon	09 September 2022		

Table 6: Processing Results Acceptable Signoff

Result Acceptance					
Assessment Criteria	Status	Completed By	Date		
Point cloud classification accuracy	Complete	Woolpert	29 October 2022		
Point cloud classification consistency	Complete	Woolpert	29 October 2022		
Point Cloud LAS tiled deliverables	Complete	Woolpert	29 October 2022		
Hydro-flattened Digital Elevation Models	Complete	Woolpert	29 October 2022		
Digital Survey Models	Complete	Woolpert	29 October 2022		
Contours	Complete	Woolpert	29 October 2022		
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	29 October 2022		
Project Manager / Supervisor Signoff	Complete	Luke Graham	29 October 2022		
Ocean Infinity Review	Complete	Luke Leydon	10 November 2022		

Table 7: Processing Results Acceptable Signoff (Revision 1)

Result Acceptance					
Assessment Criteria	Status	Completed By	Date		
Point cloud classification accuracy	Complete	Woolpert	29 October 2022		
Point cloud classification consistency	Complete	Woolpert	29 October 2022		
Point Cloud LAS tiled deliverables	Complete	Woolpert	29 October 2022		
Hydro-flattened Digital Elevation Models	Complete	Woolpert	29 October 2022		
Digital Survey Models	Complete	Woolpert	29 October 2022		
Contours	Complete	Woolpert	29 October 2022		
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	29 October 2022		
Project Manager / Supervisor Signoff	Complete	Mike Meiser	18 November 2022		
Ocean Infinity Review	Complete	Luke Leydon	18 November 2022		

Table 8: Processing Results Acceptable Signoff (Revision 2)

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB


Result Acceptance					
Assessment Criteria	Status	Completed By	Date		
Point cloud classification accuracy	Complete	Woolpert	12 December 2022		
Point cloud classification consistency	Complete	Woolpert	12 December 2022		
Point Cloud LAS tiled deliverables	Complete	Woolpert	12 December 2022		
Hydro-flattened Digital Elevation Models	Complete	Woolpert	12 December 2022		
Digital Survey Models	Complete	Woolpert	12 December 2022		
Contours	Complete	Woolpert	12 December 2022		
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	12 December 2022		
Project Manager / Supervisor Signoff	Complete	Luke Graham	12 December 2022		
Ocean Infinity Review	Complete	Luke Leydon	12 December 2022		

Table 9: Processing Results Acceptable Signoff (Revision 3)

Appendix A: Lidar Quality Assurance Results

Provided as separate Documents

Waikato Local Authority Shared Services (WLASS) / CoLAB LiDAR Data Capture Services LiDAR Processing Report Blocks C&D (Rev1)

Contract Number: AU411

Surveyed By: iXblue Pty Ltd / Ocean Infinity

Processing Completed By: Woolpert and Woolpert Australia

Prepared For: Colab (formerly WLASS)

Document Date: 1 October 2023

Ocean Infinity (Australia) Pty Ltd ABN 61 128 811 978 oceaninfinity.com

Document Control

Woolpert Inc. Representative

Name	Brian Foster
Position	Woolpert Senior Associate
Address	333 North Alabama St. Suite 200 Indianapolis, IN 46204
Telephone	+1 317 809 4685
Email	Brian.Foster@woolpert.com

Ocean Infinity Supervisor

Name	Dave Field
Position	Managing Director
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 277 755 532
Email	david.field@oceaninfinity.com

Ocean Infinity Project Manager

Name	Luke Leydon
Position	NZ Account Manager, Airborne
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 226 511 732
Email	luke.leydon@oceaninfinity.com

Client Representative

Name Rolf Boswell	
Position Project Delivery Manager	
Address 6/34D Lake Street, Cambridge 3434 NEW ZEALAND	
Mobile +64 27 420 0239	
Email	rolf.boswell@colabsolutions.govt.nz

Document Revision

Revision No	Issue Purpose	Prepared	Checked	Approved
0	Issue Blocks C&D LiDAR Processing Report	L Leydon	L Graham	D Field

Approval for Issue

Name	Signature	Date
Luke Leydon	Juke Jeydon	01 October 2023

Revision History

Item	Description of change	Section	Revision
1	Added Section to introduction – Revl	1.1	1
2	Added new Points classification figure	Figure 11	1
3	New LP360 example tables added	Tables 3,5,7	1
4	Notes added to contours	4.7	1
5	Section added explaining feedback and rework - WRC feedback and rework	6.3	1
6			
7			

Contents

1	Intro	oduction	9
	1.1	Revision 1	9
2	LiDA	AR Data Processing and Handling	10
	2.1	The ASPRS LAS File format	10
	2.2	Time stamp of navigational data	11
	2.3	Datums and coordinate reference system	12
	2.4	Geometric Calibration	12
	2.5	Positional accuracy validation	13
	2.6	Use of the LAS withheld flag	13
	2.7	Use of the LAS v1.4 Overlap Flag	13
	2.8	Point Classification	14
		2.8.1 Building Classification	18
		2.8.2 Vegetation & Low-Level Noise Classification:	18
	2.9	Classification Accuracy	19
	2.10	Classification Consistency	23
	2.11	Classification Consistency – Bridges	23
3	Lida	AR Hydro-Flattening QAQC	25
4	LiDA	AR Deliverables QAQC	34
	4.1	Reporting and metadata	34
		4.1.1 Project reports	34
		4.1.2 Extents	34
		4.1.3 Flight Lines	37
	4.2	Classified point cloud tiles	38
	4.3	Elevation models	40
		4.3.1 Bare-Earth Digital Elevation Models (DEM)	40
		4.3.2 Digital Surface Models (DSM)	43
	4.4	Break lines	46
	4.5	GNSS data	47
	4.6	Backed up project source data	47
	4.7	Contours	47
5	LiDA	AR QA Tiles	48
	5.1	LAS Tiles QAQC - LASQC	48
	5.2	File naming	49
	5.3	Delivery Folder	50
6	Setk	packs and Solutions	51

	6.1	Missing ground points under vegetation and low vegetation classification difficulties	5
	6.2	Production Delays to Blocks C&D	5
	6.3	WRC feedback and rework	5
7	Feat	ures unique to blocks C & D	54
	7.1	Windfarm	54
	7.2	Change between capture epochs	55
8	Resu	ılts Acceptance & Signoff	57

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Tables

Table 1: Point Classifications	14
Table 2: Representative output from LP360 illustrating LAS file specification compliance- Block C&D)39
Table 3: LP360 illustrating LAS file specification compliance- Block C&D (Rev1)	39
Table 4: Condensed output from LP360 illustrating DEM file specification compliance – Block C & D	41
Table 5: LP360 illustrating DEM file specification compliance – Block C & D (RevI)	42
Table 6: Condensed output from LP360 illustrating DSM file specification compliance – Block C & D.	45
Table 7: LP360 illustrating DSM file specification compliance – Block C & D (RevI)	46
Table 8: File Naming	49
Table 9: LINZ Shapefile description and fixes employed	52
Table 10: Processing Results Acceptable Signoff	57
Table 11: Processing Results Acceptable Signoff (Rev1)	57

Figures

Figure 1: Waikato Survey Area	8
Figure 2: LAS 1.4 being specified during project – example	10
Figure 3: Project settings used in TerraScan project when importing points into the project	10
Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools	11
Figure 5: Representative examples of LAS point attributes	12
Figure 6: Settings used when cutting overlap in Microstation	14
Figure 7: Automatic classification macro developed for the project areaarea	
Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine	16
Figure 9: A smaller iteration distance value avoids classification of ground points on low objects	16
Figure 10: Statistics showing the classes - LAS points within the project area (Block C & D)	
Figure 11: Statistics showing the classes - LAS points within the project area (Block C & D)(Rev1)	
Figure 12: Unedited, autoclassified Tile BF31_2723	
Figure 13: Post-edit Tile BF31_2723	
Figure 14: LAS pointcloud profile view from previous – required editingediting	
Figure 15: LAS point cloud profile view from previous – post editing - introduced ground points	
Figure 16: Example overhead image of DEM over cliffs. Tile BF31_2623	
Figure 17: Example overhead image of Pointcloud over cliffs. Tile BF31_2623	
Figure 18: LAS point cloud profile view from previous figurefigure 18: LAS point cloud profile view from	
Figure 19: Example (A) of terrain where DEM DSM differences to be expected	
Figure 20: Example (B) of terrain where DEM DSM differences to be expected	
Figure 21: Perpendicular (L) & Parallel (R)	
Figure 22: Bridge but not shown in LINZ Shapefile	
Figure 23: Non-existent Bridge	
Figure 24: Hydroflattening Polygons for Blocks C&D	26
Figure 25: Tile DEM_BF31_2021_1000_3732 with LINZ bridge centreline	27
Figure 26: Tile DEM_BF31_2021_1000_3732 classified	
Figure 27: Excerpt of river points used to create the centreline	
Figure 28: Centreline for the stream within the project's survey	
Figure 29: Settings used to export lattice models	
Figure 30: Pre-filter, overhead view of ground and veg points with hydro lines	
Figure 31: Post-filter, overhead view of ground and veg points with hydro lines	
Figure 32: Point cloud – boulder filled stream	
Figure 33: Imagery – boulder filled stream	
Figure 34: Example of hydroflattened Coastal DEMs: DEM_BE32_2021_1000_3137	
Figure 35: Inlet, with hydro-flattening Tile BE32_2620 and neighbours (DSM)(DSM)	
Figure 36: Extent of deliverable data for Block C & D	35
Figure 37: Extent of deliverable data for Block C& D - DEM	
Figure 38: Extent of deliverable data for Block C & D - DSM	
Figure 39: Flight lines for 4ppm2 data coverage over Block C & D	
Figure 40: WKT of a LAS file shown by LASTools	
Figure 41: DEM Example Tile River Valley - DEM_BF31_2021_1000_0650	
Figure 42: Difference between DSM and DEM differences in height along ridgeline- Tile BF31_3549	
Figure 43: Script used in ArcMap to achieve a NoData value of -9999	
Figure 44: Properties of the composite DSM file showing its format and NoData value	
Figure 45: Stream break line properties in ArcMap	
Figure 46: WRC Shapefile description and fixes employed	
Figure 47: Te Uku Windfarm – Side profile	
Figure 48: Te Uku Windfarm – DSM	
Figure 49: Te Uku Windfarm	
Figure 50: Terrain. Tile BE31_3839	
Figure 51: Vegetation Tile BE31 3839	56

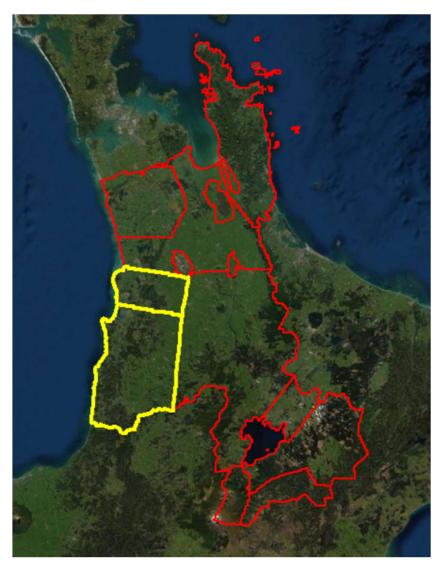


Figure 1: Waikato Survey Area

C & D illustrated in Yellow. C is the Northern most block

1 Introduction

Lidar survey projects are broken into three distinct phases. The survey commences with the data acquisition project phase. For matters pertaining to this phase of the project, refer to the document

• AU411_WLASS-Collection_Report-10052021.pdf.

The next phase of the project is the Geopositioning phase, which involves processing the raw sensor and trajectory data to produce a set of point clouds for each flight line.

The point clouds have several geometric optimizations performed, to optimise the relative and absolute spatial accuracy levels.

At completion of the Geopositioning phase, the point cloud geometry is final, and the point cloud classification and production generation project phases follow.

For matters pertaining to this phase of the project, refer to the documents

- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022

The following report covers the data processing project phase and describes the data processing methods used for the lidar classification and product generation, along with the QAQC procedures and results.

This report illustrates compliance with the LINZ PGF specifications sections 6 - 9.

This report pertains to the coverage of Blocks C&D, as illustrated in yellow in Figure 1 - Waikato Survey.

This dataset was uploaded by Woolpert Australia on 03 July 2023. This was transferred to WRC the same day. The Appendix files and Hydroflattening shapefiles were delivered the following day 04 July 2023.

1.1 Revision 1

The dataset was formally rejected by WRC and LINZ on 03 August 2023. There were some quality issues and also requests for implications associated with changes that may or may not be necessary.

Woolpert worked on repair of the dataset and resupplied this on 22 September 2023. The resupply and actions contained were tracked using AU411 WRC_Raised_Defect_Tracking_Block_CD_v1.xlsx, this was supported by LINZ_issues_block_CD_with_aam_comments_20230920.shp and WRC_lssues_with_aam_comments_20230920.shp.

2 LiDAR Data Processing and Handling

The LiDAR data processing method is described in the Project Method Statement, AU411-FOR-008-R5 Project Method Statement_WLASS. The following sections elaborate further but focus on adherence with compliance to the Linz PGF Specification (JAN 2020).

https://www.linz.govt.nz/system/files_force/media/doc/pgf_version_new_zealand_national_aerial_lidar_base_specification.pdf?download=1

QAQC steps for various workflow tasks have been tracked and recorded and included as an embedded document within Appendix 1.

2.1 The ASPRS LAS File format

LINZ PGF specification 6.1 requires that all point deliverables are required to be fully compliant with LAS Specification Version 1.4, using Point Data Record Format (PDRF) 6, 7, 8, 9 or 10 (referred to as LAS v1.4).

For this project, LAS 1.4 with PDRF 6 is to be delivered.

The LAS files created during the project during the Geopositioning phase and subsequent data cleaning and deliverable products are in ASPRS LAS 1.4 format, with PDRF 6. This was specified during the creation of the project in TerraScan, as shown in a representative image in the figure below:

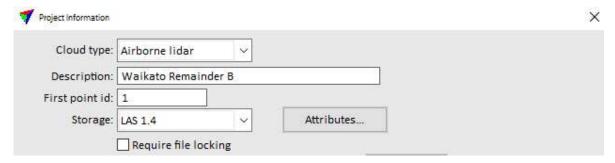


Figure 2: LAS 1.4 being specified during project - example

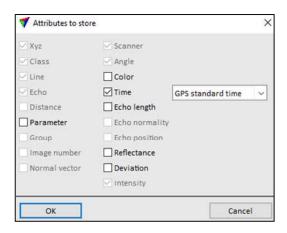


Figure 3: Project settings used in TerraScan project when importing points into the project.

The correct format of LAS is illustrated by use of LASTools, which shows the LAS files are in 1.4 format in the figure below.

Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools

To verify that the project deliverables are in the correct LAS file format/version with PDRF, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.2 Time stamp of navigational data

LINZ PGF specification 6.2 requires that Each Global Navigation Satellite System (GNSS) aircraft positional measurement must be time stamped using Adjusted Global Positioning System (GPS) Time, at a precision enough to allow unique timestamps for each LiDAR pulse.

For this project, LAS 1.4 with PDRF 6 has been delivered including, with Global Encoding bit set to 1.

An example of how adjusted GPS time is visualized and monitored is illustrated in Figure 5: LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right).

To verify GPS time is set to adjusted GPS time, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar technical manager reviewed this analysis to ensure that all deliverable LAS files are compliant.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A. Figure 5 below shows representative examples of LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right)

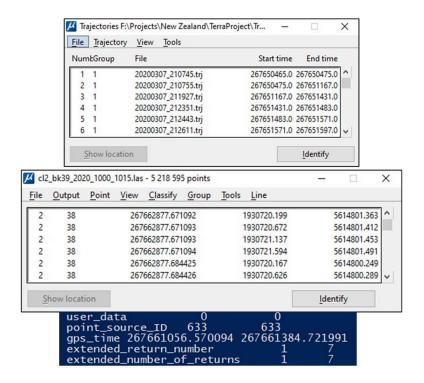


Figure 5: Representative examples of LAS point attributes

2.3 Datums and coordinate reference system

LINZ PGF specification 6.3 requires that the required datum for latitude, longitude, and ellipsoid heights is the New Zealand Geodetic Datum 2000. The required vertical datum for normal-orthometric heights is NZVD2016 (Reference 9). Projected data products are to be delivered in NZTM2000 projection (Reference 10) with NZVD2016 normal-orthometric heights.

The Survey Datums, Ground Control, Check Points and Lidar Geopositioning sections of the Project Methodology Statement describes in detail how the data is transformed and connected to the required project datum.

To verify that the correct datum information is recorded in the LAS 1.4 header, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files have the correct CRS applied in the header.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.4 Geometric Calibration

Following initial sensor data processing, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format.

Line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.

Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error. These calibration adjustments were performed using a combination of automated and manual corrections to the data to develop the geometrically calibrated data set to be utilized for all downstream processes.

2.5 Positional accuracy validation

LINZ PGF specification 6.4 details the positional accuracy verification methods. The Vendor is expected to apply best practice in assessing the project accuracy and achieving compliance with this specification. Before classifying and developing derivative products from the point cloud, the relative vertical, local vertical and horizontal accuracies of the point cloud must be verified. The Vendor must deliver a detailed report of the validation processes used.

Validation of the point cloud positional accuracies is the primary outcome of the Lidar Geopositioning workflow phase, using surveyed ground control & check points. The assessments methods and results of the positional accuracy validation is be reported in the LiDAR Geopositioning QA/QC Report.

2.6 Use of the LAS withheld flag

LINZ PGF specification 6.5 requires that outliers, noise points, geometrically unreliable points near the extreme edge of the swath, and other points the Vendor deems unusable must be identified using the Withheld Flag, as defined in the LAS Specification.

Points classified as low noise (coverage class 7) and high noise (coverage class 18) will have the LAS withheld flag set.

To verify that the withheld flag has been correctly set, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analyst to ensure that the Las withheld flag is correctly applied. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.7 Use of the LAS v1.4 Overlap Flag

LINZ PGF specification 6.6 requires identifying overage points is not required unless requested by the Contract Authority. However, if overage points are explicitly identified using LAS v1.4, they must be identified using the overlap flag.

Classification of the overlap points was done using TerraScan in Microstation. A macro step was created which allowed for points to be classified with the overlap bit by cutting the scan angle at zero degrees. The step used for the project dataset is illustrated in the figure below. This allowed for the overlap points to be withheld from DEM, DSM and intensity imagery generation. Figure 6 below shows Settings used when cutting overlap in Microstation. Note that the 'Action' is on "Set overlap bit.

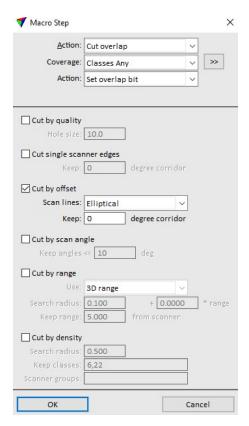


Figure 6: Settings used when cutting overlap in Microstation.

Verification of appropriate overlap flag application is performed using LP360 File Analyst. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.8 Point Classification

LINZ PGF specification 6.7 requires Lidar points are classified to the following coverage classes:

Code Description	
1	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7 Low noise	
9 Water	
17	Bridge deck
18	High noise

Table 1: Point Classifications

Point cloud classification is performed by automated classification algorithms developed by Woolpert's senior Lidar analysts and reviewed by the Lidar technical manager.

A first run automatic classification was carried out on the raw LiDAR points using TerraSolid's TerraScan software to classify the LiDAR points into ground hits and non-ground hits. This results in a greater than 80% correct classification. Some of the steps used within this macro can be found within the screenshot below (Figure 7), including 5 of the 8 ground classification steps used on this data set.

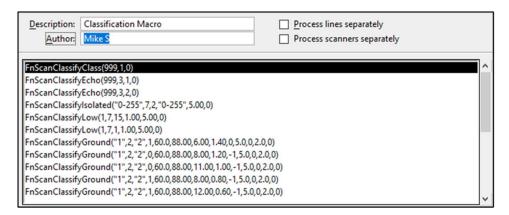


Figure 7: Automatic classification macro developed for the project area.

As documented by TerraSolid, the ground routine classifies ground points by creating a triangulated surface model iteratively. The routine is best suited for classifying ground in airborne laser data sets and in data sets where there is mainly natural terrain. For classifying ground in mobile data sets where the majority of ground is on hard surfaces, such as roads, use the Hard surface routine instead of the ground routine.

The routine is sensitive to low error points in the point cloud. Therefore, you should run one or more classification steps using the Low points routine before classifying ground. A more complex classification strategy is required for classifying ground in photogrammetric point clouds.

The ground routine starts by selecting local low points that are confident hits on the ground. The initial point selection is controlled with the Max building size parameter. If the maximum building size is, for example, set to 60.0 m, the routine assumes that any 60 by 60 m area has at least one point on the ground level and that the lowest point is on the ground level.

Then, the routine builds a surface model (TIN) from the initial ground points. The triangles in this initial model are mostly below the ground level and only the vertices are touching the ground. In the following iterations, the routine molds the model upwards by adding more and more points. Each added point makes the model following the true ground surface more closely.

The iteration parameters of the routine determine how close a point must be to a triangle plane for being accepted as ground point and added to the model. Iteration angle is the maximum angle between a point, its projection on the triangle plane and the closest triangle vertex. This is the main parameter controlling how many points are classified into the ground class. The smaller the Iteration angle, the less eager the routine is to follow variation in the ground level, such as small undulations in terrain or points on low vegetation. Use a smaller angle value (close to 4.0) in flat terrain and a bigger value (close to 10.0) in mountainous terrain.

Iteration distance makes sure that the iteration does not make big jumps upward if triangles are large.

This avoids ground points that are too high, for example within low vegetation or on low buildings.

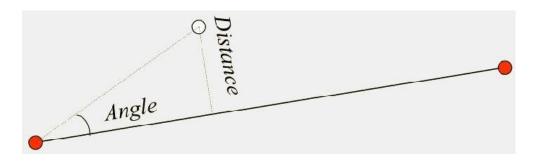


Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine.

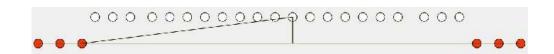


Figure 9: A smaller iteration distance value avoids classification of ground points on low objects.

The iteration angle can be reduced automatically if the triangles become small. This reduces the eagerness to classify more ground points inside small triangles and thus, avoids unnecessary point density of the ground model thus avoiding redundancy of inclusion of unnecessary ground points.

Related to this it is common to see default classified points within a classified ground point cloud surface. The iteration angle inside small triangles approaches zero if the longest triangle edge is shorter than a given Edge length value. Furthermore, the iteration can be stopped completely if triangle edges are shorter than a given limit.

After completion of the automated classification, a strenuous manual classification was carried out over the required area to edit the points thus minimizing gross classification errors that may have occurred in the automatic classification process.

Each block's data was checked in a systematic approach to reduce missing important features. Orthogonal views with background orthoimagery, and profile views are used to review the performance of the automatic classification results.

Tools such as 'Classify using brush', 'Classify above line' and 'Add Point to Ground' (all found within TerraScan) were used during manual classification, to achieve classification accuracy meeting project specifications. Before handover files were created, checks were done on the project's points by viewing statistics within TerraScan as illustrated in the figure below.


```
histogram of classification of points:
         294397 unclassified (1)
    20732991974 ground (2)
     2042342026 low vegetation (3)
     8740865354 medium vegetation (4)
    17401995113 high vegetation (5)
       39843945 building (6)
     5968284827 noise (7)
       40928904 water (9)
         529544 bridge deck (17)
       83836949 Reserved for ASPRS Definition (18)
+-> flagged as extended overlap: 24934341424
                134460 of those are unclassified (1)
 +--->
            9321907217 of those are ground (2)
 +--->
            943287418 of those are low vegetation (3)
            3787219096 of those are medium vegetation (4)
 +--->
          7455578739 of those are high vegetation (5)
 +--->
             19504001 of those are building (6)
          3371373805 of those are noise (7)
 +--->
             12462947 of those are water (9)
 +--->
                254229 of those are bridge deck (17)
 +--->
              22619512 of those are Reserved for ASPRS Definition (18)
 +--->
```

Figure 10: Statistics showing the classes - LAS points within the project area (Block C & D)

```
histogram of classification of points:
        21353196 unclassified (1)
     20730533894 ground (2)
      2033329433 low vegetation (3)
      8732425924 medium vegetation (4)
     17397914801 high vegetation (5)
        39843905 building (6)
      5968307779 noise (7)
        42110789 water (9)
           529728 bridge deck (17)
        85563977 Reserved for ASPRS Definition (18)
+-> flagged as keypoints: 7
                        1 of those are ground (2)
 +--->
                       1 of those are building (6)
  +--->
                       2 of those are noise (7)
                        2 of those are bridge deck (17)
 +--->
                         1 of those are Reserved for ASPRS Definition (18)
+-> flagged as withheld: 6053871756
 +---> 5968307779 of those are noise (7)
               85563977 of those are Reserved for ASPRS Definition (18)
 +--->
 +-> flagged as extended overlap: 24918510991
 +---> 14565640 of those are unclassified (1)
+---> 9315627270 of those are ground (2)
 +---> 936365383 of those are low vegetation (3)
+---> 3778651556 of those are medium vegetation (4)
+---> 7447792565 of those are high vegetation (5)
  +--->
               19481808 of those are building (6)
 +---> 3369750993 of those are noise (7)
+---> 12689369 of those are water (9)
+---> 254395 of those are bridge de
                 254395 of those are bridge deck (17)
              23332012 of those are Reserved for ASPRS Definition (18)
```

Figure 11: Statistics showing the classes - LAS points within the project area (Block C & D)(Rev1)

To keep track of the data cleaning process, a hatching method was used on the DGN within Microstation. It allows the cleaners to systematically mark each tile which has been fully checked and editing, making sure the whole data set has been initially covered. Examples of this process have been provided for previous blocks.

To verify that only the required coverage classes are present & populated, LP360 File Analyst performs exhaustive testing on the LAS data records, and outputs the analysis results to an excel spreadsheet. Lidar Analysts review this data to ensure that all deliverable LAS files are compliant with the specification coverage classes. Point cloud QAQC/editing is performed by trained Lidar Technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team.

2.8.1 Building Classification

The classification of building points has been undertaken by utilizing the TerraScan *buildings* routine. This routine classifies points on buildings which form a planar surface, several rules can be set to fine tune these results including the minimum building size/footprint, z tolerance of the point alignment along the roof line and use of echo information.

The use of echo information can further support the classification as points on roofs mostly belong to the echo type 'only echo' whereas vegetation usually contains a lot of 'first of many' and 'intermediate' echoes.

Additionally, the LINZ building footprint was also integrated into the building classification workflow to further constrain the classification and improve the overall output.

2.8.2 Vegetation & Low-Level Noise Classification:

In agreeance with all parties, Woolpert have classified the lower 0 - 0.3m of the low vegetation class to class 7 (low noise).

This was done to effectively remove the lower noise stratification points and unused ground points from class 3 over areas which do not represent vegetation e.g. man-made surfaces and structures (sealed roads).

The remaining vegetation points were classified using TerraScan's classify *By height from ground* which uses the ground surface to calculate the distance of each point above and below ground. All identified vegetation points were classified to the nominated classes using the height ranges specified in the *New Zealand Nation Aerial LiDAR Base Specification* (See below).

Table 4 Minimum LAS point cloud classification scheme

Code	Description	
1	Processed, but unclassified	
2	Ground	
3	Low vegetation <2m	
4	Medium vegetation	
5	High vegetation >8m	
6	Building	
7	Low noise	
9	Water	
18	High noise	

2.9 Classification Accuracy

LINZ PGF specification 6.8 requires that non-withheld points must be classified to a classification accuracy level of 2%. No non-withheld points are to remain as class 0.

Realtime Digital Elevation models are generated using Terrascan/Terramodeler are used to verify ground classified points and lidar technicians review the DEMs to find anomalies such as spikes or pits that imply misclassified points and make corrections.

During DEM review profiles are cut across tiles where potential issues are detected. The Lidar Technician scans the profile view to identify if an issue exists and modifies the classification of points as required. 10% of the data tiles are subject to review by a senior analysis or project manager. After data cleaning was completed, a comprehensive DEM review is performed to visualize the data over large areas for the purpose of identifying anomalies or areas for further investigation. Any potential errors were identified as shown in the red polygons below and later addressed via additional manual editing.

The indicated areas were revisited and manually classified as appropriate. Below is an example of an issue identified for further investigation. Multiple revisions of the point cloud were performed to address issues common to the terrain and vegetation cover found within the project AOI. Rugged terrain and heavy vegetation across areas within the AOI commonly created unavoidable laser penetration difficulties as well as areas within the DEM that that appear to have a rough surface.

Editing example. Rocky promontory required editing.

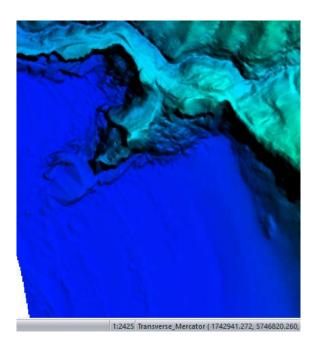


Figure 12: Unedited, autoclassified Tile BF31_2723

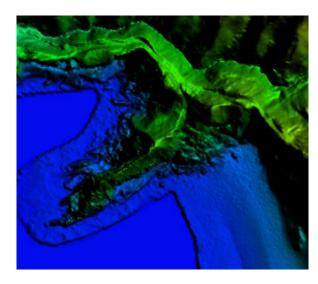


Figure 13: Post-edit Tile BF31_2723



Figure 14: LAS pointcloud profile view from previous – required editing

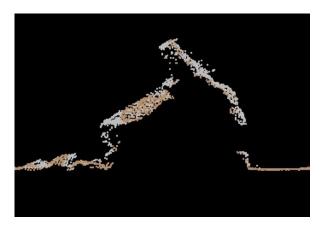


Figure 15: LAS point cloud profile view from previous – post editing - introduced ground points

The figures below illustrate such and occurrence. Issues were identified concerning what appeared to be excess noise in areas of gullies. After investigating it was determined the gully areas in question are densely vegetated and located within steep terrain. The sparseness of the consistent ground penetration and steepness of terrain led to points being classified as noise during ground filtering. Additional filtering steps were taken to reclassify points into ground from noise class. The additional ground points added from noise provide improvement to the DEM quality as the points classified from noise to ground were sparsely distributed due to dense vegetation.

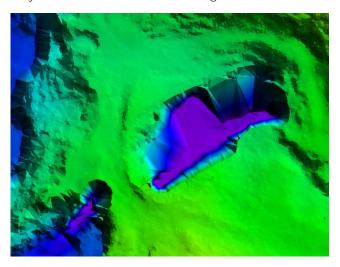


Figure 16: Example overhead image of DEM over cliffs. Tile BF31_2623

Figure 17: Example overhead image of Pointcloud over cliffs. Tile BF31_2623

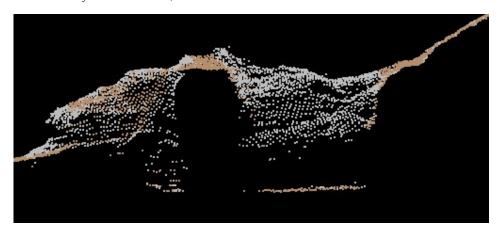


Figure 18: LAS point cloud profile view from previous figure

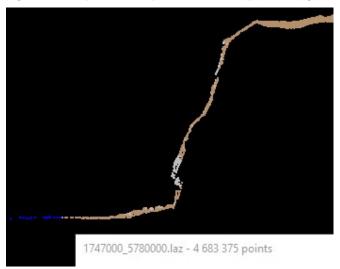


Figure 19: Example (A) of terrain where DEM DSM differences to be expected

Figure 20: Example (B) of terrain where DEM DSM differences to be expected

2.10 Classification Consistency

LINZ PGF specification 6.9 requires that point classification must be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, flights, or other unnatural divisions are grounds for rejection of the entire deliverable.

As with classification accuracy there is no analytical means of measuring compliance. As such the classification consistency is reviewed via visual means. To mitigate against inconsistent classification, the following controls were employed:

- Systematic geometric issues that may lead to swath-based inconsistencies are identified by the Lidar Geopositioning process, as documented in the Project Method Statement, specifically in the intraswath, interswath & absolute accuracy analysis steps. Data swaths that do not pass this stage do not progress to later classification steps
- The automated classification process is a series of classification algorithm tools applied in a macro. The macro is designed and optimised to yield high classification accuracy across the variety of land cover types within the project area. Applying the one, optimised and flexible classification macro delivers consistent classification across the entire project area
- To avoid tile edge artefacts, all tile-based workflow steps utilise a buffer of lidar points from surrounding tiles. This allows for a better classification of both ground and vegetation points.
- Lidar Technicians are trained to deliver consistent results and use the same visualisation methods/aids. They are supervised by the Lidar Phase Manager and the 10% of classified point cloud tiles are peer reviewed by a dedicated QAQC team.
- DEM tiles are run after classification has been completed to review possible errors in Ground classification.
- Bridges are checked against a bridge shapefile (supplied by LINZ) to correctly identify and classify the bridges.

2.11 Classification Consistency – Bridges

As mentioned above the dataset was compared against the LINZ bridge shapefile. There was discussion between Ocean Infinity, WRC, Woolpert and AAM around the differentiation of bridges versus culverts. The subject is somewhat open to interpretation. It is noted that the classification of Bridges (or not) has implications for Water flow modelling and hydroflattening. The following images are a visual representation of some of the aspects discussed.

The following shows examples that were misaligned with the LINZ bridge Shapefile

Culvert - listed as bridge in LINZ shapefile

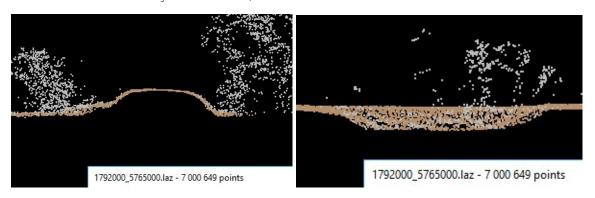


Figure 21: Perpendicular (L) & Parallel (R)

Bridge - not listed in LINZ shapefile

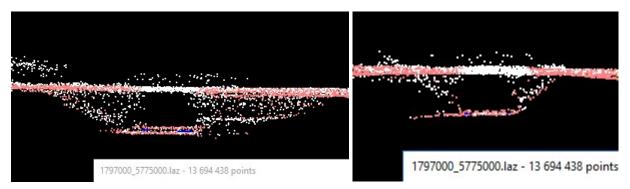


Figure 22: Bridge but not shown in LINZ Shapefile

Bridge - listed in LINZ shapefile but does NOT exist

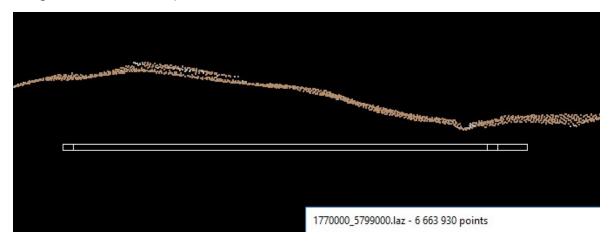


Figure 23: Non-existent Bridge

3 LiDAR Hydro-Flattening QAQC

LINZ PGF specification 7.0 details at length the requirements for Hydro flattening of Digital Elevation Models.

The methods for Hydro Break line Digitization, Hydro-Flattening and Hydro-Flattening quality control are described in the Lidar Processing and Data presentation section of the Project Method Statement.

Hydro-flattening generation methods will be detailed in the Processing Report.

The pertinent parts of the specification and the means of identifying the required hydro-flattening features are as follows:

- · Permanent islands 5,000 m2 or larger must be delineated
- · Islands of 5000m2 will be included as hole features within the parent hydro-flattening polygon.
- · Inland ponds and lakes water bodies of 10,000m2 or greater at the time of collection must be flattened
- Lake polygon features will be precisely digitized using lidar point cloud with supporting background intensity imagery and supported by open-source imagery as reference.
- Inland streams and rivers of >= 30m nominal width (width of water flow in a single channel at time of capture) must be flattened
- Streams/rivers that fulfil the minimum distance requirement will be identified by visual inspection of the point cloud.

Hydro-flattening was performed upon the project dataset, and hydro break lines were used during the creation of digital elevation models. Hydro Flattening digitizing are performed by Lidar technicians, under the supervision of the Lidar technical manager. The hydrological features were digitised in Microstation using a combination of manual and automatic digitizing ('Display boundary' function in TerraModeler). Stream islands that were 5 000m² or larger in size.

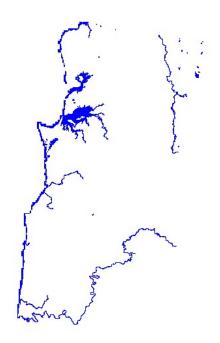


Figure 24: Hydroflattening Polygons for Blocks C&D

When hydro-flattening a stream, the following process is used:

Identify a possible stream feature. Measure the width of the stream from bank to bank, and if greater than 30m wide, begin digitizing the feature. If the stream varies in width, the discretion of the geospatial specialist is applied.

Once the stream outline was completed, and that it was confirmed to be a polygon, a shapefile was imported into ArcMap and a centreline was created using the 'Create Centreline ´ script, which generates a centreline based on the stream polygon.

The centrelines were then checked for errors which may have occurred during its creation. It was then exported to Microstation where the centreline was then dropped to a surface (created by surrounding ground points). The tool 'Force Downstream Flow' was used to enforce correct elevations for the centreline, ensuring that each point's height was equal to or less than that of the point before it.

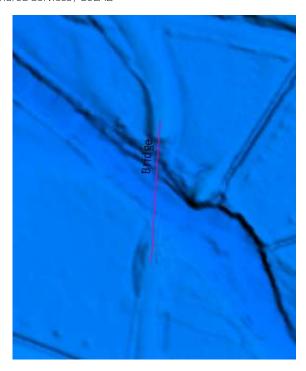


Figure 25: Tile DEM_BF31_2021_1000_3732 with LINZ bridge centreline

Figure 26: Tile DEM_BF31_2021_1000_3732 classified

Laser with the Ground and Bridge classes (red) visible. Shows that the bridge has been classified.

The correct order of point heights was then checked by exporting the co-ordinates out as a text file which would be used for the creation of a new centreline shapefile. Figure 18 shows the example excerpt of river points used to create the centreline after downstream flow was enforced. Figure 19 shows the example highlighted script was used to generate the centreline for the stream within the project's survey.

```
1 1929744.8358 5615128.2638 7.7096
 2 1929746.0769 5615130.8498 7.6863
 3 1929746.4280 5615131.5996 7.6796
 4 1929746.5107 5615131.7727 7.678
 5 1929746.7841 5615132.3591 7.6728
 6 1929748.0794 5615135.0799 7.6483
 7 1929748.5703 5615136.1455 7.6388
8 1929749.4246 5615138.0643 7.622
9 1929749.8587 5615139.0742 7.6132
10 1929750.6288 5615140.9327 7.5973
11 1929751.0393 5615141.7916 7.5896
12 1929751.5292 5615142.7809 7.5805
13 1929754.3861 5615148.3485 7.529
14 1929754.7868 5615149.1041 7.5219
15 1929754.7991 5615149.1267 7.5217
16 1929757.3347 5615152.1834 7.4808
17 1929757.8445 5615152.7752 7.4594
```

Figure 27: Excerpt of river points used to create the centreline

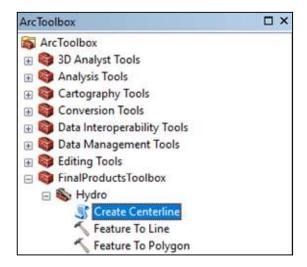
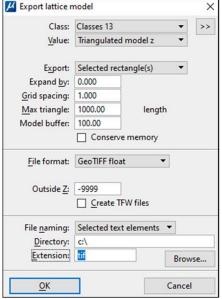



Figure 28: Centreline for the stream within the project's survey

After the new centreline had been created, it was conflated with the stream's shape using LP360 within ArcMap. This matched up the elevation of the stream's outline with that of the centreline. The new stream shape was attached to a DGN and opened in Microstation, exported as co-ordinates, and then read into the project. These points along with ground points were used to output lattice models

which show the results of the hydro-flattening. Stream-island break line points were also included to ensure the correct modelling of the stream and its features.

The following settings were used for lattice model creation:

Figure 29: Settings used to export lattice models.

The product undergoes QC by the Lidar Phase Manager and is reviewed for any omissions or blunders. The following project specification are checked against:

- All Hydrologic break lines developed for use in hydro-flattening are in non-tiled ESRI feature class in polylineZ or polygonZ shape file format.
- Water bodies (ponds, lakes, and reservoirs), wide streams and rivers ("double-line"), and other non-tidal water bodies are to be hydro-flattened within the DEM. The resulting pond and lake surfaces will be flat and double line rivers will be flat level bank-to-bank and be gradient.
- It is noted when hydro-flattening streams, significant breaks in water elevation as well as varying degrees of bends in the stream direction will create a triangulated appearance in the DEM. These affects will be minimized to an appropriate extent.
- The entire water surface edge must be at or below the immediately surrounding terrain.
- · Hydro-flattening break line feature class use the NZTM2000 projection and NZVD0216 height datum
- · Hydro-flattening has applied to all streams that are nominally wider than 30 metres wide, and to all non-tidal boundary waters bordering the project area regardless of size.
- · Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are nominally larger than 10000m2 in area
- Stream channels should break at road crossings (culvert locations). These road fills should not be removed from the DEM.

• Streams and rivers should NOT break at elevated bridges. Bridges are removed from the DEM. When the identification of a feature such as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

A peer review of the Hydro flattening break line data products as well as the hydro-flattened DEM is performed on 10% of the dataset by an independent analyst or project manager. To distribute and track the progress amongst the editing & QAQC team, an ArcSDE tracker (multiuser database) is employed.

During the QA/QC, it was identified there will be instances of vegetation classifications contained within waterbody polygons. After investigation it was determined much of this occurs from overhanging vegetation from the outside of the hydro features. Occasionally there are instances of vegetation within waterways which is related to islands falling below the required threshold for collection. Additional processing steps were taken to limit the amount of vegetation that exists within the waterway while retaining the overhanging vegetation. This processing step primarily involved classification based on XYZ proximity to existing digitized hydro/island lines. After this process was performed some vegetation classified lidar points will still be present in the waterway.

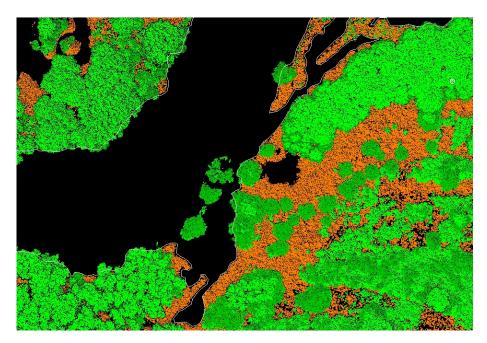


Figure 30: Pre-filter, overhead view of ground and veg points with hydro lines

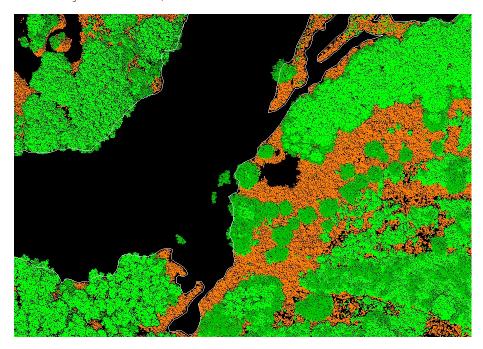


Figure 31: Post-filter, overhead view of ground and veg points with hydro lines

Additionally, during QC data review, it was discovered rocks and boulders within rivers are occasionally classified as vegetation. This is typically observed in high relief areas where water flows down steep terrain, i.e., rapids/white-water. Rivers tend to narrow in these areas and will not likely be caught during the aforementioned processing step based on proximity to linework. These points will continue to be classified as vegetation.

Figure 32: Point cloud - boulder filled stream

Figure 33: Imagery – boulder filled stream

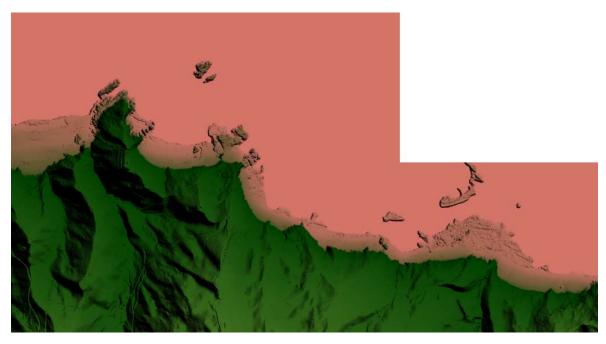


Figure 34: Example of hydroflattened Coastal DEMs: DEM_BE32_2021_1000_3137

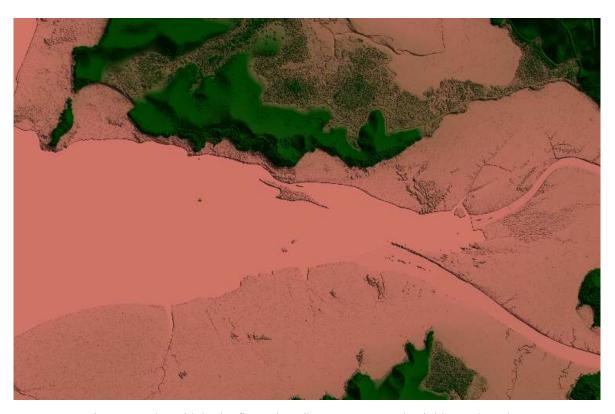


Figure 35: Inlet, with hydro-flattening Tile BE32_2620 and neighbours (DSM)

4 LiDAR Deliverables QAQC

Section 8 of the LINZ PGF specification details the project reporting, metadata requirements & deliverable requirements.

4.1 Reporting and metadata

4.1.1 Project reports

The following details the reports being delivered for this section of the project:

- Collection Report detailing mission planning and flight logs, including dates of collection
- Details of quality control tests, and conformance against Linz specifications
 - o Refer to AU411_WLASS-Collection_Report-10052021.pdf
- Survey Report detailing the collection of all ground control, including the following:
 - o Control points used to calibrate and process the LiDAR and derivative data
 - o Check sites used to validate the LiDAR point data or any derivative product
 - o Refer to AU411-R1-Waikato LiDAR Ground Control Report of Survey.pdf
- Geopositioning QA/QC Report, detailing analysis, accuracy assessment and validation of the following:
 - o Point cloud data, including a summary of relative (smooth surface repeatability and overlap consistency) and non-vegetated vertical and horizontal local accuracy.
 - o QA/QC analysis of the vertical and horizontal local accuracy assessment will include a table of the product data compared to each check site.
 - o Refer to AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
 - o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022.

Processing Report (This Document) detailing:

- Classification and product generation procedures including methodology used for break line collection, hydro-flattening break line collection, hydro-flattening processing, DEM & DSM creation, and deliverable generation.
- Details of quality control tests, and conformance against each of the relevant Linz specifications including:
 - o Workflow QAQC checklist
 - o Pre-Delivery QAQC worksheet as an embedded document

4.1.2 Extents

LINZ PGF specification 8.1.3 requires that a geo-referenced, digital spatial representation of the detailed extents of each delivered dataset.

The data for Block C was captured using Leica TerrainMapper sensor 513 and 559, flown on days 05th, 06th, 29th, 31st of January, 03rd, 13th, 17th, 20th, February and 13th 17th, 21st, 23rd of March 2021.

The data for Block D was captured using Leica TerrainMapper sensor 513 and 559, flown on days 05th, 27th, 31st of January, 03rd, 13th, 17th February and 13th 16th, 21st, 23rd and 24th of March 2021.

The extent of Block C & D can be seen in Figure 34. The flight lines relating to the area can be seen in Figure 37.

This extent was created by creating a surface in Microstation based on all points collected during the survey flight. The tool "Display boundary" was then used to generate the extent, which was then exported into a shapefile and assigned with the necessary horizontal and vertical co-ordinate system.

Another new Shapefile *Waikato_Block-Delivery_Final_NZTM_20230222* was provided to rectify a rounding error on tiles. The AOI changed minimally and is reflected in figure 41.

Figure 36: Extent of deliverable data for Block C & D

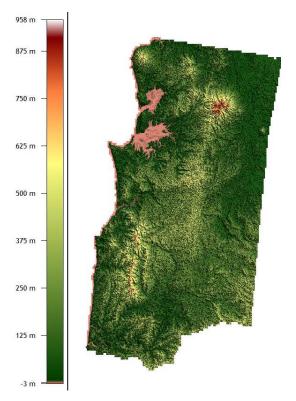


Figure 37: Extent of deliverable data for Block C& D - DEM

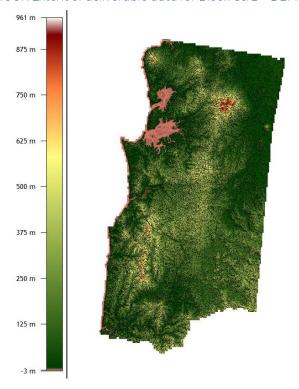


Figure 38: Extent of deliverable data for Block C & D - DSM

4.1.3 Flight Lines

LINZ PGF specification 8.1.3 requires that Flightline shapefiles as Esri polylines are required. Each flightline must be assigned a unique File Source ID that is equal to the Point Source ID assigned to each point collected during that flightline.

The Sensor trajectory was imported into Terrascan and edited to split the trajectory into discrete flight lines. Each flight line was then assigned discrete flight line ID, in accordance with the project flight plan. Each Lidar point was assigned a flight line ID by matching against its trajectory, using the Adjusted GPS time stored in both the trajectory and lidar point. The trajectories were exported to ESRI shape file format with a File Source ID attribute populated with the trajectory flight line ID value. This process will ensure that specification 8.1.3 is adhered to.

The image below shows the extend of the area covered.

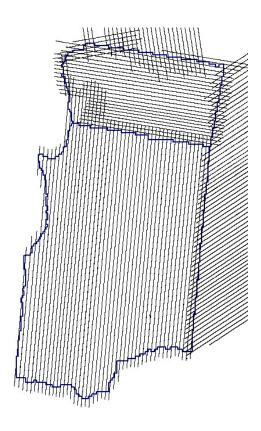


Figure 39: Flight lines for 4ppm2 data coverage over Block C & D

4.2 Classified point cloud tiles

LINZ PGF specification 8.2 details the requirement for the point cloud deliverables, and how adherence to the specifications is measured is listed below. Point cloud deliverable generation methods will be detailed in the Processing Report. Deliverable QC checks are performed both by Lidar technicians, under the supervision of the Lidar Phase Manager and followed by a review of 10% of the data by an independent analyst or project manager:

- (a) Data from all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified, by tiles. Project swaths exclude calibration swaths, crossties, and other swaths not used in product generation.
- (b) Data is provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum.
- (c) Fully compliant LAS v1.4, Point Data Record Format (PDRF) 6-10. All files must have the same PDRF.
- (d) Each point includes a Point Source ID linking it to the flight line File Source ID.
- (e) Correct and properly formatted georeferenced information (EPSG: 2193 + 7839) as Open Geospatial Consortium (OGC) Well Known Text (WKT) included in all LAS file headers.
- (f) File Source ID set to 0 for tiled LAS files.
- (g) GPS times recorded as Adjusted GPS Time at a precision sufficient to allow unique timestamps for each pulse.
- (h) Points are provided in the order in which they were collected.
- (i) Height values reported to three decimal places (nearest mm). (While not significant for accuracy, this supports numerical processing and reduces the number of identical values caused by rounding.)
- (j) Intensity values, normalised to 16-bit by multiplying the value by 65,536/ (intensity range of the sensor) per LAS v1.4. This will result in an intensity range of 0-65,536.
- (k) Classification as required by the Contract Authority (Table 4 at a minimum).
- (I) Tiled delivery, without overlap, per the project tiling scheme in Section 9 Tiles.
- (m) Files named per Section 9 Tiles.

The point cloud tiles created for handover underwent multiple alterations before finalization. After the LAS tiles were created in Microstation, LASTools was used to assign the correct global encoding (17), system identifier and file source ID (0). WKT was also added to the LAS metadata, as illustrated in the figure below. The correct height values were also confirmed in LASTools ensuring that three decimal places were being used. The tiles were also named according to the required naming convention which is discussed in Section 6.

Figure 40: WKT of a LAS file shown by LASTools.

Intensity valued scaled from a range of 100 - 10000 output by HxMap, to full 16-bit dynamic range. Translation value = -100 Scale value = 6.5535

Once the point cloud was classified and was inspected manually in Microstation, the LAS files were loaded into LP360. The global coding, file source ID, WKT, VLRs, file format and LAS version were compared against to the LINZ specifications and after passing QA/QC, the files were renamed in accordance with the LINZ specifications. A condensed version of the LP360's results can be found in the table below. A complete listing of the output from LP360 is included as an embedded document in Appendix A.

File	Version	PDRF	QVR File	File Signature	File Source ID
CL2_BD31_2021_1000_3850.las	1.4	6	No	LASF	0
CL2_BD31_2021_1000_3949.las	1.4	6	No	LASF	0
CL2_BD31_2021_1000_3950.las	1.4	6	No	LASF	0
CL2_BD31_2021_1000_4049.las	1.4	6	No	LASF	0
CL2_BD31_2021_1000_4050.las	1.4	6	No	LASF	0
CL2_BD31_2021_1000_4148.las	1.4	6	No	LASF	0
CL2_BD31_2021_1000_4149.las	1.4	6	No	LASF	0
CL2_BD31_2021_1000_4150.las	1.4	6	No	LASF	0
CL2_BD31_2021_1000_4247.las	1.4	6	No	LASF	0
			1		

Table 2: Representative output from LP360 illustrating LAS file specification compliance- Block C&D

File	Version	PDRF	QVR File	File Signature	File Source ID	CRS is WKT	Total Points by Return
CL2_BE31_2021_1000_4449.las	1.4	6	No	LASF	0	TRUE	3,238,856
CL2_BE31_2021_1000_4450.las	1.4	6	No	LASF	0	TRUE	1,822,693
CL2_BE31_2021_1000_4537.las	1.4	6	No	LASF	0	TRUE	106,166
CL2_BE31_2021_1000_4538.las	1.4	6	No	LASF	0	TRUE	1,700,250
CL2_BE31_2021_1000_4539.las	1.4	6	No	LASF	0	TRUE	2,825,850
CL2_BE31_2021_1000_4540.las	1.4	6	No	LASF	0	TRUE	2,184,389
CL2_BE31_2021_1000_4541.las	1.4	6	No	LASF	0	TRUE	3,522,348
CL2_BE31_2021_1000_4542.las	1.4	6	No	LASF	0	TRUE	3,617,463
CL2_BE31_2021_1000_4543.las	1.4	6	No	LASF	0	TRUE	2,505,719
CL2_BE31_2021_1000_4544.las	1.4	6	No	LASF	0	TRUE	4,065,516
CL2_BE31_2021_1000_4545.las	1.4	6	No	LASF	0	TRUE	1,955,369

Table 3: LP360 illustrating LAS file specification compliance- Block C&D (Rev1)

Additionally, a pre-delivery script which invokes LASTools was run on all tiles. The script output was imported into a custom Excel Worksheet, which checked specification compliance. For a complete listing of analysis refer to Section 6.1 of this document.

4.3 Flevation models

LINZ PGF specification 8.3 details requirements for raster surface model deliverables. The specification and how adherence to the specifications is measured is listed below. Deliverable QC checks are performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a review of 10% of the data by an independent analysist or project manager:

- (a) Grid spacing: 1m cell size.
- (b) Generated to the limits of the project area
- (c) Raster format: Geotiff (.tif)
- (d) Geo-reference information (EPSG 2193) in each raster file.
- (e) Tiled delivery without overlap.
- (f) NOT clipped using polylines for land-water boundaries from national databases (for example coastlines, river or lake boundaries) as these can be inaccurate and subject to continual geomorphic change.
- (g) Tiles with no edge artefacts or mismatch. A quilted appearance in the overall surface can be grounds for rejection of the entire deliverable whether the rejection is caused by differences in processing quality or character among tiles, swaths, flights, or other unnatural divisions.
- (h) Void areas (for example, areas outside the project area but within the project tiling scheme such as offshore water) coded using "NODATA" value equal to -9999. This value must be identified in the appropriate location within the raster file header.
- (i) Constrained with any additional break lines required by the Contract Authority, such as stopbanks, streams, and narrower rivers.
- (j) Provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum. Additional vertical datums may be specified by the Contract Authority.

4.3.1 Bare-Earth Digital Elevation Models (DEM)

LINZ PGF specification 8.3.1 details additional requirements for Digital Elevation Models. The Bare-Earth DEM is the bare earth that has been classified and edited to remove vegetation and man-made structures within the bounds of the classification accuracy requirements. It must also include or conform to the following:

- (a) Based on Classification level 2 or better ground return points.
- (b) Hydro-flattening as outlined in Section 7 Hydro-Flattening.
- (c) Bridges removed from the surface, while culverts are treated as ground
- (d) Method for removal of buildings, structures or other ground cover/vegetation and interpolation techniques documented.

The Digital Elevation Models were created using a combined model based on both ground surface points and break line points. These break line points were created during the hydro-flattening process mentioned in **Section 4**. By using these classes, a true representation of the ground points can be achieved while still maintaining a smooth water surface which gradually follows the terrain.

To generate DEMs, LAS format data files are loaded into TerraScan, only loading in class 2 points and breaklines. Additional data is referenced to avoid tile edge artefacts. Following import, TerraScan-Export Lattice Model command is used to create a grid file with uniform distances between points from one or more selected point classes. For each grid point, the lattice model file stores XY coordinates and elevation. Within the Export Lattice Models command we utilize "Triangulated model Z" to export the DEM tiffs. This triangulated model z derives an elevation value that is calculated from a TIN model of the lidar points using ground and breakline classifications.

The elevation grid is generated as a TerraScan Lattice model using the following settings:

- o Grid Method = TIN Model (Triangulated model z)
- o Grid Spacing = 1 meter

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

The tiles were loaded into LP360 to check the metadata of the images during both production and QA/QC of the deliverables. A Representative version of LP360's findings is found in the table below. A complete listing of the LP360 results is included as an embedded document in Appendix 1.

File	Format	Big TIFF	NoData Value	Rows	Columns	BPB	Bands	Data Type	Band Types).	Pixel Size
DEM_BE31_2021_1000_0150.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2450.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2550.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2650.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2748.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2749.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2750.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2848.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2849.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2850.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000
DEM_BE31_2021_1000_2947.tif	GTiff	False	-9999	720	480	32	1	FLOAT	GrayIndex	0	1.000

Table 4: Condensed output from LP360 illustrating DEM file specification compliance - Block C & D

File	Format	Big TIFF	NoData Value	Ro ws	Colu mns	BPB	Bands	Data Type	Band Types	Pixel Size
BD32_1000_3617.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3618.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3619.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3620.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3621.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3622.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3623.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3624.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3625.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3626.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3627.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3628.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
BD32_1000_3629.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1

Table 5: LP360 illustrating DEM file specification compliance – Block C & D (Rev1)

Figure 41: DEM Example Tile River Valley - DEM_BF31_2021_1000_0650

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

4.3.2 Digital Surface Models (DSM)

LINZ PGF specification 8.3.2 details additional requirements for Digital Surface Models. The DSM is the heights of the top of the highest feature at each gridpoint, including ground, vegetation, and manmade structures. The DSM is based on first return points after removal of noise.

LAS format data files are loaded into Terrascan only loading in First, First-of-many and Single returns. Additional data is loaded to avoid tile edge artefacts. Only coverage classed 1 to 6 & 17 points will be used in generation of Digital Surface Models. The elevation grid is generated as a TerraScan Lattice Model using the following settings:

- o Grid Method = Binning (Maximum Value DSM)
- o Grid Spacing = 1 metre

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

To meet the request to produce a DSM representative of the heights of the top of the highest feature at each grid point while incorporating hydro features, the hydro features used to create the DEM deliverables were included to produce a hydro flattened DSM.

Hydro-flattened DEM tiles are overlaid against the DSM tiles to identify and fill gaps in the data (such as the river), and then the tiles were exported in Geotiff format including settings for the datums and null data specifications, using the tile grid to clip & name the data files. The DSM deliverables undergo a visual spot check using Globalmapper.

In areas where valid data gaps (e.g. waterbodies) do not meet the LINZ specification for hydroflattening the surface model will triangulate across these voids to the nearest point per pixel (highest for DSM & lowest for DEM). No intervention is made to flatten or constrain these areas.

Digital surface models are created by combining points with only a single return, and points that have the first return of many (returns) and are then used to generate the DSM model. Figure 28 is an excerpt of one of the DSM tiles created for the project area.

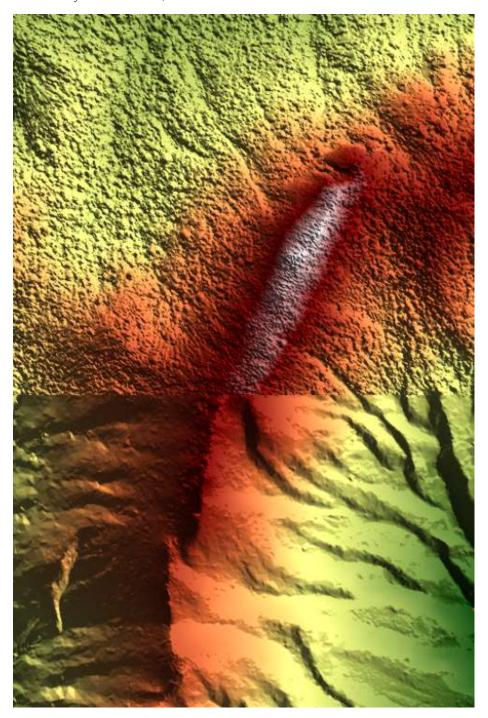


Figure 42: Difference between DSM and DEM differences in height along ridgeline- Tile BF31_3549.

The tiles created are in GeoTiff floating 32-bit format and have been adjusted to display a NoData value of -9999 (Figure 29). The composite DSM was produced in 32-bit Geotiff format as requested and both the tiles and the composite had the correct horizontal and vertical co-ordinate systems assigned to the metadata in ArcMap.

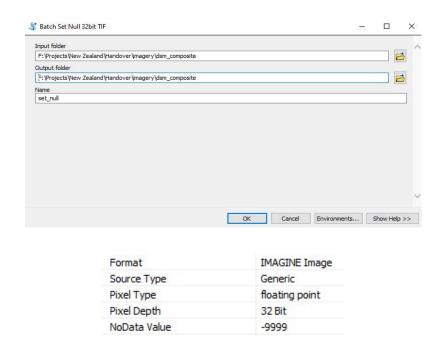


Figure 44: Properties of the composite DSM file showing its format and NoData value

After these files were amended, they were loaded into LP360 to check the necessary metadata of the imagery. The results from LP360 can be found in the table below. A complete listing of the LP360 results are included as an embedded document in Appendix 1.

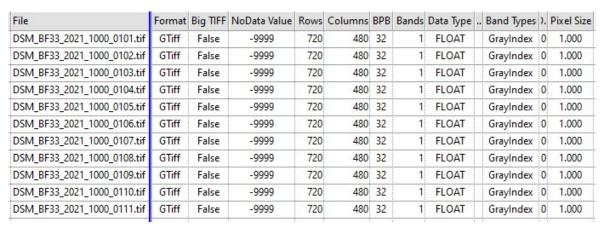


Table 6: Condensed output from LP360 illustrating DSM file specification compliance – Block C & D

File	Form at	Big TIFF	NoDa ta Value	Rows	Columns	BP B	Bands	Data Type	Band Types	Pixel Size
DSM_BD32_2021_1000_4646.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
DSM_BD32_2021_1000_4647.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
DSM_BD32_2021_1000_4648.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
DSM_BD32_2021_1000_4649.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
DSM_BD32_2021_1000_4650.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
DSM_BD32_2021_1000_4701.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
DSM_BD32_2021_1000_4702.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
DSM_BD32_2021_1000_4703.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
DSM_BD32_2021_1000_4704.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1
DSM_BD32_2021_1000_4705.tif	GTiff	FALSE	-9999	720	480	32	1	FLOAT	GrayIndex	1

Table 7: LP360 illustrating DSM file specification compliance – Block C & D (Rev1)

4.4 Break lines

LINZ PGF specification 8.4 details requirements for hydro-flattening break lines. Delivery of break lines representing all hydro-flattened features in a project is required.

Additional break lines may also be required by the Contract Authority. These are to be delivered as ESRI Shape files (.shp) using the NZTM2000 projection.

Refer to section 7.0 of this document. The workflow methods will be documented in the project Processing Report. The digitized hydro features were included in the handover data set, under the Vector deliverable section. They are in shapefile (.shp) format and are in the NZTM2000 projection.

Stream and stream-island, lake and lake island break lines were delivered, with ocean features falling under the "Lake" feature category due to its uniform height. In figure 31 the geometry type is set to a polygon shape and has vertical and horizontal co-ordinate sets as well as Z values.

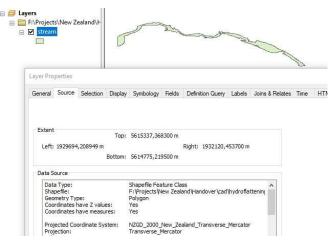


Figure 45: Stream break line properties in ArcMap.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

4.5 GNSS data

GNSS data is not a required deliverable for this project.

4.6 Backed up project source data

LINZ PGF specification 8.6 details the requirements for archival and storage of the project data. Raw project source data, such as native format LiDAR files and point cloud swaths, are NOT required for delivery; however, a copy has been provided to CoLAB. It is acknowledged that the Vendor must hold a copy of all relevant raw project data, for a minimum of five years beyond the final delivery of the project deliverables. The vendor must provide this data, with unrestricted copyright, to the Contract Authority on request. The vendor may charge a reasonable access and distribution charge in such instances.

Woolpert and Ocean Infinity will archive all raw & processed data collected for 5 years following project completion.

4.7 Contours

Contours with an interval of 0.5m will be generated for all project area.

Note Contours will be generated at Project conclusion to ensure there are no line breaks between blocks.

Contours will be generated from the DEM. Contour methodology is undergoing internal discussion and will be agreed with all parties prior to their generation.

A sample has recently been supplied to WRC for their perusal and comment of what the contours are envisaged to look like.

5 LiDAR QA Tiles

LINZ PGF specification 9.1 & 9.2 detail the requirements for project tiles geometry & naming convention.

- (a) NZTopo50 subtitles based on NZTM2000 coordinates. The 1-m gridded raster products and point clouds must be delivered at 1:1000 nominal scale (2500 720m high x 480m wide subtiles per full NZTopo50 sheet).
- (b) The origin of the raster tiles must be placed on a whole metre coordinate value of the southwest corner of each tile (for example, 5429500 mN_17490300mE).
- (c) The tiled deliverables must edge-match seamlessly and without gaps.
- (d) The tiled deliverables must conform to the project tiling scheme without overlap.
- (e) File naming must conform with the naming convention described in section 9.2.

A Tile Index must be provided in ESRI shape file format. The file name must be included as an attribute in the Tile Index file.

The Client supplied tiling grid shape file will be used as the tile clipping polygon when exporting the deliverable products. The shape file will have an attribute added for each deliverable type as specified in section 9.2. This attribute will contain the required tile name for each deliverable. This shape file will be used as the means of extracting all project data deliverables, so that the geometric aspects for specification 9.1, and the naming requirements of section 9.2 are fulfilled.

Deliverable QC checks have been performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team:

5.1 LAS Tiles QAQC - LASQC

Prior to delivery, Lidar data tiles have undergone a final analysis, using a custom developed Pre-Delivery QAQC tool called LASQC. This tool uses LASTools 'Lasinfo' in a batchscript called LASExtract, which collates information regarding each tile into an Excel worksheet. The tool analysis and reports compliance on the following items:

- o File naming accuracy
- o Check to ensure lidar points fall inside the extents bounded by the NZTOPO50/1:1000 tile name
- o Adjusted GPS time falling with correct extents for the survey
- o LAS file format, version, file source ID, point data record format & scale factor
- o Point counts by return, illustrating presence of multiple returns
- o Average point density for the tile, excluding overlap
- o Presence of the overlap (not applicable to all tiles) & withheld flags
- o Minimum, maximum & average intensity values.
- o Height above ground for building, low, medium & high vegetation classes
- Note it should be noted that this analysis is not accurate in steep terrain due to the different methods used for triangulation of between Terrascan & LASTools.

- o Check for presence of correct ESPG Codes for geodetic & vertical datums, and map projection
- o Raster Overviews for Point Source ID, Intensity, Point Density and Overlap Analysis

These analysis results will be included as an attachment referenced in Appendix A.

5.2 File naming

Project deliverables have been named in accordance with the project specification illustrated in Table 5.

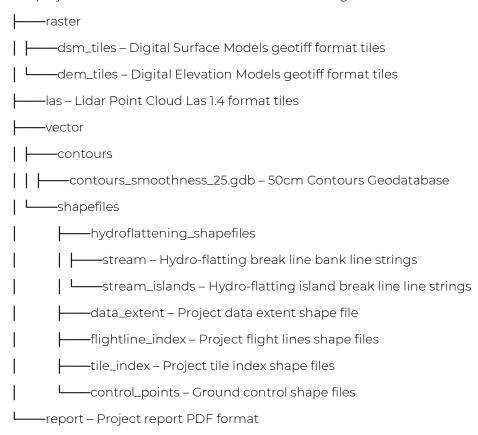

Product	DEM	CL2-Point Cloud Classification Level 2 DEM-Bare Earth Digital Elevation Model DSM-Digital Surface Model DTM-Digital Terrain Model UNC-Unclassified Point Cloud INT-Intensity image CHM - Canopy Height Model IMG-Aerial photography etc
Sheet	BK34	LINZ Topo50 identifier (4 characters)
Year	2016	Year of survey commencement
Scale	1000	Nominal scale of NZTopo50 subtiles
Tile	4118	Row number (41), Column number (18) of tile with respect to an upper left origin
ext	tif	File extension according to format conventions las tif shp etc

Table 8: File Naming

5.3 Delivery Folder

The project deliverables are structured in the following manner:

6 Setbacks and Solutions

During the production of the data sets for the preceding blocks, setbacks were encountered, with a varying impact on production time. Along with these setbacks, new methods of production were created to account for any necessary changes to improve the quality of the data set or save time when amending the data set. These setbacks impacted the delivery date of Block A and other areas.

6.1 Missing ground points under vegetation and low vegetation classification difficulties

During the processing of all Waikato Blocks it is noted there are areas of dense vegetation which limit and often prevent laser penetration to the ground surface. In these situations, it is common for data voids to appear in the DEM surface. In addition, low lying dense vegetation has caused difficulty in assessing the true ground surface. In these situations, it can be difficult to discern if points are part of the ground surface or the lowest part of low-lying vegetation. In these situations, it is common for the ground surface profile to transition to what may or may not be the lowest part of low-lying vegetation. During manual editing, these situations are monitored with the objective being to make the best interpretation of ground.

6.2 Production Delays to Blocks C&D

During production, it was determined a new technical team within Woolpert's US and Australian offices was necessary to continue production on the project. This handover from the previous team created project delivery delays as the new team became familiar with the project specifications as well as to address quality assurance workflow requests made by the prime contractor.

6.3 WRC feedback and rework

Data was rejected by LINZ and WRC and a spreadsheet and shapefiles were provided to assist in rework. The spreadsheet was returned and shapefiles were edited to add comments on all the fail and improve items. Below are examples of actions undertaken. These are supplied in full in Appendix – A

<feature name=""></feature>	NAME	T AAM
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included (2x)
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Bridge included
Bridge missing from DSM	Bridge missing from DSM	Bridge included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge missing from DSM	Bridge missing from DSM	Included
Bridge partially removed- please remove	Bridge partially removed- please remove	Bridge not edited (not in LINZ); hydro-slope added
Bridges missing from DSM	Bridges missing from DSM	Included
Bridges removed from DSM	Bridges removed from DSM	Included
Data void	Data void	Edited - DEM/DSM/LAS
Data void - paddock noise versus ground	Data void - paddock noise versus ground	Crops smoothed - DEM/DSM/LAS
DEM and DSM artefact - linear	DEM and DSM artefact - linear	Swath 968 matched - DTM/DSM/LAS
DEM and DSM artefact - please trim off wave /water so looks like shore	DEM and DSM artefact - please trim off wave /water so looks like shore	Shoreline modified (to WRC request)
DEM and DSM artefact - please trim off wave /water so looks like shore	DEM and DSM artefact - please trim off wave /water so looks like shore	Shoreline modified (to WRC request)

Table 9: LINZ Shapefile description and fixes employed

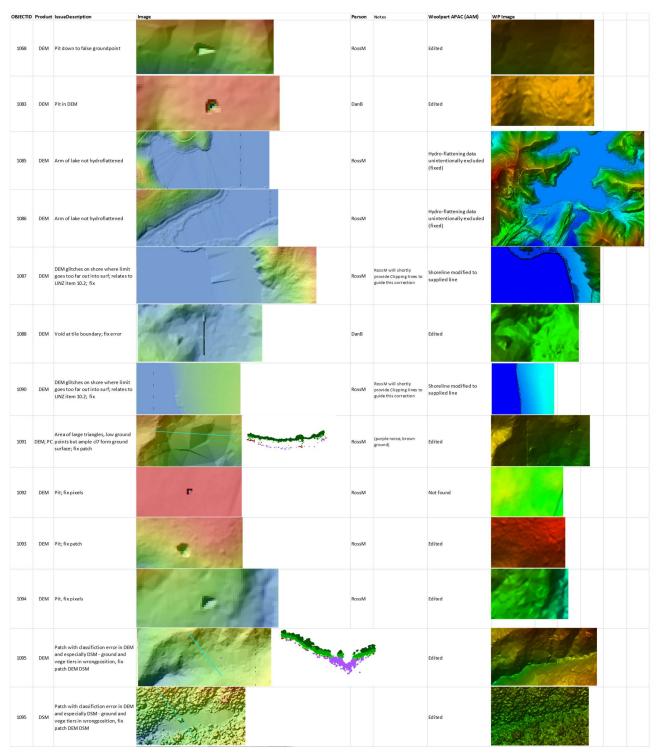


Figure 46: WRC Shapefile description and fixes employed

7 Features unique to blocks C & D

7.1 Windfarm

The figures below show the Te Uku windfarm. These were classified as vegetation (and/or default or buildings). It was pleasing to see the capture of these at 4ppm2.

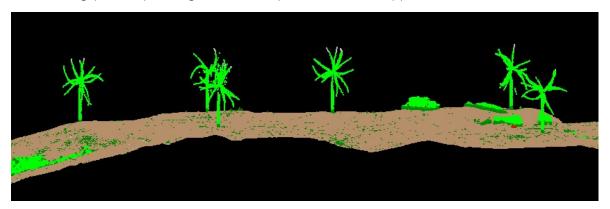


Figure 47: Te Uku Windfarm – Side profile

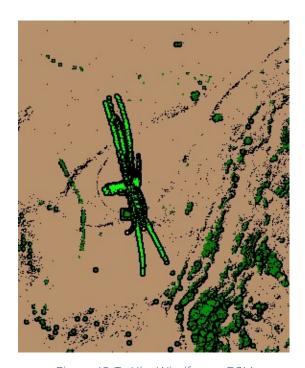


Figure 48: Te Uku Windfarm – DSM

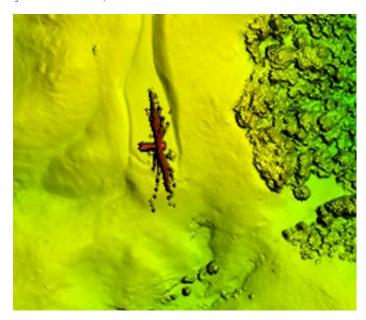


Figure 49: Te Uku Windfarm

7.2 Change between capture epochs

It was noted that there were changes t othe terrain between flight lines / dates. Below are some examples of what appears to be cropping / market gardening. Whilst these look unnatural this is due to the changes due to harvesting / land use practices.

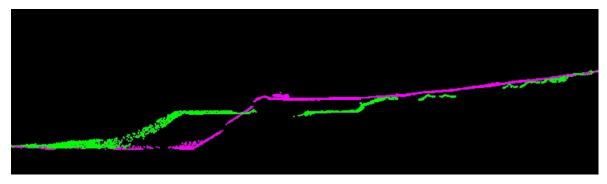


Figure 50: Terrain. Tile BE31_3839

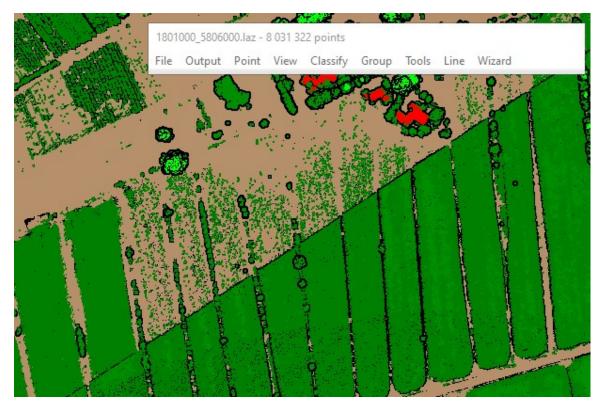


Figure 51: Vegetation. Tile BE31_3839

8 Results Acceptance & Signoff

An acceptance and signoff of the project QAQC supervisory review is listed below.

Result Acceptance							
Assessment Criteria	Status	Completed By	Date				
Point cloud classification accuracy	Complete	Woolpert/AAM	03 July 2023				
Point cloud classification consistency	Complete	Woolpert/AAM	03 July 2023				
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	03 July 2023				
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	03 July 2023				
Digital Survey Models	Complete	Woolpert/AAM	03 July 2023				
Contours	Complete	Woolpert/AAM	03 July 2023				
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	03 July 2023				
Project Manager / Supervisor Signoff	Complete	Luke Graham	03 July 2023				
Ocean Infinity Review	Complete	Luke Leydon	01 August 2023				

Table 10: Processing Results Acceptable Signoff

Result Acceptance								
Assessment Criteria	Status	Completed By	Date					
Point cloud classification accuracy	Complete	Woolpert/AAM	22 September 2023					
Point cloud classification consistency	Complete	Woolpert/AAM	22 September 2023					
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	22 September 2023					
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	22 September 2023					
Digital Survey Models	Complete	Woolpert/AAM	22 September 2023					
Contours	Complete	Woolpert/AAM	22 September 2023					
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	22 September 2023					
Project Manager / Supervisor Signoff	Complete	Luke Graham / Brian Foster	22 September 2023					
Ocean Infinity Review	Complete	Luke Leydon	01 October 2023					

Table 11: Processing Results Acceptable Signoff (Rev1)

Appendix A: Lidar Quality Assurance Results

Provided as separate Documents

AU411 WRC_Raised_Defect_Tracking_Block_CD_v1	22/09/2023 4:28 PM	Microsoft Excel W	17,712 KB
BlockCDr1_LP360_stats	22/09/2023 4:28 PM	Microsoft Excel W	6,417 KB
LAS_Statistics_Block-CD_Rev1	22/09/2023 4:28 PM	Text Document	6 KB
LINZ_issues_block_CD_with_aam_comments_20230920.dbf	22/09/2023 4:28 PM	DBF File	74 KB
LINZ_issues_block_CD_with_aam_comments_20230920.prj	22/09/2023 4:28 PM	PRJ File	1 KB
LINZ_issues_block_CD_with_aam_comments_20230920.shp	22/09/2023 4:28 PM	SHP File	20 KB
LINZ_issues_block_CD_with_aam_comments_20230920.shx	22/09/2023 4:28 PM	SHX File	1 KB
WRC_Issues_with_aam_comments_20230920.dbf	22/09/2023 4:28 PM	DBF File	117 KB
WRC_Issues_with_aam_comments_20230920.prj	22/09/2023 4:28 PM	PRJ File	1 KB
WRC_Issues_with_aam_comments_20230920.shp	22/09/2023 4:28 PM	SHP File	4 KB
WRC_Issues_with_aam_comments_20230920.shx	22/09/2023 4:28 PM	SHX File	2 KB

Waikato Local Authority Shared Services (WLASS) / CoLAB LiDAR Data Capture Services LiDAR Processing Report Block E Priority (Rev2)

Contract Number: AU411

Surveyed By: iXblue Pty Ltd / Ocean Infinity

Document Date: 2 May 2023

Ocean Infinity (Australia) Pty Ltd ABN 61 128 811 978 oceaninfinity.com

© 2023 Ocean Infinity (Australia) Pty Ltd. All Rights Reserved.

Document Control

Woolpert Inc. Representative

Name	Brian Foster
Position	Woolpert Senior Associate
Address	333 North Alabama St. Suite 200 Indianapolis, IN 46204
Telephone	+1 317 809 4685
Email	Brian.Foster@woolpert.com

Ocean Infinity Supervisor

Name	Dave Field
Position	Managing Director
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 277 755 532
Email	david.field@oceaninfinity.com

Ocean Infinity Project Manager

Name	Luke Leydon
Position	NZ Account Manager, Airborne
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui NEW ZEALAND 3116
Mobile	+64 226 511 732
Email	<u>luke.leydon@oceaninfinity.com</u>

Client Representative

Name	Rolf Boswell
Position	Project Delivery Manager
Address	6/34D Lake Street, Cambridge 3434 NEW ZEALAND
Mobile	+64 27 420 0239
Email	<u>rolf.boswell@colabsolutions.govt.nz</u>

Document Revision

Revision No	Issue Purpose	Prepared	Checked	Approved
0	Issue Priority E LiDAR Processing Report	L Leydon	BF/MM	D Field
1	Re-Issue based on QC Feedback	BF/MM	D Field	L Leydon
2	Re-Issue to reflect most recent supply	L Leydon	F Field	L Leydon

Approval for Issue

Name	Signature	Date
Luke Leydon	Juke Jeydon	02 May 2023

Revision History

Item	Description of change	Section	Revision
1	New section on Geometric Calibration inserted	2.4	1
2	More detailed explanation of classification process. Figures 8 & 9 added	2.8	1
3	Minor update of wording	2.9, para 6	1
4	Review and update of section	4.3.1	1
5	Review and update of section	4.3.2	1
6	Results table dates updated to reflect changes to report	7	1
7	Added to Introduction	1	2
8	Updated Pointcloud statistics	Figure 10	2
9	Updated LAS, DEM, DSM LP360 tables,	Tables 2,3,4	2
10	Added section 2.11	2.11	2
11	Updated report references	4.1.1	2
12	Updated DEM generation Methodology	4.3.1	2
13	Added to 6.4 Delivery not meeting specification with example figures of how data was corrected	6.4	2
14	New appendices	Appendices	2

Contents

1	Intro	oduction	8
2	LiDA	R Data Processing and Handling	9
	2.1	The ASPRS LAS File format	9
	2.2	Time stamp of navigational data	10
	2.3	Datums and coordinate reference system	11
	2.4	Geometric Calibration	11
	2.5	Positional accuracy validation	12
	2.6	Use of the LAS withheld flag	12
	2.7	Use of the LAS v1.4 Overlap Flag	12
	2.8	Point Classification	13
	2.9	Classification Accuracy	17
	2.10	Classification Consistency	21
	2.11	Classification Consistency – Priority and Non-Priority blocks	22
3	LiDA	NR Hydro-Flattening QAQC	23
4	LiDA	R Deliverables QAQC	29
	4.1	Reporting and metadata	29
		4.1.1 Project reports	29
		4.1.2 Extents	29
		4.1.3 Flight Lines	30
	4.2	Classified point cloud tiles	31
	4.3	Elevation models	33
		4.3.1 Bare-Earth Digital Elevation Models (DEM)	34
		4.3.2 Digital Surface Models (DSM)	35
	4.4	Break lines	37
	4.5	GNSS data	38
	4.6	Backed up project source data	38
	4.7	Contours	38
5	LiDA	R QA Tiles	40
	5.1	LAS Tiles QAQC - LASQC	40
	5.2	File naming	41
	5.3	Delivery Folder	42
6	Setb	acks and Solutions	43
	6.1	Missing ground points under vegetation and low vegetation classification difficulties	43
	6.2	Production Delays to Area E – Priority E	43
	6.3	Review Process	43
	6.4	Further review and changes	43
7	Resu	ılts Acceptance & Signoff	54

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Tables

Table 1: Point Classifications	13
Table 2: Condensed output from LP360 illustrating LAS file specification compliance	
Table 3: Condensed output from LP360 illustrating DEM file specification compliance	35
Table 4: Condensed output from LP360 illustrating DSM file specification compliance	37
Table 5: File Naming	4
Table 6: Processing Results Acceptable Signoff	
Table 7: Processing Results Acceptable Signoff	

Figures

Figure 1: Waikato Survey Area	7
Figure 2: LAS 1.4 being specified during project (example)	
Figure 3: Project settings used in TerraScan project when importing points into the project	
Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools	10
Figure 5: Representative examples of LAS point attributes	
Figure 6: Settings used when cutting overlap in Microstation	13
Figure 7: Automatic classification macro developed for the project areaarea	
Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine	
Figure 9: A smaller iteration distance value avoids classification of ground points on low objects	
Figure 10: Statistics showing the classes of all the LAS points within the project area	16
Figure 11: The green diagonal hatching seen above shows blocks which have been fully checked	16
Figure 12: The diagonal hatching seen above shows how the progress was tracked	
Figure 13: The polygons are areas for further investigation	18
Figure 14: Pre-filter profile view (ground, noise, and vegetation displayed)	
Figure 15: Pre-filter profile view (just ground points displayed)	19
Figure 16: Post-filter profile view (just ground displayed)	20
Figure 17: Pre-filter overhead view (just noise points displayed)	20
Figure 18: Post-filter overhead view (just noise points displayed)	21
Figure 19: Example of a hydro-flattened stream with a stream-island	23
Figure 20: Excerpt of river points used to create the centreline	24
Figure 21: Centreline for the stream within the project's survey	25
Figure 22: Settings used to export lattice models	25
Figure 23: Pre-filter, overhead view of ground and veg points with hydro lines	27
Figure 24: Post-filter, overhead view of ground and veg points with hydro lines	27
Figure 25: Point cloud – boulder filled stream	28
Figure 26: Imagery – boulder filled stream	
Figure 27: Extent of deliverable data for Priority E (red outline)	30
Figure 28: Flight lines for 4ppm2 data coverage over Priority E SouthElectric States and States are sense.	
Figure 29: WKT of a LAS file shown by LASTools.	
Figure 30: Excerpt from DSM_BG36_2020_1000_2042	
Figure 31: Script used in ArcMap to achieve a NoData value of -9999	
Figure 32: Properties of the composite DSM file showing its format and NoData value	
Figure 33: Stream break line properties in ArcMap	
Figure 34: Contour key points settings used in Terrascan	
Figure 35: Intrawath analysis	44
Figure 36: Vegetation shown in ground. Tile CL2_BD32_2021_1000_0205.las	45
Figure 37: Tile CL2_BD32_2021_1000_0205.las after vegetation removed from ground	
Figure 38: Vegetation in ground class. Tile CL2_BD32_2021_1000_0540.las	
Figure 39: Vegetation removed from ground class. Tile CL2_BD32_2021_1000_0540.las	
Figure 40: Pit shown in CL2_BD32_2021_1000_0445.las	
Figure 41: Tile CL2_BD32_2021_1000_0445.las after repair	
Figure 42: Tile CL2_BC32_2021_1000_4601.las showing few ground points on slope	
Figure 43: Tile CL2_BC32_2021_1000_4601.las with additional ground points on slope	
Figure 44: Tile CL2_BB32_2021_1000_4850.las showing ground points on bridge deck	
Figure 45: Tile CL2_BB32_2021_1000_4850.las ground points removed	
Figure 46: Tile showing pitting	
Figure 47: Tile after repair	
Figure 48: Illustrating lack of available ground points	
Figure 49: DEM before filter	
Figure 50: DEM after filter	
Figure 51: DSM before filter	
Figure 52: DSM after filter	53

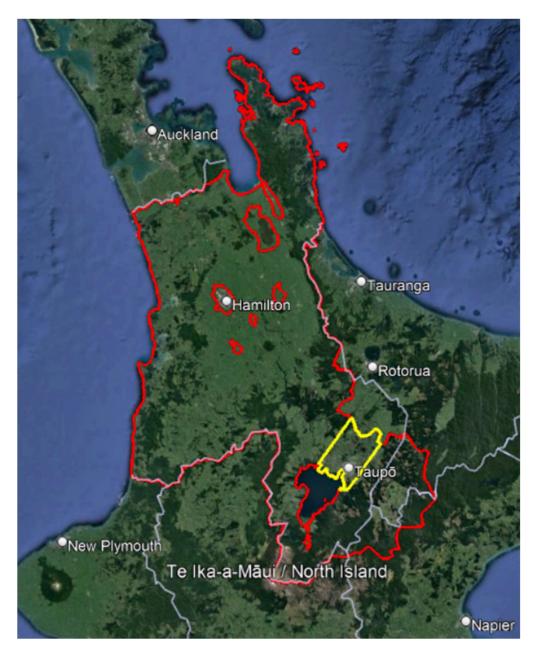


Figure 1: Waikato Survey Area

1 Introduction

Lidar survey projects are broken into three distinct phases. The survey commences with the data acquisition project phase. For matters pertaining to this phase of the project, refer to the document

• AU411_WLASS-Collection_Report-10052021.pdf.

The next phase of the project is the Geopositioning phase, which involves processing the raw sensor and trajectory data to produce a set of point clouds for each flight line.

The point clouds have several geometric optimizations performed, to optimise the relative and absolute spatial accuracy levels.

At completion of the Geopositioning phase, the point cloud geometry is final, and the point cloud classification and production generation project phases follow.

For matters pertaining to this phase of the project, refer to the documents

- o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
- o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022

The following report covers the data processing project phase and describes the data processing methods used for the lidar classification and product generation, along with the QAQC procedures and results.

This report illustrates compliance with the LINZ PGF specifications sections 6 – 9.

This report pertains to the coverage of Priority E, as illustrated in yellow in Figure 1 - Waikato Survey

It is noted that this Priority Block dataset has been subject to several supplies, rework and resupplies. New Appendices have been supplied along with screenshots showing how the previous datasets were affected and then corrected.

2 LiDAR Data Processing and Handling

The LiDAR data processing method is described in the Project Method Statement, AU411-FOR-008-R5 Project Method Statement_WLASS. The following sections elaborate further but focus on adherence with compliance to the Linz PGF Specification (JAN 2020).

https://www.linz.govt.nz/system/files_force/media/doc/pgf_version_new_zealand_national_aerial_lidar_base_specification.pdf?download=1

QAQC steps for various workflow tasks have been tracked and recorded and included as an embedded document within Appendix 1.

2.1 The ASPRS LAS File format

LINZ PGF specification 6.1 requires that all point deliverables are required to be fully compliant with LAS Specification Version 1.4, using Point Data Record Format (PDRF) 6, 7, 8, 9 or 10 (referred to as LAS v1.4).

For this project, LAS 1.4 with PDRF 6 is to be delivered.

The LAS files created during the project during the Geopositioning phase and subsequent data cleaning and deliverable products are in ASPRS LAS 1.4 format, with PDRF 6. This was specified during the creation of the project in TerraScan, as shown in a representative image in the figure below:

Figure 2: LAS 1.4 being specified during project (example)

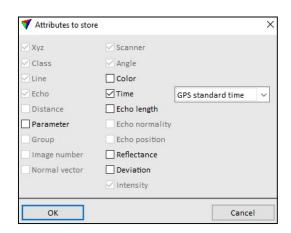


Figure 3: Project settings used in TerraScan project when importing points into the project.

The correct format of LAS is illustrated by use of LASTools, which shows the LAS files are in 1.4 format in the figure below.

Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools

To verify that the project deliverables are in the correct LAS file format/version with PDRF, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.2 Time stamp of navigational data

LINZ PGF specification 6.2 requires that Each Global Navigation Satellite System (GNSS) aircraft positional measurement must be time stamped using Adjusted Global Positioning System (GPS) Time, at a precision enough to allow unique timestamps for each LiDAR pulse.

For this project, LAS 1.4 with PDRF 6 has been delivered including, with Global Encoding bit set to 1.

An example of how adjusted GPS time is visualized and monitored is illustrated in Figure 5: LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right).

To verify GPS time is set to adjusted GPS time, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar technical manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A. Figure 5 below shows representative examples of LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right)

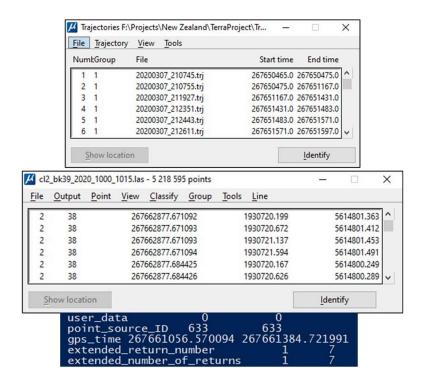


Figure 5: Representative examples of LAS point attributes

2.3 Datums and coordinate reference system

LINZ PGF specification 6.3 requires that the required datum for latitude, longitude, and ellipsoid heights is the New Zealand Geodetic Datum 2000. The required vertical datum for normal-orthometric heights is NZVD2016 (Reference 9). Projected data products are to be delivered in NZTM2000 projection (Reference 10) with NZVD2016 normal-orthometric heights.

The Survey Datums, Ground Control, Check Points and Lidar Geopositioning sections of the Project Methodology Statement describes in detail how the data is transformed and connected to the required project datum.

To verify that the correct datum information is recorded in the LAS 1.4 header, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files have the correct CRS applied in the header. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.4 Geometric Calibration

Following initial sensor data processing, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.

Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error. These calibration adjustments were performed using a combination of automated and manual corrections to the data to develop the geometrically calibrated data set to be utilized for all downstream processes.

2.5 Positional accuracy validation

LINZ PGF specification 6.4 details the positional accuracy verification methods. The Vendor is expected to apply best practice in assessing the project accuracy and achieving compliance with this specification. Before classifying and developing derivative products from the point cloud, the relative vertical, local vertical and horizontal accuracies of the point cloud must be verified. The Vendor must deliver a detailed report of the validation processes used.

Validation of the point cloud positional accuracies is the primary outcome of the Lidar Geopositioning workflow phase, using surveyed ground control & check points. The assessments methods and results of the positional accuracy validation is be reported in the LiDAR Geopositioning QA/QC Report.

2.6 Use of the LAS withheld flag

LINZ PGF specification 6.5 requires that outliers, noise points, geometrically unreliable points near the extreme edge of the swath, and other points the Vendor deems unusable must be identified using the Withheld Flag, as defined in the LAS Specification.

Points classified as low noise (coverage class 7) and high noise (coverage class 18) will have the LAS withheld flag set.

To verify that the withheld flag has been correctly set, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analyst to ensure that the Las withheld flag is correctly applied. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.7 Use of the LAS v1.4 Overlap Flag

LINZ PGF specification 6.6 requires identifying overage points is not required unless requested by the Contract Authority. However, if overage points are explicitly identified using LAS v1.4, they must be identified using the overlap flag.

Classification of the overlap points was done using TerraScan in Microstation. A macro step was created which allowed for points to be classified with the overlap bit by cutting the scan angle at zero degrees. The step used for the project dataset is illustrated in the figure below. This allowed for the overlap points to be withheld from DEM, DSM and intensity imagery generation. Figure 6 below shows Settings used when cutting overlap in Microstation. Note that the 'Action' is on "Set overlap bit".

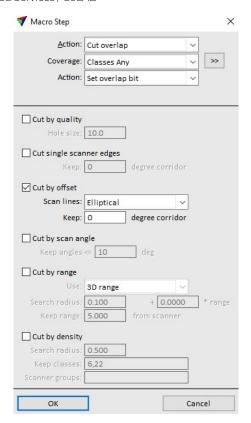


Figure 6: Settings used when cutting overlap in Microstation.

Verification of appropriate overlap flag application is performed using LP360 File Analyst. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.8 Point Classification

LINZ PGF specification 6.7 requires Lidar points are classified to the following coverage classes:

Code	Description	
1	Processed, but unclassified	
2	Ground	
3	Low vegetation <2m	
4	Medium vegetation	
5	High vegetation >8m	
6	Building	
7	Low noise	
9	Water	
17	Bridge deck	
18	High noise	

Table 1: Point Classifications

Point cloud classification is performed by automated classification algorithms developed by Woolpert's senior Lidar analysts and reviewed by the Lidar technical manager.

A first run automatic classification was carried out on the raw LiDAR points using TerraSolid's TerraScan software to classify the LiDAR points into ground hits and non-ground hits. This results in a greater than 80% correct classification. Some of the steps used within this macro can be found within the screenshot below (Figure 7), including 5 of the 8 ground classification steps used on this data set.

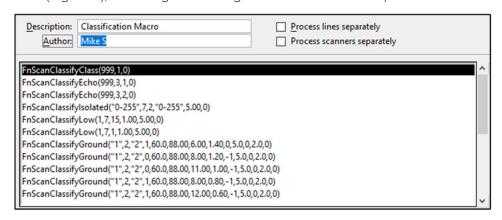


Figure 7: Automatic classification macro developed for the project area.

As documented by TerraSolid, the ground routine classifies ground points by creating a triangulated surface model iteratively. The routine is best suited for classifying ground in airborne laser data sets and in data sets where there is mainly natural terrain. For classifying ground in mobile data sets where the majority of ground is on hard surfaces, such as roads, use the Hard surface routine instead of the ground routine.

The routine is sensitive to low error points in the point cloud. Therefore, you should run one or more classification steps using the Low points routine before classifying ground. A more complex classification strategy is required for classifying ground in photogrammetric point clouds.

The ground routine starts by selecting local low points that are confident hits on the ground. The initial point selection is controlled with the Max building size parameter. If the maximum building size is, for example, set to 60.0 m, the routine assumes that any 60 by 60 m area has at least one point on the ground level and that the lowest point is on the ground level.

Then, the routine builds a surface model (TIN) from the initial ground points. The triangles in this initial model are mostly below the ground level and only the vertices are touching the ground. In the following iterations, the routine moulds the model upwards by adding more and more points. Each added point makes the model following the true ground surface more closely.

The iteration parameters of the routine determine how close a point must be to a triangle plane for being accepted as ground point and added to the model. Iteration angle is the maximum angle between a point, its projection on the triangle plane and the closest triangle vertex. This is the main parameter controlling how many points are classified into the ground class. The smaller the Iteration angle, the less eager the routine is to follow variation in the ground level, such as small undulations in terrain or points on low vegetation. Use a smaller angle value (close to 4.0) in flat terrain and a bigger value (close to 10.0) in mountainous terrain.

Iteration distance makes sure that the iteration does not make big jumps upward if triangles are large. This avoids ground points that are too high, for example within low vegetation or on low buildings.

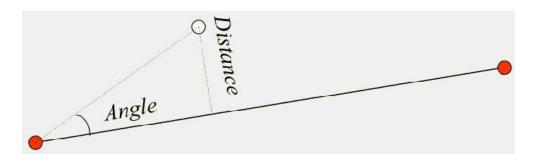


Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine.

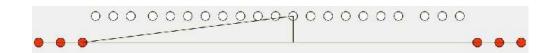


Figure 9: A smaller iteration distance value avoids classification of ground points on low objects.

The iteration angle can be reduced automatically if the triangles become small. This reduces the eagerness to classify more ground points inside small triangles and thus, avoids unnecessary point density of the ground model thus avoiding redundancy of inclusion of unnecessary ground points. Related to this it is common to see default classified points within a classified ground point cloud surface. The iteration angle inside small triangles approaches zero if the longest triangle edge is shorter than a given Edge length value. Furthermore, the iteration can be stopped completely if triangle edges are shorter than a given limit.

After completion of the automated classification, a strenuous manual classification was carried out over the required area to edit the points thus minimizing gross classification errors that may have occurred in the automatic classification process.

Each block's data was checked in a systematic approach to reduce missing important features. Orthogonal views with background orthoimagery, and profile views are used to review the performance of the automatic classification results.

Tools such as 'Classify using brush', 'Classify above line' and 'Add Point to Ground' (all found within TerraScan) were used during manual classification, to achieve classification accuracy meeting project specifications. Before handover files were created, checks were done on the project's points by viewing statistics within TerraScan as illustrated in the figure below.

Class	Classification	Count	Min Z	Max Z
1	Unclassified	484039831	285.603	1087.073
2	Ground	1503417285	284.139	1087.243
3	Low Veg	192564631	285.738	1088.921
4	Medium Veg	514208171	286.141	1089.2
5	High Veg	795857367	293.294	1076.542
6	Building	19116240	290.211	705.265
9	Water	1246634	-303.851	501.789
17	Bridge Deck	73179	291.618	610.229
W7	Witheld Low Noise	616247170	-386.304	2546.199
W18	Witheld High Noise	38125933	261.817	2621.78
01	Overlap Unclassified	367645102	285.591	1063.11
02	Overlap Ground	812962217	284.433	1062.934
03	Overlap Low Veg	122089693	285.749	1064.843
04	Overlap Medium Veg	331978938	286.253	1068.231
05	Overlap High Veg	617845181	293.408	1062.404
06	Overlap Building	13295054	291.144	680.983
09	Overlap Water	438606	238.67	470.305
017	Overlap Bridge Deck	46397	293.135	532.471
OW7	Overlap/Witheld Low Noise	427433094	-772.194	2517.106
OW18	Overlap/Witheld High	14157164	285.968	2585.14

Figure 10: Statistics showing the classes of all the LAS points within the project area.

To keep track of the data cleaning process, a hatching method was used on the DGN within Microstation. It allows the cleaners to systematically mark each tile which has been fully checked and editing, making sure the whole data set has been initially covered.

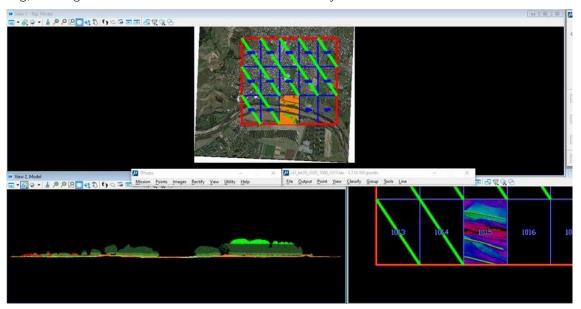


Figure 11: The green diagonal hatching seen above shows blocks which have been fully checked.

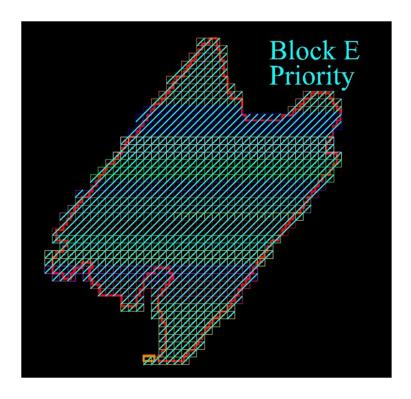


Figure 12: The diagonal hatching seen above shows how the progress was tracked

To verify that only the required coverage classes are present & populated, LP360 File Analyst performs exhaustive testing on the LAS data records, and outputs the analysis results to an excel spreadsheet. Lidar Analysts review this data to ensure that all deliverable LAS files are compliant with the specification coverage classes. Point cloud QAQC/editing is performed by trained Lidar Technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team.

2.9 Classification Accuracy

LINZ PGF specification 6.8 requires that non-withheld points must be classified to a classification accuracy level of 2%. No non-withheld points are to remain as class 0.

Realtime Digital Elevation models are generated using Terrascan/Terramodeler are used to verify ground classified points and lidar technicians review the DEMs to find anomalies such as spikes or pits that imply misclassified points and make corrections.

During DEM review profiles are cut across tiles where potential issues are detected. The Lidar Technician scans the profile view to identify if an issue exists and modifies the classification of points as required.

10% of the data tiles are subject to review by a senior analysis or project manager.

After data cleaning was completed, a comprehensive DEM review is performed to visualize the data over large areas for the purpose of identifying anomalies or areas for further investigation.

Any potential errors were identified as shown in the red polygons below and later addressed via additional manual editing.

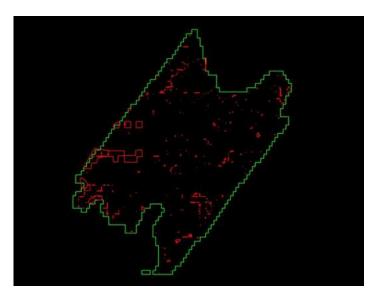


Figure 13: The polygons are areas for further investigation

The indicated areas were revisited and manually classified as appropriate. Below is an example of an issue identified for further investigation. Multiple revisions of the point cloud were performed to address issues common to the terrain and vegetation cover found within the project AOI. Rugged terrain and heavy vegetation across areas within the AOI commonly created unavoidable laser penetration difficulties as well as areas within the DEM that that appear to have a rough surface.

The figures below illustrate such an occurrence. Issues were identified concerning what appeared to be excess noise in areas of gullies. After investigating it was determined the gully areas in question are densely vegetated and located within steep terrain. The sparseness of the consistent ground penetration and steepness of terrain led to points being classified as noise during ground filtering. Additional filtering steps were taken to reclassify points into ground from noise class. The additional ground points added from noise provide improvement to the DEM quality as the points classified from noise to ground were sparsely distributed due to dense vegetation.

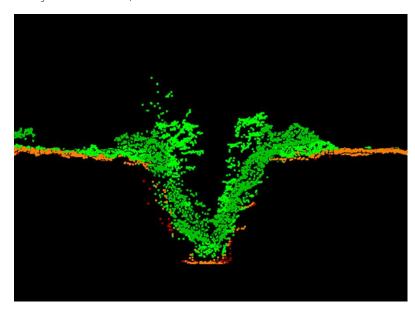


Figure 14: Pre-filter profile view (ground, noise, and vegetation displayed)

Figure 15: Pre-filter profile view (just ground points displayed)

Figure 16: Post-filter profile view (just ground displayed)

- Note some additional ground points were reclassified from noise to ground. As this is a thin profile the affects appear minimal but as shown in the figures below, this process was able to help alleviate this situation

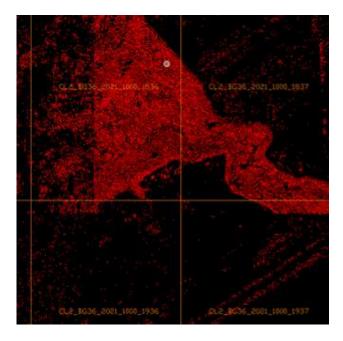


Figure 17: Pre-filter overhead view (just noise points displayed)

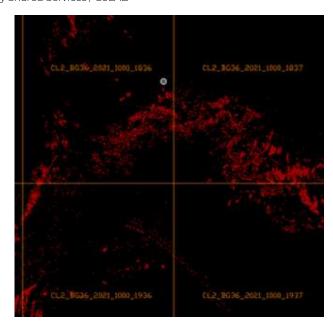


Figure 18: Post-filter overhead view (just noise points displayed)

2.10 Classification Consistency

LINZ PGF specification 6.9 requires that point classification must be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, flights, or other unnatural divisions are grounds for rejection of the entire deliverable.

As with classification accuracy there is no analytical means of measuring compliance. As such the classification consistency is reviewed via visual means. To mitigate against inconsistent classification, the following controls were employed:

- Systematic geometric issues that may lead to swath-based inconsistencies are identified by the Lidar Geopositioning process, as documented in the Project Method Statement, specifically in the intraswath, interswath & absolute accuracy analysis steps. Data swaths that do not pass this stage do not progress to later classification steps
- The automated classification process is a series of classification algorithm tools applied in a macro. The macro is designed and optimised to yield high classification accuracy across the variety of land cover types within the project area. Applying the one, optimised and flexible classification macro delivers consistent classification across the entire project area
- To avoid tile edge artefacts, all tile-based workflow steps utilise a buffer of lidar points from surrounding tiles. This allows for a better classification of both ground and vegetation points.
- Lidar Technicians are trained to deliver consistent results and use the same visualisation methods/aids. They are supervised by the Lidar Phase Manager and the 10% of classified point cloud tiles are peer reviewed by a dedicated QAQC team.
- DEM tiles are run after classification has been completed to review possible errors in Ground classification.
- Bridges are checked against a bridge shapefile (supplied by LINZ) to correctly identify and classify the bridges.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

2.11 Classification Consistency – Priority and Non-Priority blocks

Within the Waikato project area, the areas named Priority Area B and Priority Area E were processed in advance of the larger associated blocks of Remainder Area B and Remainder Area E.

While the priority blocks were processed to the New Zealand National Aerial Lidar Base Specification, some noticeable consistency variation is evident in places between the priority and associated areas.

The differences consisted of variation of classification in the ground, default, and noise classes as well as some tonal differences between the intensity balancing between blocks. Additional processing was performed within the priority areas to reduce this variation and develop a more consistent product across delivery areas.

The additional processing does not affect the useability of the data and maintains a product within the specifications of the project; however it is noted there are occasional and slight differences in classification density and intensity tone between the priority areas and remainder areas. This has for the most part been mitigated by resupplying the data after it had its intensity compared and balanced against Remainder Blocks. The Histogram has been balanced the same as much as possible.

3 LiDAR Hydro-Flattening QAQC

LINZ PGF specification 7.0 details at length the requirements for Hydro flattening of Digital Elevation Models.

The methods for Hydro Break line Digitization, Hydro-Flattening and Hydro-Flattening quality control are described in the Lidar Processing and Data presentation section of the Project Method Statement.

Hydro-flattening generation methods will be detailed in the Processing Report.

The pertinent parts of the specification and the means of identifying the required hydro-flattening features are as follows:

- · Permanent islands 5,000 m2 or larger must be delineated
- · Islands of 5000m2 will be included as hole features within the parent hydro-flattening polygon.
- Inland ponds and lakes water bodies of 10,000m2 or greater at the time of collection must be flattened
- Lake polygon features will be precisely digitized using lidar point cloud with supporting background intensity imagery and supported by open-source imagery as reference.
- Inland streams and rivers of >= 30m nominal width (width of water flow in a single channel at time of capture) must be flattened
- Streams/rivers that fulfil the minimum distance requirement will be identified by visual inspection of the point cloud.

Hydro-flattening was performed upon the project dataset, and hydro break lines were used during the creation of digital elevation models. Hydro Flattening digitizing are performed by Lidar technicians, under the supervision of the Lidar technical manager.

The hydrological features were digitised in Microstation using a combination of manual and automatic digitizing ('Display boundary' function in TerraModeler). Stream islands that were 5 000m² or larger in size.

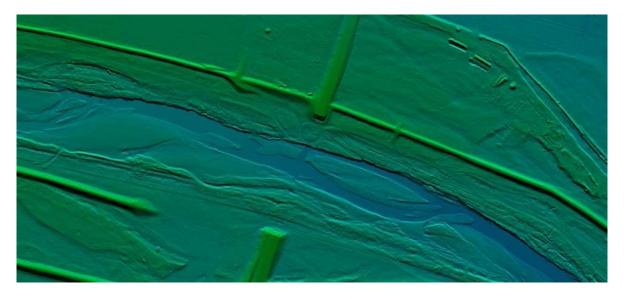


Figure 19: Example of a hydro-flattened stream with a stream-island.

When hydro-flattening a stream, the following process is used:

Identify a possible stream feature. Measure the width of the stream from bank to bank, and if greater than 30m wide, begin digitizing the feature. If the stream varies in width, the discretion of the geospatial specialist is applied.

Once the stream outline was completed, and that it was confirmed to be a polygon, a shapefile was imported into ArcMap and a centreline was created using the 'Create Centreline ´ script, which generates a centreline based on the stream polygon.

The centrelines were then checked for errors which may have occurred during its creation. It was then exported to Microstation where the centreline was then dropped to a surface (created by surrounding ground points). The tool 'Force Downstream Flow' was used to enforce correct elevations for the centreline, ensuring that each point's height was equal to or less than that of the point before it.

The correct order of point heights was then checked by exporting the co-ordinates out as a text file which would be used for the creation of a new centreline shapefile. Figure 20 shows the example excerpt of river points used to create the centreline after downstream flow was enforced. Figure 21 shows the example highlighted script was used to generate the centreline for the stream within the project's survey.

```
1 1929744.8358 5615128.2638 7.7096
 2 1929746.0769 5615130.8498 7.6863
 3 1929746.4280 5615131.5996 7.6796
 4 1929746.5107 5615131.7727 7.678
 5 1929746.7841 5615132.3591 7.6728
 6 1929748.0794 5615135.0799 7.6483
 7 1929748.5703 5615136.1455 7.6388
 8 1929749.4246 5615138.0643 7.622
 9 1929749.8587 5615139.0742 7.6132
10 1929750.6288 5615140.9327 7.5973
11 1929751.0393 5615141.7916 7.5896
12 1929751.5292 5615142.7809 7.5805
13 1929754.3861 5615148.3485 7.529
14 1929754.7868 5615149.1041 7.5219
15 1929754.7991 5615149.1267 7.5217
16 1929757.3347 5615152.1834 7.4808
17 1929757.8445 5615152.7752 7.4594
```

Figure 20: Excerpt of river points used to create the centreline

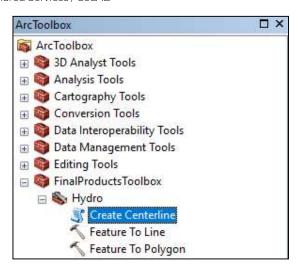


Figure 21: Centreline for the stream within the project's survey

After the new centreline had been created, it was conflated with the stream's shape using LP360 within ArcMap. This matched up the elevation of the stream's outline with that of the centreline. The new stream shape was attached to a DGN and opened in Microstation, exported as co-ordinates, and then read into the project. These points along with ground points were used to output lattice models which show the results of the hydro-flattening. Stream-island break line points were also included to ensure the correct modelling of the stream and its features.

The following settings were used for lattice model creation:

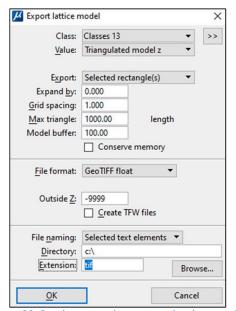


Figure 22: Settings used to export lattice models.

The product undergoes QC by the Lidar Phase Manager and is reviewed for any omissions or blunders. The following project specification are checked against:

- All Hydrologic break lines developed for use in hydro-flattening are in non-tiled ESRI feature class in polylineZ or polygonZ shape file format.
- Water bodies (ponds, lakes, and reservoirs), wide streams and rivers ("double-line"), and other non-tidal water bodies are to be hydro-flattened within the DEM. The resulting pond and lake surfaces will be flat and double line rivers will be flat level bank-to-bank and be gradient.
- It is noted when hydro-flattening streams, significant breaks in water elevation as well as varying degrees of bends in the stream direction will create a triangulated appearance in the DEM. These affects will be minimized to an appropriate extent.
- The entire water surface edge must be at or below the immediately surrounding terrain.
- Hydro-flattening break line feature class use the NZTM2000 projection and NZVD0216 height datum
- · Hydro-flattening has applied to all streams that are nominally wider than 30 metres wide, and to all non-tidal boundary waters bordering the project area regardless of size.
- · Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are nominally larger than 10000m2 in area
- Stream channels should break at road crossings (culvert locations). These road fills should not be removed from the DEM.
- Streams and rivers should NOT break at elevated bridges. Bridges are removed from the DEM. When the identification of a feature such as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

A peer review of the Hydro flattening break line data products as well as the hydro-flattened DEM is performed on 10% of the dataset by an independent analyst or project manager. To distribute and track the progress amongst the editing & QAQC team, an ArcSDE tracker (multiuser database) is employed.

During the QA/QC, it was identified there will be instances of vegetation classifications contained within waterbody polygons. After investigation it was determined much of this occurs from overhanging vegetation from the outside of the hydro features. Occasionally there are instances of vegetation within waterways which is related to islands falling below the required threshold for collection. Additional processing steps were taken to limit the amount of vegetation that exists within the waterway while retaining the overhanging vegetation. This processing step primarily involved classification based on XYZ proximity to existing digitized hydro/island lines. After this process was performed some vegetation classified lidar points will still be present in the waterway.

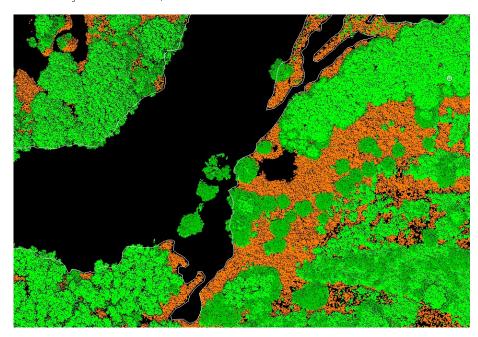


Figure 23: Pre-filter, overhead view of ground and veg points with hydro lines

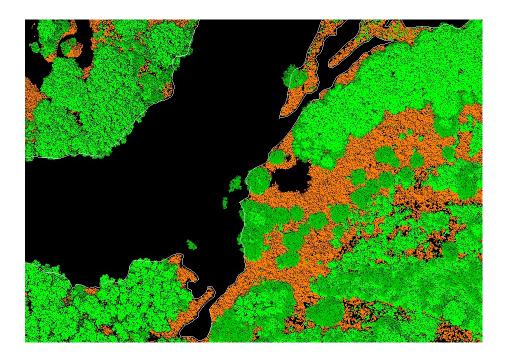


Figure 24: Post-filter, overhead view of ground and veg points with hydro lines

Additionally, during QC data review, it was discovered rocks and boulders within rivers are occasionally classified as vegetation. This is typically observed in high relief areas where water flows down steep terrain, i.e., rapids/white-water. Rivers tend to narrow in these areas and will not likely be caught during the aforementioned processing step based on proximity to linework. These points will continue to be classified as vegetation.

Figure 25: Point cloud – boulder filled stream

Figure 26: Imagery – boulder filled stream

4 LiDAR Deliverables QAQC

Section 8 of the LINZ PGF specification details the project reporting, metadata requirements & deliverable requirements.

4.1 Reporting and metadata

4.1.1 Project reports

The following details the reports being delivered for this section of the project:

- Collection Report detailing mission planning and flight logs, including dates of collection
- Details of quality control tests, and conformance against Linz specifications
 - o Refer to AU411_WLASS-Collection_Report-10052021.pdf
- Survey Report detailing the collection of all ground control, including the following:
 - o Control points used to calibrate and process the LiDAR and derivative data
 - o Check sites used to validate the LiDAR point data or any derivative product
 - o Refer to AU411-R1-Waikato LiDAR Ground Control Report of Survey.pdf
- Geopositioning QA/QC Report, detailing analysis, accuracy assessment and validation of the following:
 - o Point cloud data, including a summary of relative (smooth surface repeatability and overlap consistency) and non-vegetated vertical and horizontal local accuracy.
 - o QA/QC analysis of the vertical and horizontal local accuracy assessment will include a table of the product data compared to each check site.
 - o Refer to AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
 - o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022.

Processing Report (This Document) detailing:

- Classification and product generation procedures including methodology used for break line collection, hydro-flattening break line collection, hydro-flattening processing, DEM & DSM creation, and deliverable generation.
- Details of quality control tests, and conformance against each of the relevant Linz specifications including:
 - o Workflow QAQC checklist
 - o Pre-Delivery QAQC worksheet as an embedded document

4.1.2 Extents

LINZ PGF specification 8.1.3 requires that a geo-referenced, digital spatial representation of the detailed extents of each delivered dataset.

The data for Priority E was captured using Leica TerrainMapper sensors 513 and 559, flown on days 6th, 10th, 11th, 14th, 15th, 25th and 26th January 2021 and days 1st and 3rd of February 2021. The extent of Priority E can be seen in Figure 25. The flight lines relating to the expanded area can be seen in Figure 26.

This extent was created by creating a surface in Microstation based on all points collected during the survey flight. The tool "Display boundary" was then used to generate the extent, which was then exported into a shapefile and assigned with the necessary horizontal and vertical co-ordinate system.

Figure 27: Extent of deliverable data for Priority E (red outline)

4.1.3 Flight Lines

LINZ PGF specification 8.1.3 requires that Flightline shapefiles as Esri polylines are required. Each flightline must be assigned a unique File Source ID that is equal to the Point Source ID assigned to each point collected during that flightline.

The Sensor trajectory was imported into Terrascan and edited to split the trajectory into discrete flight lines. Each flight line was then assigned discrete flight line ID, in accordance with the project flight plan. Each Lidar point was assigned a flight line ID by matching against its trajectory, using the Adjusted GPS time stored in both the trajectory and lidar point. The trajectories were exported to ESRI shape file format with a File Source ID attribute populated with the trajectory flight line ID value. This process will ensure that specification 8.1.3 is adhered to.

The image below shows the extend of the area covered.

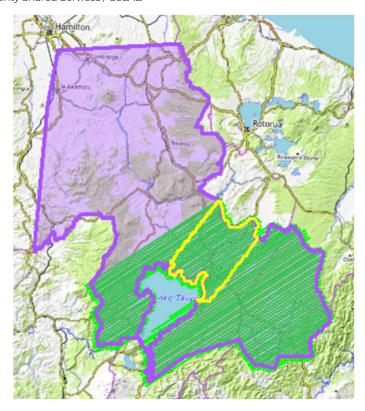


Figure 28: Flight lines for 4ppm2 data coverage over Priority E South

4.2 Classified point cloud tiles

LINZ PGF specification 8.2 details the requirement for the point cloud deliverables, and how adherence to the specifications is measured is listed below. Point cloud deliverable generation methods will be detailed in the Processing Report. Deliverable QC checks are performed both by Lidar technicians, under the supervision of the Lidar Phase Manager and followed by a review of 10% of the data by an independent analyst or project manager:

- (a) Data from all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified, by tiles. Project swaths exclude calibration swaths, crossties, and other swaths not used in product generation.
- (b) Data is provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum.
- (c) Fully compliant LAS v1.4, Point Data Record Format (PDRF) 6-10. All files must have the same PDRF.
- (d) Each point includes a Point Source ID linking it to the flight line File Source ID.
- (e) Correct and properly formatted georeferenced information (EPSG: 2193 + 7839) as Open Geospatial Consortium (OGC) Well Known Text (WKT) included in all LAS file headers.
- (f) File Source ID set to 0 for tiled LAS files.
- (g) GPS times recorded as Adjusted GPS Time at a precision sufficient to allow unique timestamps for each pulse.
- (h) Points are provided in the order in which they were collected.

- (i) Height values reported to three decimal places (nearest mm). (While not significant for accuracy, this supports numerical processing and reduces the number of identical values caused by rounding.)
- (j) Intensity values normalised to 16-bit by multiplying the value by 65,536/ (intensity range of the sensor) per LAS v1.4. This will result in an intensity range of 0-65,536.
- (k) Classification as required by the Contract Authority (Table 4 at a minimum).
- (I) Tiled delivery, without overlap, per the project tiling scheme in Section 9 Tiles.
- (m) Files named per Section 9 Tiles.

The point cloud tiles created for handover underwent multiple alterations before finalization. After the LAS tiles were created in Microstation, LASTools was used to assign the correct global encoding (17), system identifier and file source ID (0). WKT was also added to the LAS metadata, as illustrated in the figure below. The correct height values were also confirmed in LASTools ensuring that three decimal places were being used. The tiles were also named according to the required naming convention which is discussed in Section 6.

Figure 29: WKT of a LAS file shown by LASTools.

Intensity valued scaled from a range of 100 – 10000 outputs by HxMap, to full 16-bit dynamic range. Translation value = -100 Scale value = 6.5535

Once the point cloud was classified and was inspected manually in Microstation, the LAS files were loaded into LP360. The global coding, file source ID, WKT, VLRs, file format and LAS version were compared against to the LINZ specifications and after passing QA/QC, the files were renamed in accordance with the LINZ specifications. A condensed version of the LP360's results can be found in the table below. A complete listing of the output from LP360 is included as an embedded document in Appendix A.

File	Points	Version	File Signature	File Source ID	SRS Source	System Identifier
CL2_BG36_2021_1000_0636.las	2,785,258	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0637.las	2,074,119	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0638.las	2,495,908	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0639.las	3,892,799	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0640.las	4,588,724	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0641.las	3,451,847	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0642.las	3,767,550	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0643.las	4,619,041	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0644.las	3,490,797	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0645.las	2,658,490	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0646.las	2,421,845	1.4	LASF	0	WKT	Leica Terrain Mapper
CL2_BG36_2021_1000_0647.las	3,051,765	1.4	LASF	0	WKT	Leica Terrain Mapper

Table 2: Condensed output from LP360 illustrating LAS file specification compliance

Additionally, a pre-delivery script which invokes LASTools was run on all tiles. The script output was imported into a custom Excel Worksheet, which checked specification compliance. For a complete listing of analysis refer to Section 6.1 of this document.

4.3 Elevation models

LINZ PGF specification 8.3 details requirements for raster surface model deliverables. The specification and how adherence to the specifications is measured is listed below. Deliverable QC checks are performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a review of 10% of the data by an independent analysist or project manager:

- (a) Grid spacing: 1m cell size.
- (b) Generated to the limits of the project area
- (c) Raster format: Geotiff (.tif)
- (d) Geo-reference information (EPSG 2193) in each raster file.
- (e) Tiled delivery without overlap.
- (f) NOT clipped using polylines for land-water boundaries from national databases (for example coastlines, river or lake boundaries) as these can be inaccurate and subject to continual geomorphic change.
- (g) Tiles with no edge artefacts or mismatch. A quilted appearance in the overall surface can be grounds for rejection of the entire deliverable whether the rejection is caused by differences in processing quality or character among tiles, swaths, flights, or other unnatural divisions.
- (h) Void areas (for example, areas outside the project area but within the project tiling scheme such as offshore water) coded using "NODATA" value equal to -9999. This value must be identified in the appropriate location within the raster file header.

- (i) Constrained with any additional break lines required by the Contract Authority, such as stopbanks, streams, and narrower rivers.
- (j) Provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum. Additional vertical datums may be specified by the Contract Authority.

4.3.1 Bare-Earth Digital Elevation Models (DEM)

LINZ PGF specification 8.3.1 details additional requirements for Digital Elevation Models. The Bare-Earth DEM is the bare earth has been classified and edited to remove vegetation and man-made structures within the bounds of the classification accuracy requirements. It must also include or conform to the following:

- (a) Based on Classification level 2 or better ground return points.
- (b) Hydro-flattening as outlined in Section 7 Hydro-Flattening.
- (c) Bridges removed from the surface, while culverts are treated as ground
- (d) Method for removal of buildings, structures or other ground cover/vegetation and interpolation techniques documented.

The Digital Elevation Models were created using a combined model based on both ground surface points and break line points. These break line points were created during the hydro-flattening process mentioned in Section 4. By using these classes, a true representation of the ground points can be achieved while still maintaining a smooth water surface which gradually follows the terrain.

To generate DEMs, LAS format data files are loaded into TerraScan, only loading in class 2 points and breaklines. Additional data is referenced to avoid tile edge artefacts. Following import, TerraScan-Export Lattice Model command is used to create a grid file with uniform distances between points from one or more selected point classes. For each grid point, the lattice model file stores XY coordinates and elevation. Within the Export Lattice Models command we utilize "Triangulated model Z" to export the DEM tiffs. This triangulated model z derives an elevation value that is calculated from a TIN model of the lidar points using ground and breakline classifications.

The elevation grid is generated as a TerraScan Lattice model using the following settings:

- o Grid Method = TIN Model (Triangulated model z)
- o Grid Spacing = 1 meter

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

The tiles were loaded into LP360 to check the metadata of the images during both production and QA/QC of the deliverables. A condensed version of LP360's findings can be found in the table below. A complete listing of the LP360 results is included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DEM_BF37_2021_1000_4817.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4818.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4819.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4820.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4821.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4822.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4823.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4824.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4825.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4826.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4827.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4828.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4901.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF37_2021_1000_4902.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 3: Condensed output from LP360 illustrating DEM file specification compliance

4.3.2 Digital Surface Models (DSM)

LINZ PGF specification 8.3.2 details additional requirements for Digital Surface Models. The DSM is the heights of the top of the highest feature at each gridpoint, including ground, vegetation, and manmade structures. The DSM is based on first return points after removal of noise.

LAS format data files are loaded into Terrascan only loading in First, First-of-many and Single returns. Additional data is loaded to avoid tile edge artefacts.

Only coverage classed 1 to 6 & 17 points will be used in generation of Digital Surface Models. The elevation grid is generated as a TerraScan Lattice Model using the following settings:

- o Grid Method = Binning (Maximum Value DSM)
- o Grid Spacing = 1 metre

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

As part of the DSM development, hydro features used to create the DEM deliverables were included in the production of the DSM.

Hydro-flattened DEM tiles are overlaid against the DSM tiles to identify and fill gaps in the data (such as the river), and then the tiles were exported in Geotiff format including settings for the datums and null data specifications, using the tile grid to clip & name the data files.

The DSM deliverables undergo a visual spot check using Globalmapper. This process allows for natural and man-made features to be incorporated to the DSM while helping to develop an aesthetically pleasing water surface similar to that developed for the DEM deliverable.

Digital surface models are created by combining points with only a single return, and points that have the first return of many (returns) and are then used to generate the DSM model. Figure 30 is an excerpt of one of the DSM tiles created for the project area.

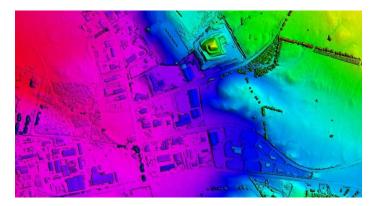


Figure 30: Excerpt from DSM_BG36_2020_1000_2042.

The tiles created are in GeoTiff floating 32-bit format and have been adjusted to display a NoData value of -9999 (Figure 31). The composite DSM was produced in 32-bit Geotiff format as requested and both the tiles and the composite had the correct horizontal and vertical co-ordinate systems assigned to the metadata in ArcMap.

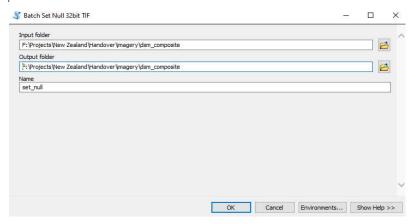


Figure 31: Script used in ArcMap to achieve a NoData value of -9999.

IMAGINE Image				
Generic				
floating point				
32 Bit				
-9999				

Figure 32: Properties of the composite DSM file showing its format and NoData value

After these files were amended, they were loaded into LP360 to check the necessary metadata of the imagery. The results from LP360 can be found in the table below. A complete listing of the LP360 results are included as an embedded document in Appendix 1.

T:I-	I ======	N-D-t-		D	D-+-	C 1: + -
File	Format	NoData Value	BPB	Bands	Data Type	Coordinate System
DSM_BG36_2021_1000_2117.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2118.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2119.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2120.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2121.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2122.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2123.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2124.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2125.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2126.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2127.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2128.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2129.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2130.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2131.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2132.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2133.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193
DSM_BG36_2021_1000_2134.tif	GTiff	-9999	32	1	FLOAT	EPSG: 2193

Table 4: Condensed output from LP360 illustrating DSM file specification compliance

4.4 Break lines

LINZ PGF specification 8.4 details requirements for hydro-flattening break lines.

Delivery of break lines representing all hydro-flattened features in a project is required. Additional break lines may also be required by the Contract Authority. These are to be delivered as ESRI Shape files (.shp) using the NZTM2000 projection.

Refer to section 7.0 of this document. The workflow methods will be documented in the project Processing Report. The digitized hydro features were included in the handover data set, under the Vector deliverable section. They are in shapefile (.shp) format and are in the NZTM2000 projection. Stream and stream-island, lake and lake island break lines were delivered, with ocean features falling under the "Lake" feature category due to its uniform height. In figure 31 the geometry type is set to a polygon shape and has vertical and horizontal co-ordinate sets as well as Z values.

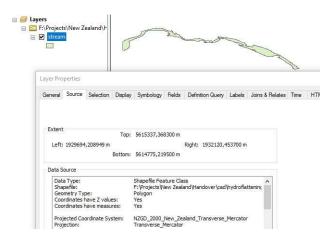


Figure 33: Stream break line properties in ArcMap.

4.5 GNSS data

GNSS data is not a required deliverable for this project.

4.6 Backed up project source data

LINZ PGF specification 8.6 details the requirements for archival and storage of the project data. Raw project source data, such as native format LiDAR files and point cloud swaths, are NOT required for delivery; however, a copy has been provided to CoLAB. It is acknowledged that the Vendor must hold a copy of all relevant raw project data, for a minimum of five years beyond the final delivery of the project deliverables. The vendor must provide this data, with unrestricted copyright, to the Contract Authority on request. The vendor may charge a reasonable access and distribution charge in such instances.

Woolpert and Ocean Infinity will archive all raw & processed data collected for 5 years following project completion.

4.7 Contours

Contours with an interval of 0.5m will be generated for project areas using Terramodeler and generated using the following settings:

Note Contours will be generated at Project conclusion to ensure there are no line breaks between blocks.

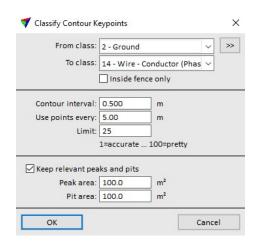


Figure 34: Contour key points settings used in Terrascan.

Once these contours are generated, they are extracted out as shapefiles and imported into Global Mapper and the attributes Elevation, INDEX2P5, INDEX10 & INDEX100 added. Each contour is then assigned a "Y" or "N" value depending on the elevation of that contour. These contours are then tiled out according to the LINZ tile specification, and once reviewed in ArcMap they are placed into a geodatabase using ArcGIS Pro for QA/QC and then delivery.

5 LiDAR QA Tiles

LINZ PGF specification 9.1 & 9.2 detail the requirements for project tiles geometry & naming convention.

- (a) NZTopo50 subtitles based on NZTM2000 coordinates. The 1-m gridded raster products and point clouds must be delivered at 1:1000 nominal scale (2500 720m high x 480m wide subtiles per full NZTopo50 sheet).
- (b) The origin of the raster tiles must be placed on a whole metre coordinate value of the southwest corner of each tile (for example, 5429500 mN_17490300mE).
- (c) The tiled deliverables must edge-match seamlessly and without gaps.
- (d) The tiled deliverables must conform to the project tiling scheme without overlap.
- (e) File naming must conform with the naming convention described in section 9.2.

A Tile Index must be provided in ESRI shape file format. The file name must be included as an attribute in the Tile Index file.

The Client supplied tiling grid shape file will be used as the tile clipping polygon when exporting the deliverable products. The shape file will have an attribute added for each deliverable type as specified in section 9.2. This attribute will contain the required tile name for each deliverable. This shape file will be used as the means of extracting all project data deliverables, so that the geometric aspects for specification 9.1, and the naming requirements of section 9.2 are fulfilled.

Deliverable QC checks have been performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team:

5.1 LAS Tiles QAQC - LASQC

Prior to delivery, Lidar data tiles have undergone a final analysis, using a custom developed Pre-Delivery QAQC tool called LASQC. This tool uses LASTools 'Lasinfo' in a batchscript called LASExtract, which collates information regarding each tile into an Excel worksheet. The tool analysis and reports compliance on the following items:

- o File naming accuracy
- o Check to ensure lidar points fall inside the extents bounded by the NZTOPO50/1:1000 tile name
- o Adjusted GPS time falling with correct extents for the survey
- o LAS file format, version, file source ID, point data record format & scale factor
- o Point counts by return, illustrating presence of multiple returns
- o Average point density for the tile, excluding overlap
- o Presence of the overlap (not applicable to all tiles) & withheld flags
- o Minimum, maximum & average intensity values.
- o Height above ground for building, low, medium & high vegetation classes

- Note it should be noted that this analysis is not accurate in steep terrain due to the different methods used for triangulation of between Terrascan & LASTools.
- o Check for presence of correct ESPG Codes for geodetic & vertical datums, and map projection
- o Raster Overviews for Point Source ID, Intensity, Point Density and Overlap Analysis

These analysis results will be included as an attachment referenced in Appendix A.

5.2 File naming

Project deliverables have been named in accordance with the project specification illustrated in Table 5.

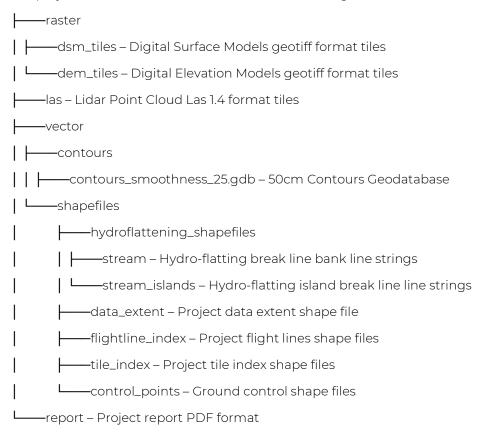

Product	DEM	CL2-Point Cloud Classification Level 2 DEM-Bare Earth Digital Elevation Model DSM-Digital Surface Model DTM-Digital Terrain Model UNC-Unclassified Point Cloud INT-Intensity image CHM - Canopy Height Model IMG-Aerial photography etc
Sheet	BK34	LINZ Topo50 identifier (4 characters)
Year	2016	Year of survey commencement
Scale	1000	Nominal scale of NZTopo50 subtiles
Tile	4118	Row number (41), Column number (18) of tile with respect to an upper left origin
ext	tif	File extension according to format conventions las tif shp etc

Table 5: File Naming

5.3 Delivery Folder

The project deliverables are structured in the following manner:

6 Setbacks and Solutions

During the production of the data sets for the Priority E area, setbacks were encountered, with a varying impact on production time. Along with these setbacks, new methods of production were created to account for any necessary changes to improve the quality of the data set or save time when amending the data set.

6.1 Missing ground points under vegetation and low vegetation classification difficulties

During the processing of Waikato Block E and Priority E it is noted there are areas of dense vegetation which limit and often prevent laser penetration to the ground surface. In these situations, it is common for data voids to appear in the DEM surface. In addition, low lying dense vegetation has caused difficulty in assessing the true ground surface. In these situations, it can be difficult to discern if points are part of the ground surface or the lowest part of low-lying vegetation. In these situations, it is common for the ground surface profile to transition to what may or may not be the lowest part of low-lying vegetation. During manual editing, these situations are monitored with the objective being to make the best interpretation of ground.

6.2 Production Delays to Area E - Priority E

During production, it was determined a new technical team within Woolpert's US and Australian offices was necessary to continue production on the project. This handover from the previous team created project delivery delays as the new team became familiar with the project specifications as well as to address quality assurance workflow requests made by the prime contractor.

6.3 Review Process

Due to uncertainty of deliverable quality and issues associated with the processing procedure Ocean Infinity implemented a layered review process. Woolpert provided the initial DEM and DSM supply along with a results folder. These folders and files were forwarded to Cyient, an independent contractor, for a 100% review. The results of this review were vetted by Ocean Infinity and passed onto Woolpert for their review, comment and repair where deemed necessary. The process has been tracked by a modified LINZ QAQC spreadsheet.

6.4 Further review and changes

The original and subsequent supplies of data did not meet specification. There were issues with classification, intensity and interblock consistency. This has been corrected in the latest supply. The following section and associated figures illustrate how the data did not meet specification as identified by both Waikato Regional Council and LINZ and the fixes employed to remedy.

1. Priority E Intraswath- Woolpert tested 9 sample areas for Priority E. Based on these random samples we are meeting intraswath accuracy. The RMSE for these 9 areas computes to 0.047137 m.

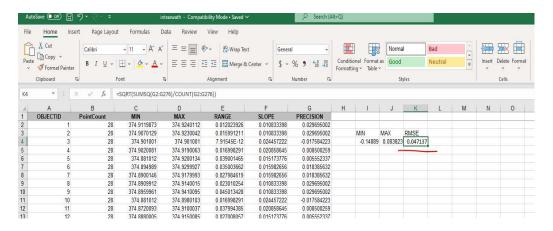


Figure 35: Intrawath analysis

2. Vegetation removed from ground class

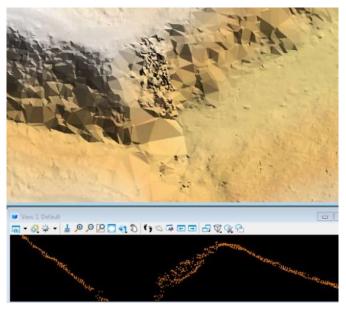


Figure 36: Vegetation shown in ground. Tile CL2_BD32_2021_1000_0205.las

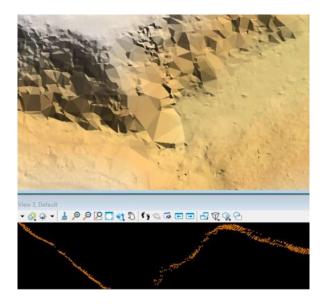


Figure 37: Tile CL2_BD32_2021_1000_0205.las after vegetation removed from ground

3. Spikes. Reclassed points from ground class to vegetation

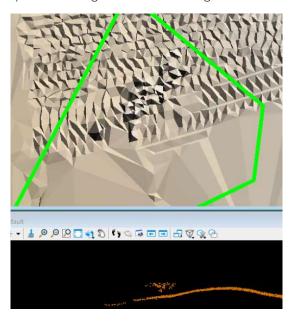


Figure 38: Vegetation in ground class. Tile CL2_BD32_2021_1000_0540.las

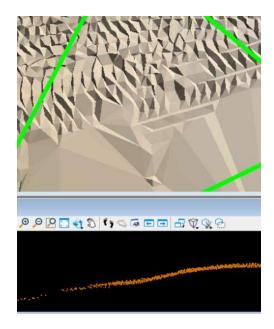


Figure 39: Vegetation removed from ground class. Tile CL2_BD32_2021_1000_0540.las

4. Reclassify low points to noise and added to ground class to better define DEM/DSM surface



Figure 40: Pit shown in CL2_BD32_2021_1000_0445.las



Figure 41: Tile CL2_BD32_2021_1000_0445.las after repair

5. Added additional points into ground to better define DEM surface

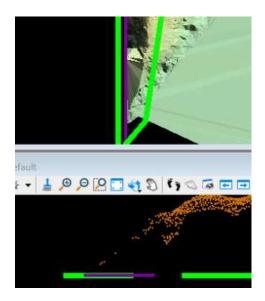


Figure 42: Tile CL2_BC32_2021_1000_4601.las showing few ground points on slope

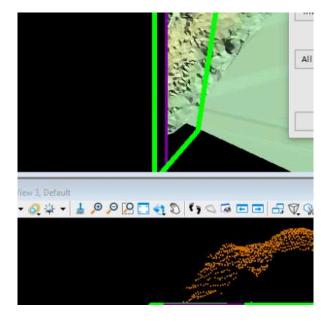


Figure 43: Tile CL2_BC32_2021_1000_4601.las with additional ground points on slope

6. Reclassed ground points on bridge deck to class 17

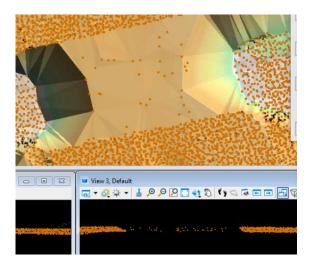


Figure 44: Tile CL2_BB32_2021_1000_4850.las showing ground points on bridge deck

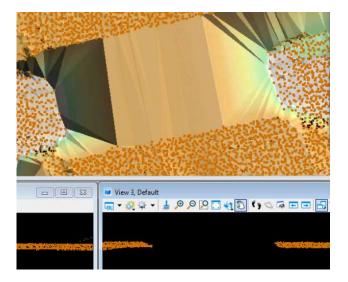


Figure 45: Tile CL2_BB32_2021_1000_4850.las ground points removed

7. Pitting removed by classifying noise and adding default to ground class.

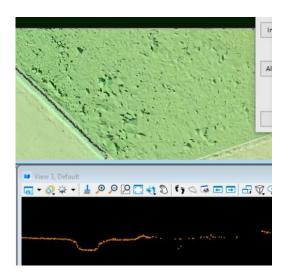


Figure 46: Tile showing pitting

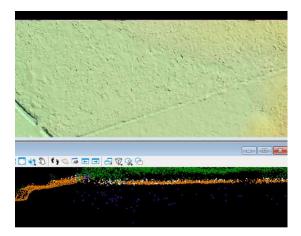


Figure 47: Tile after repair

8. It is noted that there will be sporadic low spots within farm fields where there is little point penetration

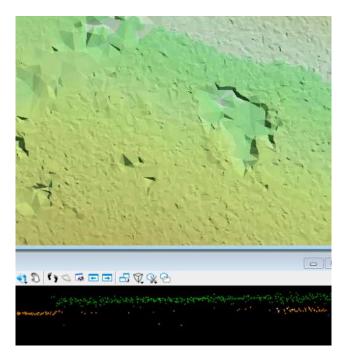


Figure 48: Illustrating lack of available ground points

9. Corduroy Texture in DEM/DSM. Additional filtering efforts were made to classify low points into noise class to address this patterning/texture in the DEM/DSM.

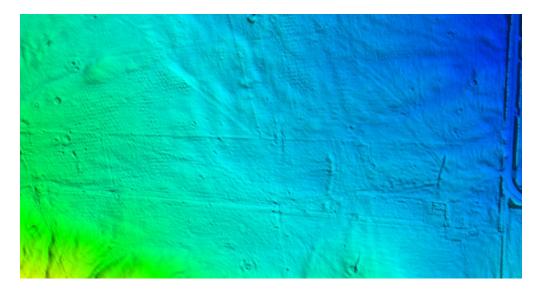


Figure 49: DEM before filter

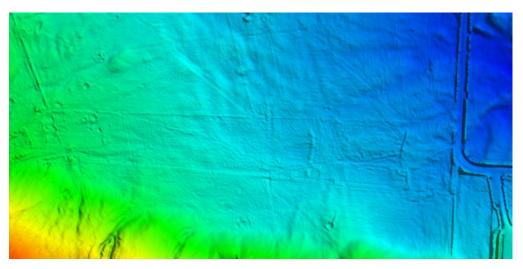


Figure 50: DEM after filter

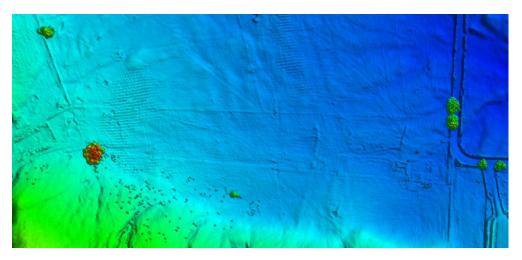


Figure 51: DSM before filter

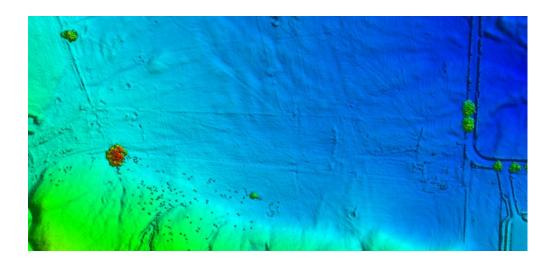


Figure 52: DSM after filter

7 Results Acceptance & Signoff

An acceptance and signoff of the project QAQC supervisory review is listed below.

Result Acceptance				
Assessment Criteria	Status	Completed	Date	
		By		
Point cloud classification accuracy	Complete	Woolpert	18 July 2022	
Point cloud classification consistency	Complete	Woolpert	18 July 2022	
Point Cloud LAS tiled deliverables	Complete	Woolpert	18 July 2022	
Hydro-flattened Digital Elevation Models	Complete	Woolpert	18 July 2022	
Digital Survey Models	Complete	Woolpert	18 July 2022	
Contours	Complete	Woolpert	18 July 2022	
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	18 July 2022	
Project Manager / Supervisor Signoff	Complete	Brian Foster	18 July 2022	
Ocean Infinity Review	Complete	Luke Leydon	27 July 2022	

Table 6: Processing Results Acceptable Signoff

Result Acceptance				
Assessment Criteria	Status	Completed By	Date	
Point cloud classification accuracy	Complete	Woolpert	07 April 2023	
Point cloud classification consistency	Complete	Woolpert	07 April 2023	
Point Cloud LAS tiled deliverables	Complete	Woolpert	07 April 2023	
Hydro-flattened Digital Elevation Models	Complete	Woolpert	07 April 2023	
Digital Survey Models	Complete	Woolpert	07 April 2023	
Contours	Complete	Woolpert	07 April 2023	
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert	07 April 2023	
Project Manager / Supervisor Signoff	Complete	Brian Foster	07 April 2023	
Ocean Infinity Review	Complete	Luke Leydon	01 May 2023	

Table 7: Processing Results Acceptable Signoff

Appendix A: Lidar Quality Assurance Results

Priority_E_LASQC_Waikato	2/05/2023 11:44 AM	Microsoft Excel M	15,845 KB
Priority_E_LP360_Results_for_DEMs	2/05/2023 11:44 AM	Microsoft Excel W	219 KB
Priority_E_LP360_Results_for_DSMs	2/05/2023 11:44 AM	Microsoft Excel W	216 KB
Priority_E_TSCAN_classes	2/05/2023 11:44 AM	Microsoft Excel W	10 KB
PriorityE_LP360_stats	2/05/2023 11:44 AM	Microsoft Excel W	1,621 KB

Provided as separate documents

Waikato Local Authority Shared Services (WLASS) / CoLAB LiDAR Data Capture Services LiDAR Processing Report Block E North (1)

Contract Number: AU411

Surveyed By: iXblue Pty Ltd / Ocean Infinity

Processing Completed By: Woolpert USA and Woolpert Australia

Prepared For: Colab (formerly WLASS)

Document Date: 14 October 2023

Ocean Infinity (Australia) Pty Ltd ABN 61 128 811 978 oceaninfinity.com

Document Control

Woolpert Inc. Representative

Name	Brian Foster
Position	Woolpert Senior Associate
Address	333 North Alabama St. Suite 200 Indianapolis, IN 46204
Telephone	+1 317 809 4685
Email	Brian.Foster@woolpert.com

Ocean Infinity Supervisor

Name	Dave Field
Position	Managing Director
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 277 755 532
Email	david.field@oceaninfinity.com

Ocean Infinity Project Manager

Name	Luke Leydon
Position	NZ Account Manager, Airborne
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 226 511 732
Email	<u>luke.leydon@oceaninfinity.com</u>

Client Representative

Name	Rolf Boswell
Position	Project Delivery Manager
Address	6/34D Lake Street, Cambridge 3434 NEW ZEALAND
Mobile	+64 27 420 0239
Email	<u>rolf.boswell@colabsolutions.govt.nz</u>

Document Revision

Revision No	Issue Purpose	Prepared	Checked	Approved
0	Issue LiDAR Processing Report	L Leydon	L Graham	D Field

Approval for Issue

Name	Signature	Date
Luke Leydon	Jake Jaydon	14 October 2023

Revision History

Item	Description of change	Section	Revision

Contents

1	Intro	duction		8	
2	LiDAR Data Processing and Handling			9	
	2.1	The ASPRS LAS File format			
	2.2	Time stamp of navigational data			
	2.3	Datums and coordinate reference system			
	2.4	2.4 Geometric Calibration			
	2.5	.5 Positional accuracy validation		12	
	2.6	Use of the LAS withheld flag		12	
	2.7	Use of the LAS v1.4 Overlap Flag		12	
	2.8 Point Classification		assification	13	
		2.8.1	Building Classification	17	
		2.8.2	Vegetation & Low-Level Noise Classification:	17	
	2.9	Classifica	ation Accuracy	18	
	2.10	Classifica	ation Consistency	20	
	2.11	Classifica	ation Consistency – Bridges	21	
3	Lida	.R Hydro-f	Flattening QAQC	25	
4	LiDAR Deliverables QAQC				
	4.1	Reportir	ng and metadata	33	
		4.1.1	Project reports	33	
		4.1.2	Extents	33	
		4.1.3	Flight Lines	34	
	4.2	Classified point cloud tiles		35	
	4.3	Elevation models		37	
		4.3.1	Bare-Earth Digital Elevation Models (DEM)	38	
		4.3.2	Digital Surface Models (DSM)	40	
	4.4	Break lines		43	
	4.5	GNSS data		44	
	4.6	6 Backed up project source data		44	
	4.7	Contours			
5	LiDAR QA Tiles				
	5.1	LAS Tiles QAQC - LASQC		45	
	5.2	File naming		46	
	5.3 Delivery Folder			47	
6	Setbacks and Solutions				
	6.1	6.1 Missing ground points under vegetation and low vegetation classification difficulties			
	6.2	Production Delays			
	6.3	3 Lessons learned and collaboration			
7	Resu	ılts Accep	tance & Signoff	49	
		334.6 / 1636 p. ca. 163 ca. 6 g. 167			

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Tables

Table 1: Point Classifications	13
Table 2: Representative output from LP360 illustrating LAS file specification compliance	
Table 3: Condensed output from LP360 illustrating DEM file specification compliance	39
Table 4: LP360 DSM Results example table	43
Table 5: File Naming	
Table 6: Processing Results Acceptable Signoff	

Figures

Figure 1: Waikato Survey Area	7
Figure 2: LAS 1.4 being specified during project – example	9
Figure 3: Project settings used in TerraScan project when importing points into the project	10
Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools.	10
Figure 5: Representative examples of LAS point attributes	11
Figure 6: Settings used when cutting overlap in Microstation	13
Figure 7: Automatic classification macro developed for the project area	14
Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine	15
Figure 9: A smaller iteration distance value avoids classification of ground points on low objects	15
Figure 10: Statistics showing the classes of all the LAS points within the project area	16
Figure 11: The diagonal hatching seen above shows how the progress was tracked	16
Figure 12: The polygons are areas for further investigation	18
Figure 13: Example overhead image of DEM over cliffs	19
Figure 14: LAS point cloud profile view from previous figurefigure 14: LAS point cloud profile view from previous figure	19
Figure 15: Example overhead image of DEM interpolation	2C
Figure 16: LAS Point cloud view from previous figure	
Figure 17: Tile DEM_BD34_2021_1000_4833 with LINZ bridge centreline	22
Figure 18: DEM Tile BD34_2021_1000_5029	22
Figure 19: DEM Tile BH35_2021_1000_1312	23
Figure 20: DEM Tile BE33_2021_1000_0450	23
Figure 21: DEM Tile BE34_1000_5020	24
Figure 22: DEM Tile BE34_1000_1331	24
Figure 23: Example of a hydro-flattened DEM Lake Tile DEM_BE33_2021_1000_0449	26
Figure 25: Example of Bridge with LINZ bridge centreline	27
Figure 26: Same location as above DEM	27
Figure 26: Excerpt of river points used to create the centreline	28
Figure 27: Centreline for the stream within the project's survey	28
Figure 28: Settings used to export lattice models.	29
Figure 29: Pre-filter, overhead view of ground and veg points with hydro lines	3C
Figure 30: Post-filter, overhead view of ground and veg points with hydro lines	31
Figure 31: Point cloud – boulder filled stream	31
Figure 32: Imagery – boulder filled stream	32
Figure 33: Example of hydroflattened DEM: DEM_BE35_2021_1000_0808	
Figure 34: Extent of deliverable data for Block E North (1)(1)	34
Figure 35: Flight lines for 4ppm2 data coverage over Block E North (1)	35
Figure 36: WKT of a LAS file shown by LASTools.	36
Figure 37: DEM Example Tile DEM_BD34_2021_1000_4604	4C
Figure 38: Excerpt from DSM_BD34_2021_1000_4525 and 4526	41
Figure 39: Excerpt from DSM_BD34_2021_1000_445	
Figure 40: Difference between DSM and DEM differences in height along cliff lines	42
Figure 41: Script used in ArcMap to achieve a NoData value of -9999	42
Figure 42: Properties of the composite DSM file showing its format and NoData value	42
Figure 43: Stream break line properties in ArcMap	4.3

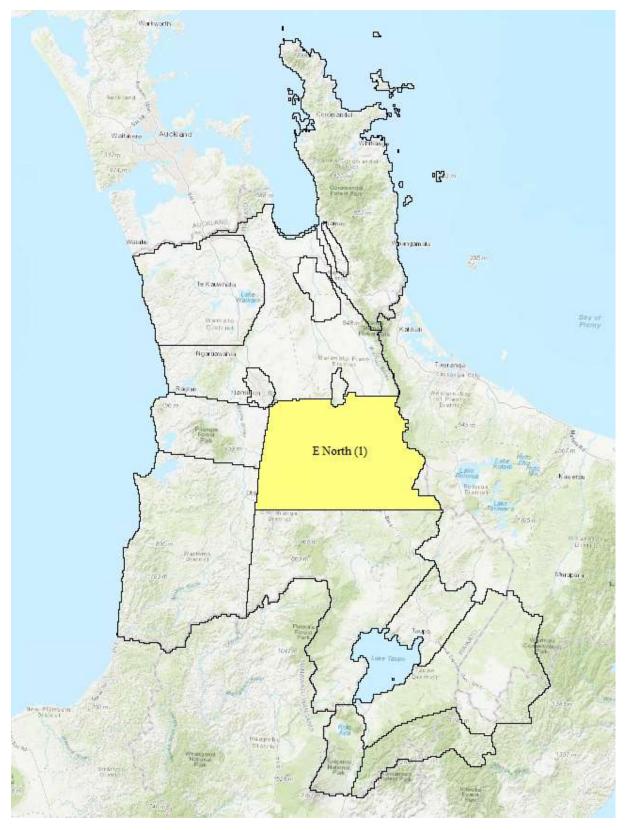


Figure 1: Waikato Survey Area

1 Introduction

Lidar survey projects are broken into three distinct phases. The survey commences with the data acquisition project phase. For matters pertaining to this phase of the project, refer to the document

• AU411_WLASS-Collection_Report-10052021.pdf.

The next phase of the project is the Geopositioning phase, which involves processing the raw sensor and trajectory data to produce a set of point clouds for each flight line.

The point clouds have several geometric optimizations performed, to optimise the relative and absolute spatial accuracy levels.

At completion of the Geopositioning phase, the point cloud geometry is final, and the point cloud classification and production generation project phases follow.

For matters pertaining to this phase of the project, refer to the documents

- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022

The following report covers the data processing project phase and describes the data processing methods used for the lidar classification and product generation, along with the QAQC procedures and results.

This report illustrates compliance with the LINZ PGF specifications sections 6 - 9.

This report pertains to the coverage of Block E North (1), as illustrated in yellow in Figure 1 - Waikato Survey. Block E was split into three during processing due to the size, 10,180km². Block E North (1), Block E North (2) and Block E South are the splits.

This dataset was uploaded by Woolpert Australia Saturday 07 October 2023. This was transferred to Waikato Regional Council (WRC) Monday 09 October 2023.

2 LiDAR Data Processing and Handling

The LiDAR data processing method is described in the Project Method Statement, AU411-FOR-008-R5 Project Method Statement_WLASS. The following sections elaborate further but focus on adherence with compliance to the Linz PGF Specification (JAN 2020).

https://www.linz.govt.nz/system/files_force/media/doc/pgf_version_new_zealand_national_aerial_lidar_base_specification.pdf?download=1

QAQC steps for various workflow tasks have been tracked and recorded and included as an embedded document within Appendix 1.

2.1 The ASPRS LAS File format

LINZ PGF specification 6.1 requires that all point deliverables are required to be fully compliant with LAS Specification Version 1.4, using Point Data Record Format (PDRF) 6, 7, 8, 9 or 10 (referred to as LAS v1.4).

For this project, LAS 1.4 with PDRF 6 is to be delivered.

The LAS files created during the project during the Geopositioning phase and subsequent data cleaning and deliverable products are in ASPRS LAS 1.4 format, with PDRF 6. This was specified during the creation of the project in TerraScan, as shown in a representative image in the figure below:

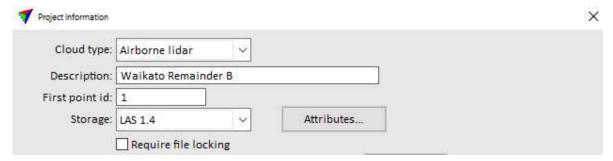


Figure 2: LAS 1.4 being specified during project - example

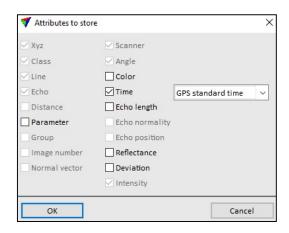


Figure 3: Project settings used in TerraScan project when importing points into the project.

The correct format of LAS is illustrated by use of LASTools, which shows the LAS files are in 1.4 format in the figure below.

Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools

To verify that the project deliverables are in the correct LAS file format/version with PDRF, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.2 Time stamp of navigational data

LINZ PGF specification 6.2 requires that Each Global Navigation Satellite System (GNSS) aircraft positional measurement must be time stamped using Adjusted Global Positioning System (GPS) Time, at a precision enough to allow unique timestamps for each LiDAR pulse.

For this project, LAS 1.4 with PDRF 6 has been delivered including, with Global Encoding bit set to 1.

An example of how adjusted GPS time is visualized and monitored is illustrated in Figure 5: LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right).

To verify GPS time is set to adjusted GPS time, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar technical manager reviewed this analysis to ensure that all deliverable LAS files are compliant.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A. Figure 5 below shows representative examples of LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right)

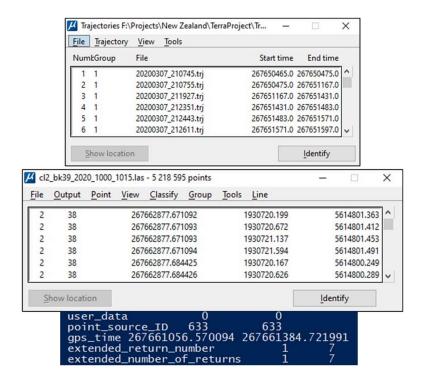


Figure 5: Representative examples of LAS point attributes

2.3 Datums and coordinate reference system

LINZ PGF specification 6.3 requires that the required datum for latitude, longitude, and ellipsoid heights is the New Zealand Geodetic Datum 2000. The required vertical datum for normal-orthometric heights is NZVD2016 (Reference 9). Projected data products are to be delivered in NZTM2000 projection (Reference 10) with NZVD2016 normal-orthometric heights.

The Survey Datums, Ground Control, Check Points and Lidar Geopositioning sections of the Project Methodology Statement describes in detail how the data is transformed and connected to the required project datum.

To verify that the correct datum information is recorded in the LAS 1.4 header, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files have the correct CRS applied in the header.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.4 Geometric Calibration

Following initial sensor data processing, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.

Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error. These calibration adjustments were performed using a combination of automated and manual corrections to the data to develop the geometrically calibrated data set to be utilized for all downstream processes.

2.5 Positional accuracy validation

LINZ PGF specification 6.4 details the positional accuracy verification methods. The Vendor is expected to apply best practice in assessing the project accuracy and achieving compliance with this specification. Before classifying and developing derivative products from the point cloud, the relative vertical, local vertical and horizontal accuracies of the point cloud must be verified. The Vendor must deliver a detailed report of the validation processes used.

Validation of the point cloud positional accuracies is the primary outcome of the Lidar Geopositioning workflow phase, using surveyed ground control & check points. The assessments methods and results of the positional accuracy validation is be reported in the LiDAR Geopositioning QA/QC Report.

2.6 Use of the LAS withheld flag

LINZ PGF specification 6.5 requires that outliers, noise points, geometrically unreliable points near the extreme edge of the swath, and other points the Vendor deems unusable must be identified using the Withheld Flag, as defined in the LAS Specification.

Points classified as low noise (coverage class 7) and high noise (coverage class 18) will have the LAS withheld flag set.

To verify that the withheld flag has been correctly set, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analyst to ensure that the Las withheld flag is correctly applied. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.7 Use of the LAS v1.4 Overlap Flag

LINZ PGF specification 6.6 requires identifying overage points is not required unless requested by the Contract Authority. However, if overage points are explicitly identified using LAS v1.4, they must be identified using the overlap flag.

Classification of the overlap points was done using TerraScan in Microstation. A macro step was created which allowed for points to be classified with the overlap bit by cutting the scan angle at zero degrees.

The step used for the project dataset is illustrated in the figure below. This allowed for the overlap points to be withheld from DEM, DSM and intensity imagery generation. Figure 6 below shows Settings used when cutting overlap in Microstation. Note that the 'Action' is on "Set overlap bit.

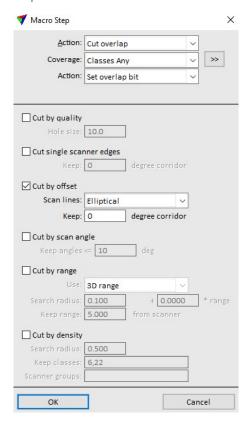


Figure 6: Settings used when cutting overlap in Microstation.

Verification of appropriate overlap flag application is performed using LP360 File Analyst. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.8 Point Classification

LINZ PGF specification 6.7 requires Lidar points are classified to the following coverage classes:

Code	Description
7	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
17	Bridge deck
18	High noise

Table 1: Point Classifications

Point cloud classification is performed by automated classification algorithms developed by Woolpert's senior Lidar analysts and reviewed by the Lidar technical manager.

A first run automatic classification was carried out on the raw LiDAR points using TerraSolid's TerraScan software to classify the LiDAR points into ground hits and non-ground hits. This results in a greater than 80% correct classification. Some of the steps used within this macro can be found within the screenshot below (Figure 7), including 5 of the 8 ground classification steps used on this data set.

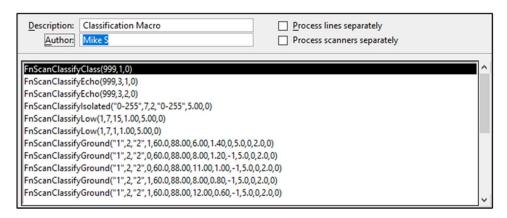


Figure 7: Automatic classification macro developed for the project area.

As documented by TerraSolid, the ground routine classifies ground points by creating a triangulated surface model iteratively. The routine is best suited for classifying ground in airborne laser data sets and in data sets where there is mainly natural terrain. For classifying ground in mobile data sets where the majority of ground is on hard surfaces, such as roads, use the Hard surface routine instead of the ground routine.

The routine is sensitive to low error points in the point cloud. Therefore, you should run one or more classification steps using the Low points routine before classifying ground. A more complex classification strategy is required for classifying ground in photogrammetric point clouds.

The ground routine starts by selecting local low points that are confident hits on the ground. The initial point selection is controlled with the Max building size parameter. If the maximum building size is, for example, set to 60.0 m, the routine assumes that any 60 by 60 m area has at least one point on the ground level and that the lowest point is on the ground level.

Then, the routine builds a surface model (TIN) from the initial ground points. The triangles in this initial model are mostly below the ground level and only the vertices are touching the ground. In the following iterations, the routine molds the model upwards by adding more and more points. Each added point makes the model following the true ground surface more closely.

The iteration parameters of the routine determine how close a point must be to a triangle plane for being accepted as ground point and added to the model. Iteration angle is the maximum angle between a point, its projection on the triangle plane and the closest triangle vertex. This is the main parameter controlling how many points are classified into the ground class. The smaller the Iteration angle, the less eager the routine is to follow variation in the ground level, such as small undulations in terrain or points on low vegetation. Use a smaller angle value (close to 4.0) in flat terrain and a bigger value (close to 10.0) in mountainous terrain.

Iteration distance makes sure that the iteration does not make big jumps upward if triangles are large.

This avoids ground points that are too high, for example within low vegetation or on low buildings.

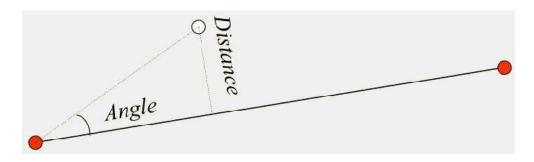


Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine.

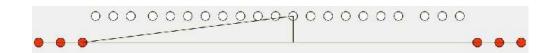


Figure 9: A smaller iteration distance value avoids classification of ground points on low objects.

The iteration angle can be reduced automatically if the triangles become small. This reduces the eagerness to classify more ground points inside small triangles and thus, avoids unnecessary point density of the ground model thus avoiding redundancy of inclusion of unnecessary ground points.

Related to this it is common to see default classified points within a classified ground point cloud surface. The iteration angle inside small triangles approaches zero if the longest triangle edge is shorter than a given Edge length value. Furthermore, the iteration can be stopped completely if triangle edges are shorter than a given limit.

After completion of the automated classification, a strenuous manual classification was carried out over the required area to edit the points thus minimizing gross classification errors that may have occurred in the automatic classification process.

Each block's data was checked in a systematic approach to reduce missing important features. Orthogonal views with background orthoimagery, and profile views are used to review the performance of the automatic classification results.

Tools such as 'Classify using brush', 'Classify above line' and 'Add Point to Ground' (all found within TerraScan) were used during manual classification, to achieve classification accuracy meeting project specifications. Before handover files were created, checks were done on the project's points by viewing statistics within TerraScan or LASTools as illustrated in the figure below.


```
histogram of classification of points:
          565103 unclassified (1)
     14660276577 ground (2)
      1370869654 low vegetation (3)
      2589919867 medium vegetation (4)
      5927103164 high vegetation (5)
      118308724 building (6)
      3130355591 noise (7)
          937614 water (9)
          547522 bridge deck (17)
        47558385 Reserved for ASPRS Definition (18)
 +-> flagged as withheld: 3177913976
           3130355591 of those are noise (7)
 +--->
  +--->
              47558385 of those are Reserved for ASPRS Definition (18)
 +-> flagged as extended overlap: 11549770021
  +--->
                 89921 of those are unclassified (1)
           6111676555 of those are ground (2)
  +--->
            568022545 of those are low vegetation (3)
  +--->
  +--->
            1025053902 of those are medium vegetation (4)
           2112997748 of those are high vegetation (5)
  +--->
             59730777 of those are building (6)
  +--->
  +---> 59730777 of those are building
+---> 1664356168 of those are noise (7)
               313149 of those are water (9)
  +--->
                 276901 of those are bridge deck (17)
               7252355 of those are Reserved for ASPRS Definition (18)
  +--->
```

Figure 10: Statistics showing the classes of all the LAS points within the project area

To keep track of the data cleaning process, a hatching method was used on the DGN within Microstation. It allows the cleaners to systematically mark each tile which has been fully checked and editing, making sure the whole data set has been initially covered.

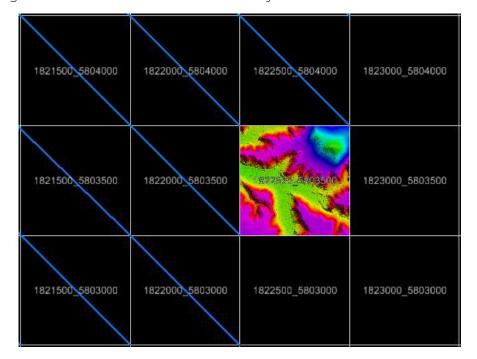


Figure 11: The diagonal hatching seen above shows how the progress was tracked

To verify that only the required coverage classes are present & populated, LP360 File Analyst performs exhaustive testing on the LAS data records, and outputs the analysis results to an excel spreadsheet. Lidar Analysts review this data to ensure that all deliverable LAS files are compliant with the specification coverage classes. Point cloud QAQC/editing is performed by trained Lidar Technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team.

2.8.1 Building Classification

The classification of building points has been undertaken by utilizing the TerraScan *buildings* routine. This routine classifies points on buildings which form a planar surface, several rules can be set to fine tune these results including the minimum building size/footprint, z tolerance of the point alignment along the roof line and use of echo information.

The use of echo information can further support the classification as points on roofs mostly belong to the echo type 'only echo' whereas vegetation usually contains a lot of 'first of many' and 'intermediate' echoes.

Additionally, the LINZ building footprint was also integrated into the building classification workflow to further constrain the classification and improve the overall output.

2.8.2 Vegetation & Low-Level Noise Classification:

In agreeance with all parties, Woolpert have classified the lower 0 – 0.3m of the low vegetation class to class 7 (low noise).

This was done to effectively remove the lower noise stratification points and unused ground points from class 3 over areas which do not represent vegetation e.g. man-made surfaces and structures (sealed roads).

The remaining vegetation points were classified using TerraScan's classify by height from ground which uses the ground surface to calculate the distance of each point above and below ground. All identified vegetation points were classified to the nominated classes using the height ranges specified in the New Zealand Nation Aerial LiDAR Base Specification (See below).

Table 4 Minimum LAS point cloud classification scheme

Code	Description
1	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
18	High noise

2.9 Classification Accuracy

LINZ PGF specification 6.8 requires that non-withheld points must be classified to a classification accuracy level of 2%. No non-withheld points are to remain as class 0.

Realtime Digital Elevation models are generated using Terrascan/Terramodeler are used to verify ground classified points and lidar technicians review the DEMs to find anomalies such as spikes or pits that imply misclassified points and make corrections.

During DEM review profiles are cut across tiles where potential issues are detected. The Lidar Technician scans the profile view to identify if an issue exists and modifies the classification of points as required.

10% of the data tiles are subject to review by a senior analysis or project manager.

After data cleaning was completed, a comprehensive DEM review is performed to visualize the data over large areas for the purpose of identifying anomalies or areas for further investigation. Any potential errors were identified as shown in the red polygons below and later addressed via additional manual editing.

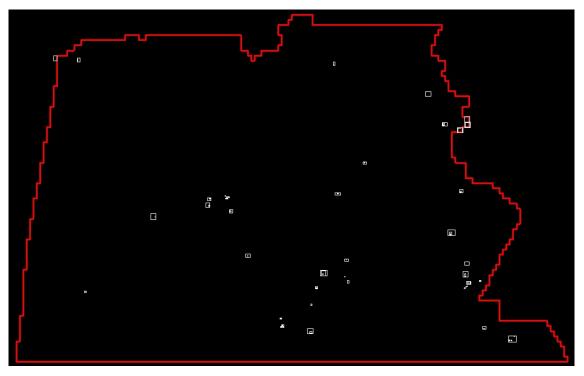


Figure 12: The polygons are areas for further investigation

The indicated areas were revisited and manually classified as appropriate. Below is an example of an issue identified for further investigation. Multiple revisions of the point cloud were performed to address issues common to the terrain and vegetation cover found within the project AOI. Rugged terrain and heavy vegetation across areas within the AOI commonly created unavoidable laser penetration difficulties as well as areas within the DEM that that appear to have a rough surface.

The figures below illustrate such and occurrence. Issues were identified concerning what appeared to be excess noise in areas of gullies. After investigating it was determined the gully areas in question are densely vegetated and located within steep terrain. The sparseness of the consistent ground penetration and steepness of terrain led to points being classified as noise during ground filtering. Additional filtering steps were taken to reclassify points into ground from noise class. The additional ground points added from noise provide improvement to the DEM quality as the points classified from noise to ground were sparsely distributed due to dense vegetation.

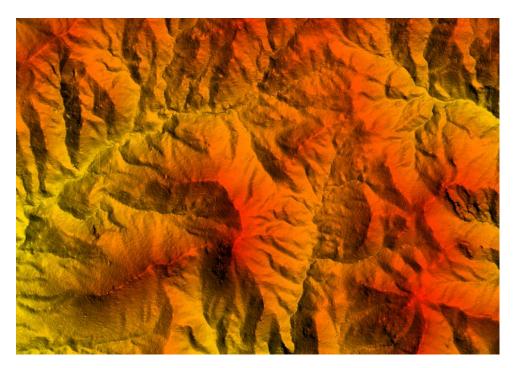


Figure 13: Example overhead image of DEM over cliffs

Figure 14: LAS point cloud profile view from previous figure

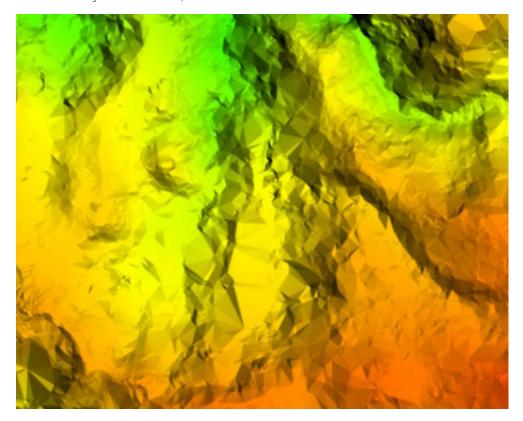


Figure 15: Example overhead image of DEM interpolation

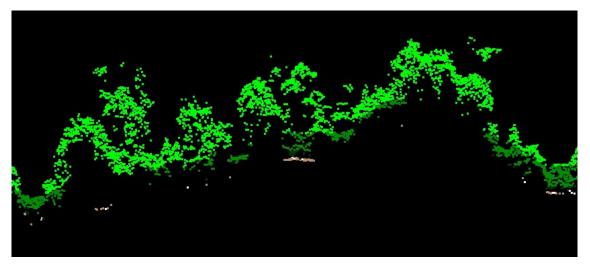


Figure 16: LAS Point cloud view from previous figure

2.10 Classification Consistency

LINZ PGF specification 6.9 requires that point classification must be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, flights, or other unnatural divisions are grounds for rejection of the entire deliverable.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

As with classification accuracy there is no analytical means of measuring compliance. As such the classification consistency is reviewed via visual means. To mitigate against inconsistent classification, the following controls were employed:

- Systematic geometric issues that may lead to swath-based inconsistencies are identified by the Lidar Geopositioning process, as documented in the Project Method Statement, specifically in the intraswath, interswath & absolute accuracy analysis steps. Data swaths that do not pass this stage do not progress to later classification steps
- The automated classification process is a series of classification algorithm tools applied in a macro. The macro is designed and optimised to yield high classification accuracy across the variety of land cover types within the project area. Applying the one, optimised and flexible classification macro delivers consistent classification across the entire project area
- To avoid tile edge artefacts, all tile-based workflow steps utilise a buffer of lidar points from surrounding tiles. This allows for a better classification of both ground and vegetation points.
- Lidar Technicians are trained to deliver consistent results and use the same visualisation methods/aids. They are supervised by the Lidar Phase Manager and the 10% of classified point cloud tiles are peer reviewed by a dedicated QAQC team.
- DEM tiles are run after classification has been completed to review possible errors in Ground classification.
- Bridges are checked against a bridge shapefile (supplied by LINZ) to correctly identify and classify the bridges.

2.11 Classification Consistency – Bridges

As mentioned above the dataset was compared against the LINZ bridge shapefile. There was discussion between Ocean Infinity, WRC, Woolpert and AAM around the differentiation of bridges versus culverts. The subject is somewhat open to interpretation. It is noted that the classification of Bridges (or not) has implications for Water flow modelling and hydroflattening. The following images are a visual representation of some of the aspects discussed.

Below examples shows the DEM where a bridge has been removed.

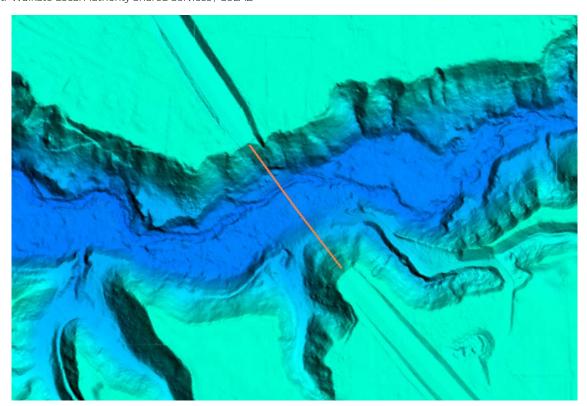


Figure 17: Tile DEM_BD34_2021_1000_4833 with LINZ bridge centreline

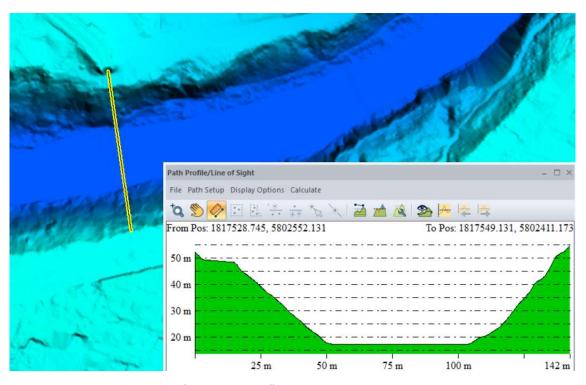


Figure 18: DEM Tile BD34_2021_1000_5029

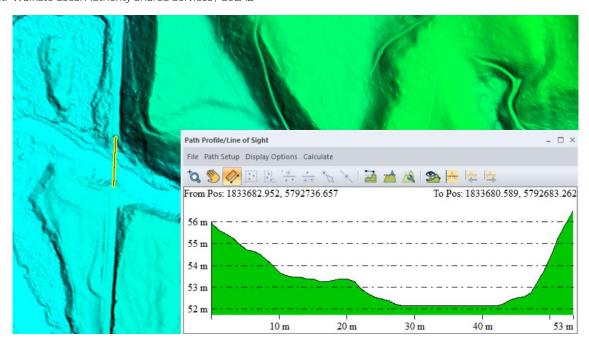


Figure 19: DEM Tile BH35_2021_1000_1312

The example below shows a road cut into a slope rather than a bridge.

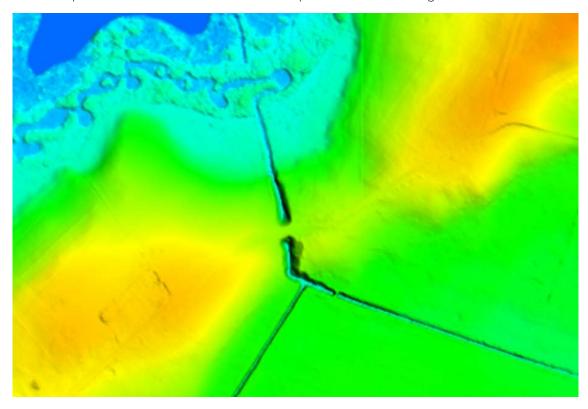


Figure 20: DEM Tile BE33_2021_1000_0450

The example below shows a Bridge that appears in the LINZ shapefile that has been classified to class 17 but is really a culvert. No breakline added.

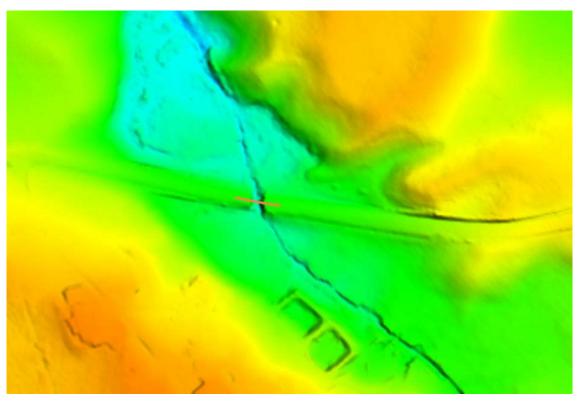


Figure 21: DEM Tile BE34_1000_5020

The example below shows a Bridge in the LINZ shapefile that is a culvert and is therefore not edited to class 17.

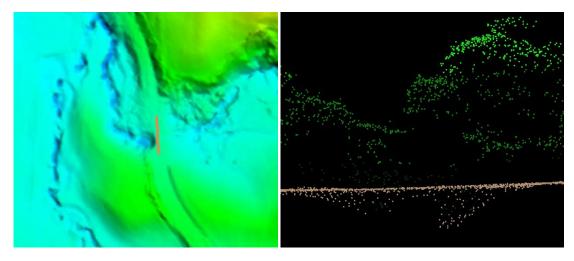


Figure 22: DEM Tile BE34_1000_1331

3 LiDAR Hydro-Flattening QAQC

LINZ PGF specification 7.0 details at length the requirements for Hydro flattening of Digital Elevation Models.

The methods for Hydro Break line Digitization, Hydro-Flattening and Hydro-Flattening quality control are described in the Lidar Processing and Data presentation section of the Project Method Statement.

Hydro-flattening generation methods will be detailed in the Processing Report.

The pertinent parts of the specification and the means of identifying the required hydro-flattening features are as follows:

- Permanent islands 5,000 m2 or larger must be delineated
- · Islands of 5000m2 will be included as hole features within the parent hydro-flattening polygon.
- · Inland ponds and lakes water bodies of 10,000m2 or greater at the time of collection must be flattened
- Lake polygon features will be precisely digitized using lidar point cloud with supporting background intensity imagery and supported by open-source imagery as reference.
- Inland streams and rivers of >= 30m nominal width (width of water flow in a single channel at time of capture) must be flattened
- Streams/rivers that fulfil the minimum distance requirement will be identified by visual inspection of the point cloud.

Hydro-flattening was performed upon the project dataset, and hydro break lines were used during the creation of digital elevation models. Hydro Flattening digitizing are performed by Lidar technicians, under the supervision of the Lidar technical manager. The hydrological features were digitised in Microstation using a combination of manual and automatic digitizing ('Display boundary' function in TerraModeler). Stream islands that were 5 000m² or larger in size.

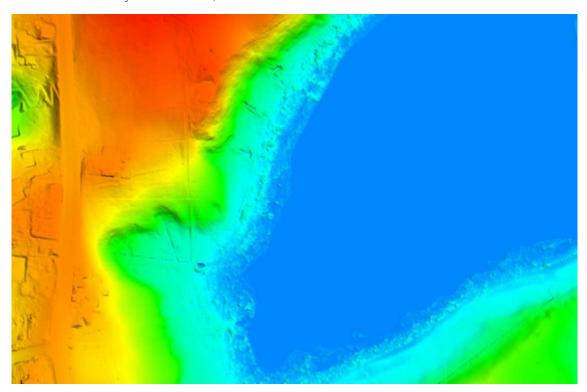


Figure 23: Example of a hydro-flattened DEM Lake Tile DEM_BE33_2021_1000_0449

When hydro-flattening a stream, the following process is used:

Identify a possible stream feature. Measure the width of the stream from bank to bank, and if greater than 30m wide, begin digitizing the feature. If the stream varies in width, the discretion of the geospatial specialist is applied.

Once the stream outline was completed, and that it was confirmed to be a polygon, a shapefile was imported into ArcMap and a centreline was created using the 'Create Centreline' script, which generates a centreline based on the stream polygon.

The centrelines were then checked for errors which may have occurred during its creation. It was then exported to Microstation where the centreline was then dropped to a surface (created by surrounding ground points). The tool 'Force Downstream Flow' was used to enforce correct elevations for the centreline, ensuring that each point's height was equal to or less than that of the point before it.

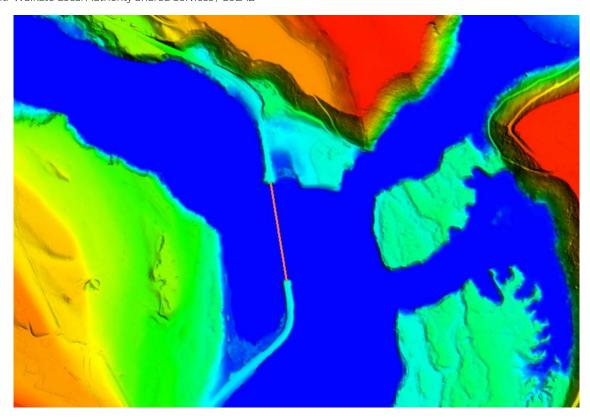


Figure 24: Example of Bridge with LINZ bridge centreline

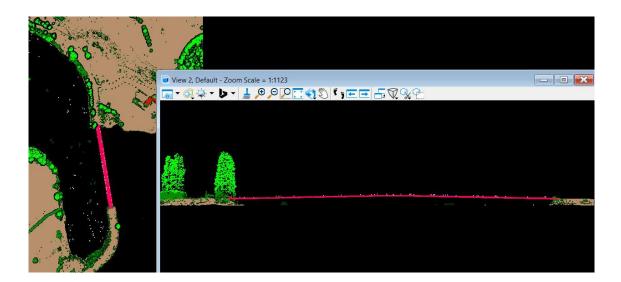


Figure 25: Same location as above DEM.

Laser with the Ground and Bridge classes (red) visible. Shows that the bridge has been classified.

The correct order of point heights was then checked by exporting the co-ordinates out as a text file which would be used for the creation of a new centreline shapefile. Figure 18 shows the example excerpt of river points used to create the centreline after downstream flow was enforced. Figure 19 shows the example highlighted script was used to generate the centreline for the stream within the project's survey.

```
1 1929744.8358 5615128.2638 7.7096
2 1929746.0769 5615130.8498 7.6863
3 1929746.4280 5615131.5996 7.6796
4 1929746.5107 5615131.7727 7.678
5 1929746.7841 5615132.3591 7.6728
6 1929748.0794 5615135.0799 7.6483
7 1929748.5703 5615136.1455 7.6388
8 1929749.4246 5615138.0643 7.622
9 1929749.8587 5615139.0742 7.6132
10 1929750.6288 5615140.9327 7.5973
11 1929751.0393 5615141.7916 7.5896
12 1929751.5292 5615142.7809 7.5805
13 1929754.3861 5615148.3485 7.529
14 1929754.7868 5615149.1041 7.5219
15 1929754.7991 5615149.1267 7.5217
16 1929757.3347 5615152.1834 7.4808
17 1929757.8445 5615152.7752 7.4594
```

Figure 26: Excerpt of river points used to create the centreline

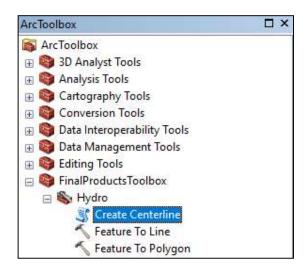


Figure 27: Centreline for the stream within the project's survey

After the new centreline had been created, it was conflated with the stream's shape using LP360 within ArcMap. This matched up the elevation of the stream's outline with that of the centreline. The new stream shape was attached to a DGN and opened in Microstation, exported as co-ordinates, and then read into the project. These points along with ground points were used to output lattice models which show the results of the hydro-flattening. Stream-island break line points were also included to ensure the correct modelling of the stream and its features.

The following settings were used for lattice model creation:

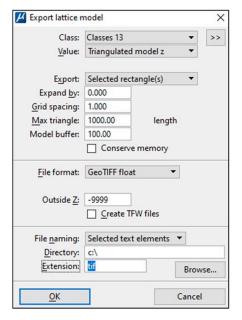


Figure 28: Settings used to export lattice models.

The product undergoes QC by the Lidar Phase Manager and is reviewed for any omissions or blunders. The following project specification are checked against:

- All Hydrologic break lines developed for use in hydro-flattening are in non-tiled ESRI feature class in polylineZ or polygonZ shape file format.
- Water bodies (ponds, lakes, and reservoirs), wide streams and rivers ("double-line"), and other non-tidal water bodies are to be hydro-flattened within the DEM. The resulting pond and lake surfaces will be flat and double line rivers will be flat level bank-to-bank and be gradient.
- It is noted when hydro-flattening streams, significant breaks in water elevation as well as varying degrees of bends in the stream direction will create a triangulated appearance in the DEM. These affects will be minimized to an appropriate extent.
- The entire water surface edge must be at or below the immediately surrounding terrain.
- · Hydro-flattening break line feature class use the NZTM2000 projection and NZVD0216 height datum
- · Hydro-flattening has applied to all streams that are nominally wider than 30 metres wide, and to all non-tidal boundary waters bordering the project area regardless of size.
- · Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are nominally larger than 10000m2 in area
- Stream channels should break at road crossings (culvert locations). These road fills should not be removed from the DEM.
- Streams and rivers should NOT break at elevated bridges. Bridges are removed from the DEM. When the identification of a feature such as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

A peer review of the Hydro flattening break line data products as well as the hydro-flattened DEM is performed on 10% of the dataset by an independent analyst or project manager. To distribute and track the progress amongst the editing & QAQC team, an ArcSDE tracker (multiuser database) is employed.

During the QA/QC, it was identified there will be instances of vegetation classifications contained within waterbody polygons. After investigation it was determined much of this occurs from overhanging vegetation from the outside of the hydro features. Occasionally there are instances of vegetation within waterways which is related to islands falling below the required threshold for collection. Additional processing steps were taken to limit the amount of vegetation that exists within the waterway while retaining the overhanging vegetation. This processing step primarily involved classification based on XYZ proximity to existing digitized hydro/island lines. After this process was performed some vegetation classified lidar points will still be present in the waterway.

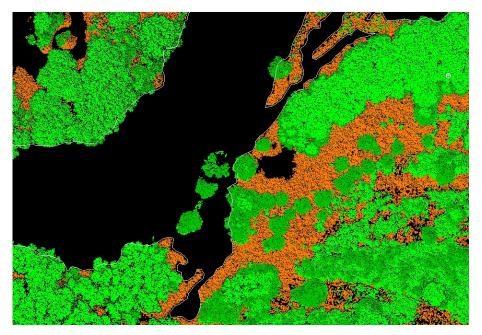


Figure 29: Pre-filter, overhead view of ground and veg points with hydro lines

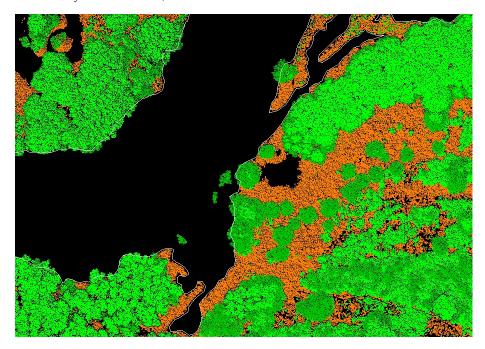


Figure 30: Post-filter, overhead view of ground and veg points with hydro lines

Additionally, during QC data review, it was discovered rocks and boulders within rivers are occasionally classified as vegetation. This is typically observed in high relief areas where water flows down steep terrain, i.e., rapids/white-water. Rivers tend to narrow in these areas and will not likely be caught during the aforementioned processing step based on proximity to linework. These points will continue to be classified as vegetation.

Figure 31: Point cloud – boulder filled stream

Figure 32: Imagery – boulder filled stream

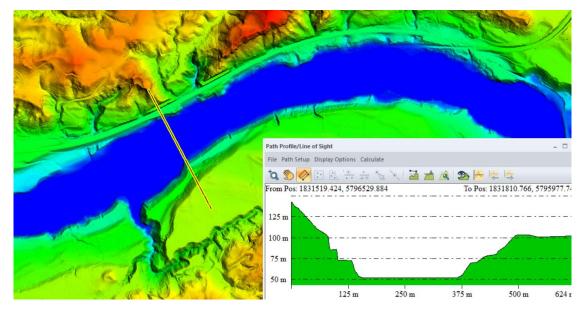


Figure 33: Example of hydroflattened DEM: DEM_BE35_2021_1000_0808

4 LiDAR Deliverables QAQC

Section 8 of the LINZ PGF specification details the project reporting, metadata requirements & deliverable requirements.

4.1 Reporting and metadata

4.1.1 Project reports

The following details the reports being delivered for this section of the project:

- Collection Report detailing mission planning and flight logs, including dates of collection
- Details of quality control tests, and conformance against Linz specifications
 - o Refer to AU411_WLASS-Collection_Report-10052021.pdf
- Survey Report detailing the collection of all ground control, including the following:
 - o Control points used to calibrate and process the LiDAR and derivative data
 - o Check sites used to validate the LiDAR point data or any derivative product
 - o Refer to AU411-R1-Waikato LiDAR Ground Control Report of Survey.pdf
- Geopositioning QA/QC Report, detailing analysis, accuracy assessment and validation of the following:
 - o Point cloud data, including a summary of relative (smooth surface repeatability and overlap consistency) and non-vegetated vertical and horizontal local accuracy.
 - o QA/QC analysis of the vertical and horizontal local accuracy assessment will include a table of the product data compared to each check site.
 - o Refer to AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
 - o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022.

Processing Report (This Document) detailing:

- Classification and product generation procedures including methodology used for break line collection, hydro-flattening break line collection, hydro-flattening processing, DEM & DSM creation, and deliverable generation.
- Details of quality control tests, and conformance against each of the relevant Linz specifications including:
 - o Workflow QAQC checklist
 - o Pre-Delivery QAQC worksheet as an embedded document

4.1.2 Extents

LINZ PGF specification 8.1.3 requires that a geo-referenced, digital spatial representation of the detailed extents of each delivered dataset.

The data for Block E was captured using Leica TerrainMapper sensor 513 and 559, flown on days 05th, 06th, 10th, 11th, 14th, 15th, 25th, 26th, 29th, 30th, 31st January, 1st, 3rd, 11th, 12th, 16th, 18th, 19th, 20th February, 11th, 13th, 21st, 22nd, 23rd, 24th March 2021.

Please note the dates above refer to all dates flown for the entirety of Block E inclusive of North (1), North (2) and South.

The extent of Block E can be seen in Figure 34. The flight lines relating to the area can be seen in Figure 35.

This extent was created by creating a surface in Microstation based on all points collected during the survey flight. The tool "Display boundary" was then used to generate the extent, which was then exported into a shapefile and assigned with the necessary horizontal and vertical co-ordinate system.

Another new Shapefile *Waikato_Block-Delivery_Final_NZTM_20230222* was provided to rectify a rounding error on tiles. The AOI changed minimally and is reflected in figure 41.

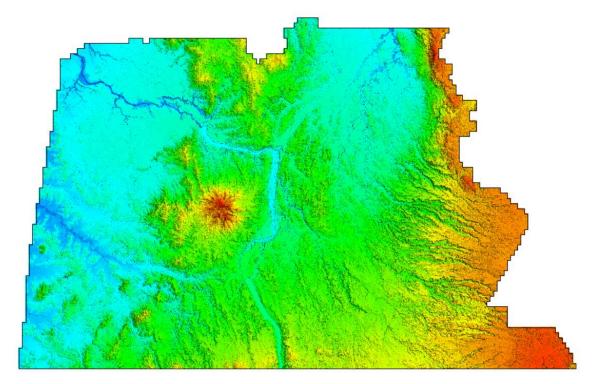


Figure 34: Extent of deliverable data for Block E North (1)

4.1.3 Flight Lines

LINZ PGF specification 8.1.3 requires that Flightline shapefiles as Esri polylines are required. Each flightline must be assigned a unique File Source ID that is equal to the Point Source ID assigned to each point collected during that flightline.

The Sensor trajectory was imported into Terrascan and edited to split the trajectory into discrete flight lines. Each flight line was then assigned discrete flight line ID, in accordance with the project flight plan. Each Lidar point was assigned a flight line ID by matching against its trajectory, using the Adjusted GPS time stored in both the trajectory and lidar point. The trajectories were exported to ESRI shape file format with a File Source ID attribute populated with the trajectory flight line ID value. This process will ensure that specification 8.1.3 is adhered to.

The image below shows the extend of the area covered. Refer to the purple polygon illustrating Block E North (1).



Figure 35: Flight lines for 4ppm2 data coverage over Block E North (1)

4.2 Classified point cloud tiles

LINZ PGF specification 8.2 details the requirement for the point cloud deliverables, and how adherence to the specifications is measured is listed below. Point cloud deliverable generation methods will be detailed in the Processing Report. Deliverable QC checks are performed both by Lidar technicians, under the supervision of the Lidar Phase Manager and followed by a review of 10% of the data by an independent analyst or project manager:

- (a) Data from all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified, by tiles. Project swaths exclude calibration swaths, crossties, and other swaths not used in product generation.
- (b) Data is provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum.
- (c) Fully compliant LAS v1.4, Point Data Record Format (PDRF) 6-10. All files must have the same PDRF.
- (d) Each point includes a Point Source ID linking it to the flight line File Source ID.
- (e) Correct and properly formatted georeferenced information (EPSG: 2193 + 7839) as Open Geospatial Consortium (OGC) Well Known Text (WKT) included in all LAS file headers.
- (f) File Source ID set to 0 for tiled LAS files.
- (g) GPS times recorded as Adjusted GPS Time at a precision sufficient to allow unique timestamps for each pulse.
- (h) Points are provided in the order in which they were collected.
- (i) Height values reported to three decimal places (nearest mm). (While not significant for accuracy, this supports numerical processing and reduces the number of identical values caused by rounding.)
- (j) Intensity values, normalised to 16-bit by multiplying the value by 65,536/ (intensity range of the sensor) per LAS v1.4. This will result in an intensity range of 0-65,536.
- (k) Classification as required by the Contract Authority (Table 4 at a minimum).
- (I) Tiled delivery, without overlap, per the project tiling scheme in Section 9 Tiles.
- (m) Files named per Section 9 Tiles.

The point cloud tiles created for handover underwent multiple alterations before finalization. After the LAS tiles were created in Microstation, LASTools was used to assign the correct global encoding (17), system identifier and file source ID (0). WKT was also added to the LAS metadata, as illustrated in the figure below. The correct height values were also confirmed in LASTools ensuring that three decimal places were being used. The tiles were also named according to the required naming convention which is discussed in Section 6.

Figure 36: WKT of a LAS file shown by LASTools.

Intensity valued scaled from a range of 100 – 10000 output by HxMap, to full 16-bit dynamic range. Translation value = -100 Scale value = 6.5535

Once the point cloud was classified and was inspected manually in Microstation, the LAS files were loaded into LP360. The global coding, file source ID, WKT, VLRs, file format and LAS version were compared against to the LINZ specifications and after passing QA/QC, the files were renamed in accordance with the LINZ specifications. A condensed version of the LP360's results can be found in the table below. A complete listing of the output from LP360 is included as an embedded document in Appendix A.

	ı	1	ı		1	T
File	Points	Version	File Signature	File Source ID	CRS is WKT	Coordinate System
CL2 DE7/ 2021 1000 72/01	2 620 010	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
CL2_BE34_2021_1000_3249.las	2,628,818					Transverse Mercator 2000 + NZVD2016 NZGD2000 / NZGD2000 / New Zealand
CL2_BE34_2021_1000_3250.las	3,075,493	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3301.las	3,058,625	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3302.las	2,847,758	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3303.las	2,245,407	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3304.las	2,281,342	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3305.las	2,876,792	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3306.las	2,947,885	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3307.las	2,464,339	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3308.las	2,538,516	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3309.las	3,135,543	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3310.las	3,108,486	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3311.las	2,517,025	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3312.las	2,575,474	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3313.las	3,056,965	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3314.las	2,915,947	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3315.las	2,389,815	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3316.las	2,988,451	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3317.las	4,431,744	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BE34_2021_1000_3318.las	4,265,639	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016

Table 2: Representative output from LP360 illustrating LAS file specification compliance

Additionally, a pre-delivery script which invokes LASTools was run on all tiles. The script output was imported into a custom Excel Worksheet, which checked specification compliance. For a complete listing of analysis refer to Section 6.1 of this document.

4.3 Elevation models

LINZ PGF specification 8.3 details requirements for raster surface model deliverables. The specification and how adherence to the specifications is measured is listed below. Deliverable QC checks are performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a review of 10% of the data by an independent analysist or project manager:

- (a) Grid spacing: 1m cell size.
- (b) Generated to the limits of the project area
- (c) Raster format: Geotiff (.tif)
- (d) Geo-reference information (EPSG 2193) in each raster file.
- (e) Tiled delivery without overlap.
- (f) NOT clipped using polylines for land-water boundaries from national databases (for example coastlines, river or lake boundaries) as these can be inaccurate and subject to continual geomorphic change.
- (g) Tiles with no edge artefacts or mismatch. A quilted appearance in the overall surface can be grounds for rejection of the entire deliverable whether the rejection is caused by differences in processing quality or character among tiles, swaths, flights, or other unnatural divisions.
- (h) Void areas (for example, areas outside the project area but within the project tiling scheme such as offshore water) coded using "NODATA" value equal to -9999. This value must be identified in the appropriate location within the raster file header.
- (i) Constrained with any additional break lines required by the Contract Authority, such as stopbanks, streams, and narrower rivers.
- (j) Provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum. Additional vertical datums may be specified by the Contract Authority.

4.3.1 Bare-Earth Digital Elevation Models (DEM)

LINZ PGF specification 8.3.1 details additional requirements for Digital Elevation Models. The Bare-Earth DEM is the bare earth that has been classified and edited to remove vegetation and man-made structures within the bounds of the classification accuracy requirements. It must also include or conform to the following:

- (a) Based on Classification level 2 or better ground return points.
- (b) Hydro-flattening as outlined in Section 7 Hydro-Flattening.
- (c) Bridges removed from the surface, while culverts are treated as ground
- (d) Method for removal of buildings, structures or other ground cover/vegetation and interpolation techniques documented.

The Digital Elevation Models were created using a combined model based on both ground surface points and break line points. These break line points were created during the hydroflattening process mentioned in **Section 4**. By using these classes, a true representation of the ground points can be achieved while still maintaining a smooth water surface which gradually follows the terrain.

It is noted for Blocks F & G due to the dense vegetation and steep terrain the penetration of the LiDAR to the ground in some areas is minimal (Figure 18 is a good example). This will show in the DEM as large, triangulated areas or give the impression of pitting where only isolated ground returns have been identified.

For these areas it is recommended to compare any potential DEM discrepancies with the point cloud to confirm the absence of available ground points.

To generate DEMs, LAS format data files are loaded into TerraScan, only loading in class 2 points and breaklines. Additional data is referenced to avoid tile edge artefacts. Following import, TerraScan-Export Lattice Model command is used to create a grid file with uniform distances between points from one or more selected point classes. For each grid point, the lattice model file stores XY coordinates and elevation. Within the Export Lattice Models command we utilize "Triangulated model Z" to export the DEM tiffs. This triangulated model z derives an elevation value that is calculated from a TIN model of the lidar points using ground and breakline classifications.

The elevation grid is generated as a TerraScan Lattice model using the following settings:

- o Grid Method = TIN Model (Triangulated model z)
- o Grid Spacing = 1 meter

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

The tiles were loaded into LP360 to check the metadata of the images during both production and QA/QC of the deliverables. A Representative version of LP360's findings is found in the table below. A complete listing of the LP360 results is included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DEM_BE34_2021_1000_1819.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1820.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1821.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1822.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1823.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1824.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1825.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1826.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1827.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1828.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1829.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1830.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1831.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1832.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1833.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1834.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1835.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1836.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1837.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BE34_2021_1000_1838.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 3: Condensed output from LP360 illustrating DEM file specification compliance

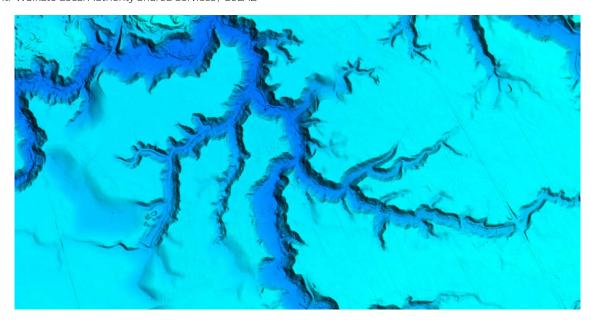


Figure 37: DEM Example Tile DEM_BD34_2021_1000_4604

4.3.2 Digital Surface Models (DSM)

LINZ PGF specification 8.3.2 details additional requirements for Digital Surface Models. The DSM is the heights of the top of the highest feature at each gridpoint, including ground, vegetation, and manmade structures. The DSM is based on first return points after removal of noise.

LAS format data files are loaded into Terrascan only loading in First, First-of-many and Single returns. Additional data is loaded to avoid tile edge artefacts. Only coverage classed 1 to 6 & 17 points will be used in generation of Digital Surface Models. The elevation grid is generated as a TerraScan Lattice Model using the following settings:

- o Grid Method = Binning (Maximum Value DSM)
- o Grid Spacing = 1 metre

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

To meet the request to produce a DSM representative of the heights of the top of the highest feature at each grid point while incorporating hydro features, the hydro features used to create the DEM deliverables were included to produce a hydro flattened DSM.

Hydro-flattened DEM tiles are overlaid against the DSM tiles to identify and fill gaps in the data (such as the river), and then the tiles were exported in Geotiff format including settings for the datums and null data specifications, using the tile grid to clip & name the data files. The DSM deliverables undergo a visual spot check using Globalmapper.

In areas where valid data gaps (e.g. waterbodies) do not meet the LINZ specification for hydroflattening the surface model will triangulate across these voids to the nearest point per pixel (highest for DSM & lowest for DEM). No intervention is made to flatten or constrain these areas.

Digital surface models are created by combining points with only a single return, and points that have the first return of many (returns) and are then used to generate the DSM model. Figure 28 is an excerpt of one of the DSM tiles created for the project area.

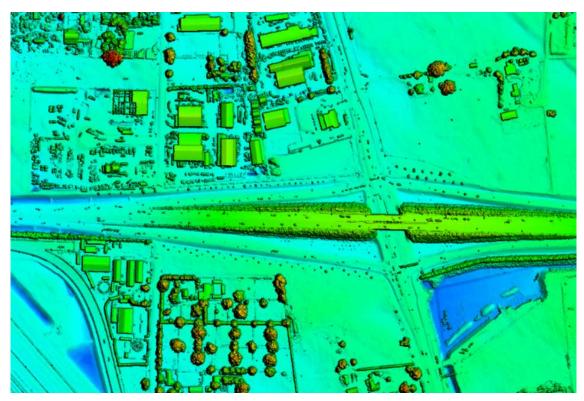


Figure 38: Excerpt from DSM_BD34_2021_1000_4525 and 4526

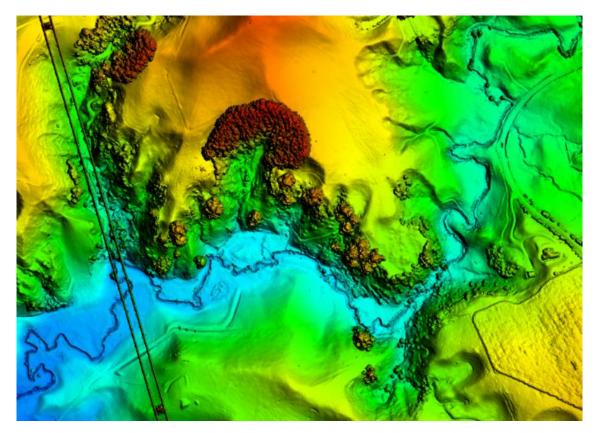


Figure 39: Excerpt from DSM_BD34_2021_1000_445

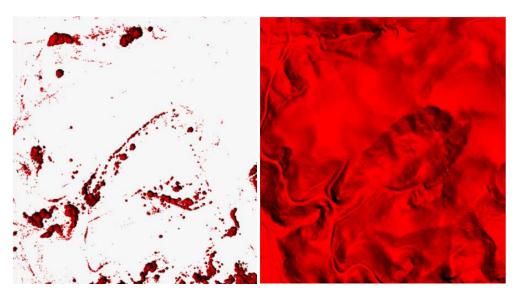


Figure 40: Difference between DSM and DEM differences in height along cliff lines

The tiles created are in GeoTiff floating 32-bit format and have been adjusted to display a NoData value of -9999 (Figure 29). The composite DSM was produced in 32-bit Geotiff format as requested and both the tiles and the composite had the correct horizontal and vertical co-ordinate systems assigned to the metadata in ArcMap.

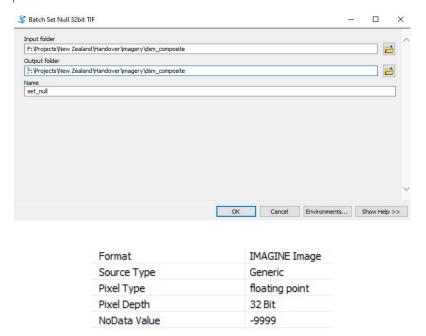


Figure 42: Properties of the composite DSM file showing its format and NoData value

After these files were amended, they were loaded into LP360 to check the necessary metadata of the imagery. The results from LP360 can be found in the table below. A complete listing of the LP360 results are included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DSM_BE35_2021_1000_1003.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1004.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1005.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1006.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1007.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1008.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1009.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1010.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1011.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1012.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1013.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1014.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1015.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1016.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BE35_2021_1000_1017.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 4: LP360 DSM Results example table

4.4 Break lines

LINZ PGF specification 8.4 details requirements for hydro-flattening break lines. Delivery of break lines representing all hydro-flattened features in a project is required. Additional break lines may also be required by the Contract Authority. These are to be delivered as ESRI Shape files (.shp) using the NZTM2000 projection.

Refer to section 7.0 of this document. The workflow methods will be documented in the project Processing Report. The digitized hydro features were included in the handover data set, under the Vector deliverable section. They are in shapefile (.shp) format and are in the NZTM2000 projection.

Stream and stream-island, lake and lake island break lines were delivered, with ocean features falling under the "Lake" feature category due to its uniform height. In figure 31 the geometry type is set to a polygon shape and has vertical and horizontal co-ordinate sets as well as Z values.

Figure 43: Stream break line properties in ArcMap.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

4.5 GNSS data

GNSS data is not a required deliverable for this project.

4.6 Backed up project source data

LINZ PGF specification 8.6 details the requirements for archival and storage of the project data. Raw project source data, such as native format LiDAR files and point cloud swaths, are NOT required for delivery; however, a copy has been provided to CoLAB. It is acknowledged that the Vendor must hold a copy of all relevant raw project data, for a minimum of five years beyond the final delivery of the project deliverables. The vendor must provide this data, with unrestricted copyright, to the Contract Authority on request. The vendor may charge a reasonable access and distribution charge in such instances.

Woolpert and Ocean Infinity will archive all raw & processed data collected for 5 years following project completion.

4.7 Contours

Contours with an interval of 0.5m will be generated for all project area.

Note Contours will be generated at Project conclusion to ensure there are no line breaks between blocks.

Contours will be generated from the DEM. Contour methodology is undergoing internal discussion and will be agreed with all parties prior to their generation.

5 LiDAR QA Tiles

LINZ PGF specification 9.1 & 9.2 detail the requirements for project tiles geometry & naming convention.

- (a) NZTopo50 subtitles based on NZTM2000 coordinates. The 1-m gridded raster products and point clouds must be delivered at 1:1000 nominal scale (2500 720m high x 480m wide subtiles per full NZTopo50 sheet).
- (b) The origin of the raster tiles must be placed on a whole metre coordinate value of the southwest corner of each tile (for example, 5429500 mN_17490300mE).
- (c) The tiled deliverables must edge-match seamlessly and without gaps.
- (d) The tiled deliverables must conform to the project tiling scheme without overlap.
- (e) File naming must conform with the naming convention described in section 9.2.

A Tile Index must be provided in ESRI shape file format. The file name must be included as an attribute in the Tile Index file.

The Client supplied tiling grid shape file will be used as the tile clipping polygon when exporting the deliverable products. The shape file will have an attribute added for each deliverable type as specified in section 9.2. This attribute will contain the required tile name for each deliverable. This shape file will be used as the means of extracting all project data deliverables, so that the geometric aspects for specification 9.1, and the naming requirements of section 9.2 are fulfilled.

Deliverable QC checks have been performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team:

5.1 LAS Tiles QAQC - LASQC

Prior to delivery, Lidar data tiles have undergone a final analysis, using a custom developed Pre-Delivery QAQC tool called LASQC. This tool uses LASTools 'Lasinfo' in a batchscript called LASExtract, which collates information regarding each tile into an Excel worksheet. The tool analysis and reports compliance on the following items:

- o File naming accuracy
- o Check to ensure lidar points fall inside the extents bounded by the NZTOPO50/1:1000 tile name
- o Adjusted GPS time falling with correct extents for the survey
- o LAS file format, version, file source ID, point data record format & scale factor
- o Point counts by return, illustrating presence of multiple returns
- o Average point density for the tile, excluding overlap
- o Presence of the overlap (not applicable to all tiles) & withheld flags
- o Minimum, maximum & average intensity values.
- o Height above ground for building, low, medium & high vegetation classes

- Note it should be noted that this analysis is not accurate in steep terrain due to the different methods used for triangulation of between Terrascan & LASTools.
- o Check for presence of correct ESPG Codes for geodetic & vertical datums, and map projection
- o Raster Overviews for Point Source ID, Intensity, Point Density and Overlap Analysis

These analysis results will be included as an attachment referenced in Appendix A.

5.2 File naming

Project deliverables have been named in accordance with the project specification illustrated in Table 5.

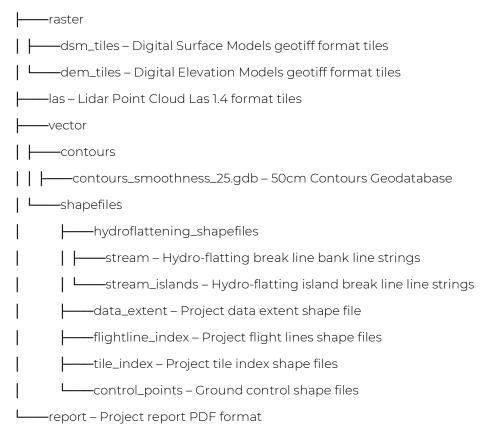

Product	DEM	CL2-Point Cloud Classification Level 2 DEM-Bare Earth Digital Elevation Model DSM-Digital Surface Model DTM-Digital Terrain Model UNC-Unclassified Point Cloud INT-Intensity Image CHM - Canopy Height Model IMG-Aerial photography etc
Sheet	BK34	LINZ Topo50 identifier (4 characters)
Year	2016	Year of survey commencement
Scale	1000	Nominal scale of NZTopo50 subtiles
Tile	4118	Row number (41), Column number (18) of tile with respect to an upper left origin
ext	tif	File extension according to format conventions las tif shp etc

Table 5: File Naming

5.3 Delivery Folder

The project deliverables are structured in the following manner:

6 Setbacks and Solutions

During the production of the data sets for the preceding blocks, setbacks were encountered, with a varying impact on production time. Along with these setbacks, new methods of production were created to account for any necessary changes to improve the quality of the data set or save time when amending the data set. These setbacks impacted the delivery date of Block A and other areas.

6.1 Missing ground points under vegetation and low vegetation classification difficulties

During the processing of all Waikato Blocks it is noted there are areas of dense vegetation which limit and often prevent laser penetration to the ground surface. In these situations, it is common for data voids to appear in the DEM surface. In addition, low lying dense vegetation has caused difficulty in assessing the true ground surface. In these situations, it can be difficult to discern if points are part of the ground surface or the lowest part of low-lying vegetation. In these situations, it is common for the ground surface profile to transition to what may or may not be the lowest part of low-lying vegetation. During manual editing, these situations are monitored with the objective being to make the best interpretation of ground.

6.2 Production Delays

During production, it was determined a new technical team within Woolpert's US and Australian offices was necessary to continue production on the project. This handover from the previous team created project delivery delays as the new team became familiar with the project specifications as well as to address quality assurance workflow requests made by the prime contractor.

6.3 Lessons learned and collaboration

Thanks goes to the team at WRC for providing inputs to previous blocks that has informed decisions on processing for this block and the entirety of Block E. There is some challenging terrain and dense vegetation that hindered penetration is some parts and made for some difficult processing with significant manual editing.

7 Results Acceptance & Signoff

An acceptance and signoff of the project QAQC supervisory review is listed below.

Result Acceptance						
Assessment Criteria	Status	Completed By	Date			
Point cloud classification accuracy	Complete	Woolpert/AAM	09 October 2023			
Point cloud classification consistency	Complete	Woolpert/AAM	09 October 2023			
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	09 October 2023			
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	09 October 2023			
Digital Survey Models	Complete	Woolpert/AAM	09 October 2023			
Contours	Complete	Woolpert/AAM	09 October 2023			
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	09 October 2023			
Project Manager / Supervisor Signoff	Complete	Luke Graham	09 October 2023			
Ocean Infinity Review	Complete	Luke Leydon	14 October 2023			

Table 6: Processing Results Acceptable Signoff

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Appendix A: Lidar Quality Assurance Results

Provided as separate Documents in Appendix A upload

Waikato Local Authority Shared Services (WLASS) / CoLAB LiDAR Data Capture Services LiDAR Processing Report Block E North (2) (Rev 1)

Contract Number: AU411

Surveyed By: iXblue Pty Ltd / Ocean Infinity

Processing Completed By: Woolpert USA and Woolpert Australia

Prepared For: Colab (formerly WLASS)

Document Date: 1 June 2024

Ocean Infinity (Australia) Pty Ltd ABN 61 128 811 978 oceaninfinity.com

Document Control

Woolpert Inc. Representative

Name	Brian Foster
Position	Woolpert Senior Associate
Address	333 North Alabama St. Suite 200 Indianapolis, IN 46204
Telephone	+1 317 809 4685
Email	Brian.Foster@woolpert.com

Ocean Infinity Supervisor

Name	Dave Field
Position	Managing Director
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 277 755 532
Email	david.field@oceaninfinity.com

Ocean Infinity Project Manager

Name	Luke Leydon
Position	NZ Account Manager, Airborne
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 226 511 732
Email	<u>luke.leydon@oceaninfinity.com</u>

Client Representative

Name	Rolf Boswell
Position	Project Delivery Manager
Address	6/34D Lake Street, Cambridge, 3434, NEW ZEALAND
Mobile	+64 27 420 0239
Email	rolf.boswell@colabsolutions.govt.nz

Document Revision

Revision No	Issue Purpose	Prepared	Checked	Approved
0	Issue LiDAR Processing Report	L Leydon	L Graham	D Field

Approval for Issue

Name	Signature	Date
Luke Leydon	Juke Jeydon	01 June 2024

Revision History

ltem	Description of change	Section	Revision
1	New Section added to Introduction	1.1	1
2	New Pointcloud statistics added	Figure 11	1
3	New LP360 tables added	4.2, 4.3	1
4	New Sections added to setbacks and solutions	6.5	1
5	Examples of corrections included	6.6	1
6	New results signoff table added	7	1
			1
			1
			1
			1
			1
			1
			1
			1

Contents

1	Intro	oduction	n	10
	1.1	Rev 11	Introduction	10
2	LiDA	AR Data	Processing and Handling	11
	2.1	The AS	SPRS LAS File format	11
	2.2	Time s	stamp of navigational data	12
	2.3	Datum	ns and coordinate reference system	13
	2.4	Geom	netric Calibration	14
	2.5	Positio	onal accuracy validation	14
	2.6	Use of	f the LAS withheld flag	14
	2.7	7 Use of the LAS v1.4 Overlap Flag		14
	2.8	Point (Classification	15
		2.8.1	Building Classification	19
		2.8.2	Vegetation & Low-Level Noise Classification:	19
	2.9	Classif	fication Accuracy	20
	2.10	Classif	fication Consistency	24
	2.11	Classif	fication Consistency – Bridges	24
3	LiDA	AR Hydr	ro-Flattening QAQC	28
4	LiDA	AR Deliv	verables QAQC	36
	4.1	Repor	ting and metadata	36
		4.1.1	Project reports	36
		4.1.2	Extents	36
		4.1.3	Flight Lines	37
	4.2	2 Classified point cloud tiles		38
	4.3	Elevat	ion models	40
		4.3.1	Bare-Earth Digital Elevation Models (DEM)	41
		4.3.2	Digital Surface Models (DSM)	43
	4.4	Break	lines	46
	4.5	GNSS	data	47
	4.6	Backe	ed up project source data	47
	4.7	Conto	ours	47
5	LiDA	AR QA T	iles	48
	5.1	.1 LAS Tiles QAQC - LASQC		48
	5.2	2 File naming		49
	5.3	3 Delivery Folder		50
6	Setk	oacks ar	nd Solutions	51

7

6.1	Missin	g ground points under vegetation and low vegetation classification difficulties	51
6.2	Produc	ction Delays	51
6.3	Lessor	ns learned and collaboration	51
6.4	WRC T	racking Spreadsheet	51
6.5	Examp	oles of Corrections after initial supply	52
	6.5.1	Aerosol spike in DEM	53
	6.5.2	Pit in DEM	53
	6.5.3	DEM texture issue - Canopy points classified as ground	54
	6.5.4	Patch of low density last & only points	54
	6.5.5	Texture issue from vegetation in DEM (A)	55
	6.5.6	Texture issue from vegetation in DEM (B)	56
	6.5.7	Intensity anomalous low values	57
	6.5.8	Null pixel in DSM	58
6.6	Examp	oles of Corrections after rework and resupply	59
	6.6.1	Bridge partially removed	59
	6.6.2	Unnecessary fix for DEM under forestry	61
	6.6.3	DEM artefact – Hydro Flattening	65
	6.6.4	Hydro Flattening	66
	6.6.5	DEM artefact - vegetation/croppage	67
	6.6.6	DSM artefact - tinned where PC shows building classification	68
	6.6.7	DSM artefacts - vegetation triangulation where void exist	69
Resi	ults Acce	eptance & Signoff	70

Figures

Figure 1: Waikato Survey Area	9
Figure 2: LAS 1.4 being specified during project – example	
Figure 3: Project settings used in TerraScan project when importing points into the project	12
Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools	12
Figure 5: Representative examples of LAS point attributes	
Figure 6: Settings used when cutting overlap in Microstation	15
Figure 7: Automatic classification macro developed for the project areaarea	16
Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine	17
Figure 9: A smaller iteration distance value avoids classification of ground points on low objects	17
Figure 10: Statistics showing the classes of all the LAS points within the project area	18
Figure 11: Statistics showing the classes of all the LAS points within the project area (rev1)	18
Figure 12: The diagonal hatching seen above shows how the progress was tracked	19
Figure 13: The polygons are areas for further investigation	
Figure 14: Example overhead image of DEM over cliffs	22
Figure 15: LAS point cloud profile view from previous figurefigure 15: LAS point cloud profile view from	22
Figure 16: Example overhead image of DEM interpolation	23
Figure 17: LAS Point cloud view from previous figure	
Figure 18: Tile DEM_BF35_2021_1000_2727 with LINZ bridge centreline	
Figure 19: DEM Tile BF35_2021_1000_3022	
Figure 20: DEM Tile BH35_2021_1000_1416	
Figure 21: DEM Tile BF35_2021_1000_4741	
Figure 22: DEM Tile BE34_1000_3627	
Figure 23: Example of a hydro-flattened DEM Lake Tile DEM_BG35_2021_1000_2037	
Figure 24: Example of Bridge with LINZ bridge centreline	
Figure 25: Same location as above DEM	
Figure 26: Excerpt of river points used to create the centreline	
Figure 27: Centreline for the stream within the project's survey	
Figure 28: Settings used to export lattice models	
Figure 29: Pre-filter, overhead view of ground and veg points with hydro lines	
Figure 30: Post-filter, overhead view of ground and veg points with hydro lines	
Figure 31: Point cloud – boulder filled stream	
Figure 32: Imagery – boulder filled stream	
Figure 33: Example of hydroflattened DEM: DEM_BF35_2021_1000_3345	
Figure 34: Extent of deliverable data for Block E North (2)	37
Figure 35: Flight lines for 4ppm2 data coverage over Block E North (1)(1)	
Figure 36: WKT of a LAS file shown by LASTools	
Figure 37: DEM Example Tiles BF35_1000_0919, BF35_1000_0920 & BF35_1000_0921	
Figure 38: Excerpt from DSM_BF36_1000_2824_&_BF36_1000_2825	
Figure 39: Excerpt from BF36_1000_3136 & BF36_1000_3137	
Figure 40: Difference between DSM and DEM differences in height along cliff lines	
Figure 41: Script used in ArcMap to achieve a NoData value of -9999	
Figure 42: Properties of the composite DSM file showing its format and NoData value	
Figure 43: Stream break line properties in ArcMap	
Figure 44: BF33_1000_1142 Before	
Figure 45: BF33_1000_1142 After	
Figure 46: BF34_1000_4119 Before	
Figure 47: BF34_1000_4119 After	
Figure 48: BF34_1000_1846 Before	
Figure 49: BF34_1000_1846 After	
	5 1

Figure 50: Tile BF36_1000_1918	54
Figure 51: BF36_1000_3713 & BF36_1000_3714 Before	55
Figure 52: BF36_1000_3713 & BF36_1000_3714 After	55
Figure 53: BH35_1000_0211 Before	56
Figure 54: BH35_1000_0211 After	56
Figure 55: Tiles BG34_1000_4540 & BG34_1000_4640	57
Figure 56: BG35_1000_2805 Before	58
Figure 57: BG35_1000_2805 After	58
Figure 58: BF35_1000_1214 & BF35_1000_1314 Classified LAS	59
Figure 59: BF35_1000_1214 & BF35_1000_1314 DEM before correction	
Figure 60: BF35_1000_1214 & BF35_1000_1314 DEM after correction	6C
Figure 61: BH35_1000_1503 Classified LAS before correction	61
Figure 62: BH35_1000_1503 Classified LAS after correction	61
Figure 63: BH35_1000_1503 DEM	62
Figure 64: BH35_1000_1503 DSM	62
Figure 65: BH35_1000_0408 Classified LAS before correction	63
Figure 66: BH35_1000_0408 Classified LAS after correction	63
Figure 67: BH35_1000_0408 DEM	64
Figure 68: BH35_1000_0408 DSM	64
Figure 69: BF36_1000_4808 DEM	65
Figure 70: BF35_1000_2729 & BF35_1000_2730 DEM before correction	66
Figure 71: BF35_1000_2729 & BF35_1000_2730 DEM after correction	66
Figure 72: BF35_1000_4120 & BF35_1000_4121 DEM before correction	67
Figure 73: BF35_1000_4120 & BF35_1000_4121 DEM after correction	67
Figure 74: BF36_1000_2825 & BF36_1000_2826 DSM before correction	
Figure 75: BF36_1000_2825 & BF36_1000_2826 DSM after correction	68
Figure 76: BF36_1000_0220 & BF36_1000_0221 DSM before correction	69
Figure 77: BF36_1000_0220 & BF36_1000_0221 DSM after correction	69

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Tables

Table 1: Point Classifications	15
Table 2: Representative output from LP360 illustrating LAS file specification compliance (Rev1)	40
Table 3: Condensed output from LP360 illustrating DEM file specification compliance (RevI)	42
Table 4: LP360 DSM Results example table (rev1)	46
Table 5: File Naming	49
Table 6: WRC Defect tracking Spreadsheet – Populated post rework	52
Table 7: Processing Results Acceptable Signoff	7C
Table 8: Processing Results Acceptable Signoff (Rev 1)	

Figure 1: Waikato Survey Area

1 Introduction

Lidar survey projects are broken into three distinct phases. The survey commences with the data acquisition project phase. For matters pertaining to this phase of the project, refer to the document

• AU411_WLASS-Collection_Report-10052021.pdf.

The next phase of the project is the Geopositioning phase, which involves processing the raw sensor and trajectory data to produce a set of point clouds for each flight line.

The point clouds have several geometric optimizations performed, to optimise the relative and absolute spatial accuracy levels.

At completion of the Geopositioning phase, the point cloud geometry is final, and the point cloud classification and production generation project phases follow.

For matters pertaining to this phase of the project, refer to the documents

- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022

The following report covers the data processing project phase and describes the data processing methods used for the lidar classification and product generation, along with the QAQC procedures and results.

This report illustrates compliance with the LINZ PGF specifications sections 6 - 9.

This report pertains to the coverage of Block E North (2), as illustrated in yellow in Figure 1 - Waikato Survey. Block E was split into three during processing due to the size, 10,180km². Block E North (1), Block E North (2) and Block E South are the splits.

This dataset was uploaded by Woolpert Australia Friday 15 December 2023. This was transferred to Waikato Regional Council (WRC) Monday 18 December 2023.

The dataset was subsequently failed during QAQC and returned for rework. This was supported by a number of technical meetings where calls were discussed and mitigation strategies were developed. The defects were tracked using AU411 WRC_Raised_Defect_Tracking_Block_EN2_v1.

The dataset was redelivered to Ocean Infinity on Tuesday 12th March 2024. The dataset was transferred to Waikato Regional Council and LINZ on the same day.

1.1 Rev 1 Introduction

Block E North 2 was resupplied to LINZ and WRC on 15 May 2024. The failure and subsequent resupply was accompanied by a spreadsheet and returned with comments. 'LINZQC_Waikato_Block_E_P2_North_220524'

This listed the failures and improvements required. It was supported by Geospatial files which showed the areas of failures.

Thanks go to Emory Beck at LINZ for assistance with corrections to this dataset allowing publication.

2 LiDAR Data Processing and Handling

The LiDAR data processing method is described in the Project Method Statement, AU411-FOR-008-R5 Project Method Statement_WLASS. The following sections elaborate further but focus on adherence with compliance to the Linz PGF Specification (JAN 2020).

https://www.linz.govt.nz/system/files_force/media/doc/pgf_version_new_zealand_national_aerial_lidar_base_specification.pdf?download=1

QAQC steps for various workflow tasks have been tracked and recorded and included as an embedded document within Appendix 1.

2.1 The ASPRS LAS File format

LINZ PGF specification 6.1 requires that all point deliverables are required to be fully compliant with LAS Specification Version 1.4, using Point Data Record Format (PDRF) 6, 7, 8, 9 or 10 (referred to as LAS v1.4).

For this project, LAS 1.4 with PDRF 6 is to be delivered.

The LAS files created during the project during the Geopositioning phase and subsequent data cleaning and deliverable products are in ASPRS LAS 1.4 format, with PDRF 6. This was specified during the creation of the project in TerraScan, as shown in a representative image in the figure below:

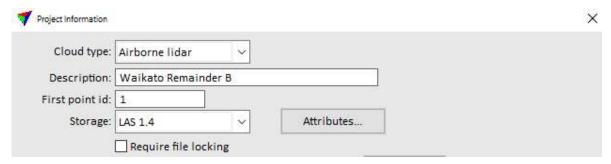


Figure 2: LAS 1.4 being specified during project - example

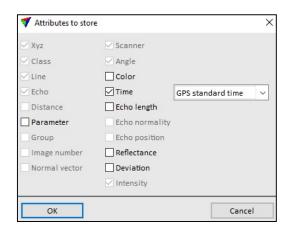


Figure 3: Project settings used in TerraScan project when importing points into the project.

The correct format of LAS is illustrated by use of LASTools, which shows the LAS files are in 1.4 format in the figure below.

Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools

To verify that the project deliverables are in the correct LAS file format/version with PDRF, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.2 Time stamp of navigational data

LINZ PGF specification 6.2 requires that Each Global Navigation Satellite System (GNSS) aircraft positional measurement must be time stamped using Adjusted Global Positioning System (GPS) Time, at a precision enough to allow unique timestamps for each LiDAR pulse.

For this project, LAS 1.4 with PDRF 6 has been delivered including, with Global Encoding bit set to 1.

An example of how adjusted GPS time is visualized and monitored is illustrated in Figure 5: LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right).

To verify GPS time is set to adjusted GPS time, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar technical manager reviewed this analysis to ensure that all deliverable LAS files are compliant.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A. Figure 5 below shows representative examples of LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right)

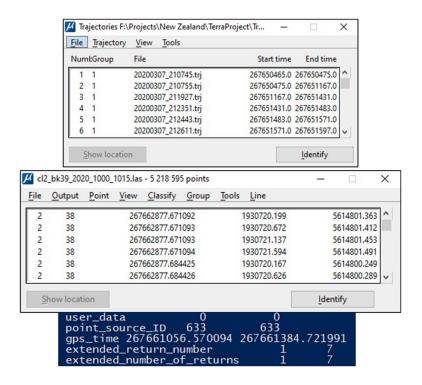


Figure 5: Representative examples of LAS point attributes

2.3 Datums and coordinate reference system

LINZ PGF specification 6.3 requires that the required datum for latitude, longitude, and ellipsoid heights is the New Zealand Geodetic Datum 2000. The required vertical datum for normal-orthometric heights is NZVD2016 (Reference 9). Projected data products are to be delivered in NZTM2000 projection (Reference 10) with NZVD2016 normal-orthometric heights.

The Survey Datums, Ground Control, Check Points and Lidar Geopositioning sections of the Project Methodology Statement describes in detail how the data is transformed and connected to the required project datum.

To verify that the correct datum information is recorded in the LAS 1.4 header, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files have the correct CRS applied in the header.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.4 Geometric Calibration

Following initial sensor data processing, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.

Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error. These calibration adjustments were performed using a combination of automated and manual corrections to the data to develop the geometrically calibrated data set to be utilized for all downstream processes.

2.5 Positional accuracy validation

LINZ PGF specification 6.4 details the positional accuracy verification methods. The Vendor is expected to apply best practice in assessing the project accuracy and achieving compliance with this specification. Before classifying and developing derivative products from the point cloud, the relative vertical, local vertical and horizontal accuracies of the point cloud must be verified. The Vendor must deliver a detailed report of the validation processes used.

Validation of the point cloud positional accuracies is the primary outcome of the Lidar Geopositioning workflow phase, using surveyed ground control & check points. The assessments methods and results of the positional accuracy validation is be reported in the LiDAR Geopositioning QA/QC Report.

2.6 Use of the LAS withheld flag

LINZ PGF specification 6.5 requires that outliers, noise points, geometrically unreliable points near the extreme edge of the swath, and other points the Vendor deems unusable must be identified using the Withheld Flag, as defined in the LAS Specification.

Points classified as low noise (coverage class 7) and high noise (coverage class 18) will have the LAS withheld flag set.

To verify that the withheld flag has been correctly set, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analyst to ensure that the Las withheld flag is correctly applied. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.7 Use of the LAS v1.4 Overlap Flag

LINZ PGF specification 6.6 requires identifying overage points is not required unless requested by the Contract Authority. However, if overage points are explicitly identified using LAS v1.4, they must be identified using the overlap flag.

Classification of the overlap points was done using TerraScan in Microstation. A macro step was created which allowed for points to be classified with the overlap bit by cutting the scan angle at zero degrees.

The step used for the project dataset is illustrated in the figure below. This allowed for the overlap points to be withheld from DEM, DSM and intensity imagery generation. Figure 6 below shows Settings used when cutting overlap in Microstation. Note that the 'Action' is on "Set overlap bit.

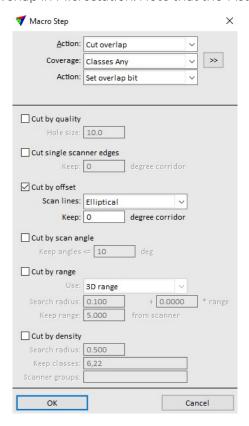


Figure 6: Settings used when cutting overlap in Microstation.

Verification of appropriate overlap flag application is performed using LP360 File Analyst. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.8 Point Classification

LINZ PGF specification 6.7 requires Lidar points are classified to the following coverage classes:

Code	Description
7	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
17	Bridge deck
18	High noise

Table 1: Point Classifications

Point cloud classification is performed by automated classification algorithms developed by Woolpert's senior Lidar analysts and reviewed by the Lidar technical manager.

A first run automatic classification was carried out on the raw LiDAR points using TerraSolid's TerraScan software to classify the LiDAR points into ground hits and non-ground hits. This results in a greater than 80% correct classification. Some of the steps used within this macro can be found within the screenshot below (Figure 7), including 5 of the 8 ground classification steps used on this data set.

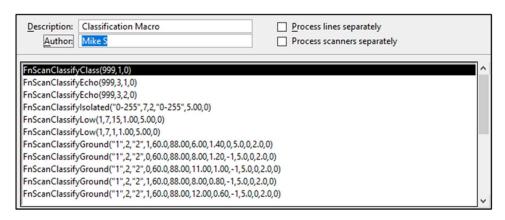


Figure 7: Automatic classification macro developed for the project area.

As documented by TerraSolid, the ground routine classifies ground points by creating a triangulated surface model iteratively. The routine is best suited for classifying ground in airborne laser data sets and in data sets where there is mainly natural terrain. For classifying ground in mobile data sets where the majority of ground is on hard surfaces, such as roads, use the Hard surface routine instead of the ground routine.

The routine is sensitive to low error points in the point cloud. Therefore, you should run one or more classification steps using the Low points routine before classifying ground. A more complex classification strategy is required for classifying ground in photogrammetric point clouds.

The ground routine starts by selecting local low points that are confident hits on the ground. The initial point selection is controlled with the Max building size parameter. If the maximum building size is, for example, set to 60.0 m, the routine assumes that any 60 by 60 m area has at least one point on the ground level and that the lowest point is on the ground level.

Then, the routine builds a surface model (TIN) from the initial ground points. The triangles in this initial model are mostly below the ground level and only the vertices are touching the ground. In the following iterations, the routine molds the model upwards by adding more and more points. Each added point makes the model following the true ground surface more closely.

The iteration parameters of the routine determine how close a point must be to a triangle plane for being accepted as ground point and added to the model. Iteration angle is the maximum angle between a point, its projection on the triangle plane and the closest triangle vertex. This is the main parameter controlling how many points are classified into the ground class. The smaller the Iteration angle, the less eager the routine is to follow variation in the ground level, such as small undulations in terrain or points on low vegetation. Use a smaller angle value (close to 4.0) in flat terrain and a bigger value (close to 10.0) in mountainous terrain.

Iteration distance makes sure that the iteration does not make big jumps upward if triangles are large.

This avoids ground points that are too high, for example within low vegetation or on low buildings.

Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine.

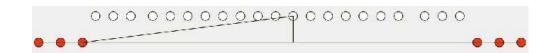


Figure 9: A smaller iteration distance value avoids classification of ground points on low objects.

The iteration angle can be reduced automatically if the triangles become small. This reduces the eagerness to classify more ground points inside small triangles and thus, avoids unnecessary point density of the ground model thus avoiding redundancy of inclusion of unnecessary ground points.

Related to this it is common to see default classified points within a classified ground point cloud surface. The iteration angle inside small triangles approaches zero if the longest triangle edge is shorter than a given Edge length value. Furthermore, the iteration can be stopped completely if triangle edges are shorter than a given limit.

After completion of the automated classification, a strenuous manual classification was carried out over the required area to edit the points thus minimizing gross classification errors that may have occurred in the automatic classification process.

Each block's data was checked in a systematic approach to reduce missing important features. Orthogonal views with background orthoimagery, and profile views are used to review the performance of the automatic classification results.

Tools such as 'Classify using brush', 'Classify above line' and 'Add Point to Ground' (all found within TerraScan) were used during manual classification, to achieve classification accuracy meeting project specifications. Before handover files were created, checks were done on the project's points by viewing statistics within TerraScan or LASTools as illustrated in the figure below.


```
histogram of classification of points:
          54198 unclassified (1)
    12872414641 ground (2)
     2311851002 low vegetation (3)
     6555652803 medium vegetation (4)
    15178923028 high vegetation (5)
       21252051 building (6)
     2145979115 noise (7)
        3207815 water (9)
         201355 bridge deck (17)
       44117428 Reserved for ASPRS Definition (18)
+-> flagged as withheld: 2190096543
        2145979115 of those are noise (7)
           44117428 of those are Reserved for ASPRS Definition (18)
 +--->
+-> flagged as extended overlap: 13994852991
 +--->
                16933 of those are unclassified (1)
          4615468343 of those are ground (2)
 +--->
 +--->
            869790257 of those are low vegetation (3)
           2364384666 of those are medium vegetation (4)
 +---> 5222698975 of those are high vegetation (5)
 +--->
             8092219 of those are building (6)
          903245524 of those are noise (7)
           1083323 of those are water (9)
 +--->
 +--->
                76769 of those are bridge deck (17)
             9995982 of those are Reserved for ASPRS Definition (18)
```

Figure 10: Statistics showing the classes of all the LAS points within the project area

```
46946 unclassified (1)
     3932159489 ground (2)
      756806998 low vegetation (3)
     2306316662 medium vegetation (4)
     3870845242 high vegetation (5)
        6389805 building (6)
      584780708 noise (7)
        2529537 water (9)
         130850 bridge deck (17)
       16457364 Reserved for ASPRS Definition (18)
+-> flagged as withheld: 601238072
+---> 584780708 of those are noise (7)
             16457364 of those are Reserved for ASPRS Definition (18)
+--->
+-> flagged as extended overlap: 4235543962
+---> 14098 of those are unclassifu
+---> 1439812157 of those are ground (2)
                 14098 of those are unclassified (1)
+--> 301553412 of those are low vegetation (3)
+--> 872176189 of those are medium vegetation (4)
+--> 1363200082 of those are high vegetation (5)
              2478095 of those are building (6)
           250924525 of those are noise (7)
+--->
+--->
              897071 of those are water (9)
+--->
                 48284 of those are bridge deck (17)
              4440049 of those are Reserved for ASPRS Definition (18)
```

Figure 11: Statistics showing the classes of all the LAS points within the project area (rev1)

To keep track of the data cleaning process, a hatching method was used on the DGN within Microstation. It allows the cleaners to systematically mark each tile which has been fully checked and editing, making sure the whole data set has been initially covered.

Figure 12: The diagonal hatching seen above shows how the progress was tracked

To verify that only the required coverage classes are present & populated, LP360 File Analyst performs exhaustive testing on the LAS data records, and outputs the analysis results to an excel spreadsheet. Lidar Analysts review this data to ensure that all deliverable LAS files are compliant with the specification coverage classes. Point cloud QAQC/editing is performed by trained Lidar Technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team.

2.8.1 Building Classification

The classification of building points has been undertaken by utilizing the TerraScan *buildings* routine. This routine classifies points on buildings which form a planar surface, several rules can be set to fine tune these results including the minimum building size/footprint, z tolerance of the point alignment along the roof line and use of echo information.

The use of echo information can further support the classification as points on roofs mostly belong to the echo type 'only echo' whereas vegetation usually contains a lot of 'first of many' and 'intermediate' echoes.

Additionally, the LINZ building footprint was also integrated into the building classification workflow to further constrain the classification and improve the overall output.

2.8.2 Vegetation & Low-Level Noise Classification:

In agreeance with all parties, Woolpert have classified the lower 0 - 0.3m of the low vegetation class to class 7 (low noise).

This was done to effectively remove the lower noise stratification points and unused ground points from class 3 over areas which do not represent vegetation e.g. man-made surfaces and structures (sealed roads).

The remaining vegetation points were classified using TerraScan's classify by height from ground which uses the ground surface to calculate the distance of each point above and below ground. All identified vegetation points were classified to the nominated classes using the height ranges specified in the New Zealand Nation Aerial LiDAR Base Specification (See below).

Table 4 Minimum LAS point cloud classification scheme

Code	Description
1	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
18	High noise

2.9 Classification Accuracy

LINZ PGF specification 6.8 requires that non-withheld points must be classified to a classification accuracy level of 2%. No non-withheld points are to remain as class 0.

Realtime Digital Elevation models are generated using Terrascan/Terramodeler are used to verify ground classified points and lidar technicians review the DEMs to find anomalies such as spikes or pits that imply misclassified points and make corrections.

During DEM review profiles are cut across tiles where potential issues are detected. The Lidar Technician scans the profile view to identify if an issue exists and modifies the classification of points as required.

10% of the data tiles are subject to review by a senior analysis or project manager.

After data cleaning was completed, a comprehensive DEM review is performed to visualize the data over large areas for the purpose of identifying anomalies or areas for further investigation. Any potential errors were identified as shown in the red polygons below and later addressed via additional manual editing.

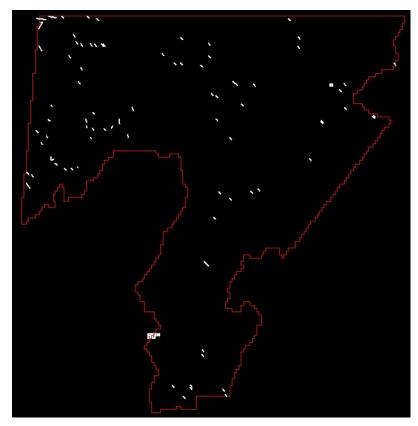


Figure 13: The polygons are areas for further investigation

The indicated areas were revisited and manually classified as appropriate. Below is an example of an issue identified for further investigation. Multiple revisions of the point cloud were performed to address issues common to the terrain and vegetation cover found within the project AOI. Rugged terrain and heavy vegetation across areas within the AOI commonly created unavoidable laser penetration difficulties as well as areas within the DEM that that appear to have a rough surface.

The figures below illustrate such and occurrence. Issues were identified concerning what appeared to be excess noise in areas of gullies. After investigating it was determined the gully areas in question are densely vegetated and located within steep terrain. The sparseness of the consistent ground penetration and steepness of terrain led to points being classified as noise during ground filtering. Additional filtering steps were taken to reclassify points into ground from noise class. The additional ground points added from noise provide improvement to the DEM quality as the points classified from noise to ground were sparsely distributed due to dense vegetation.

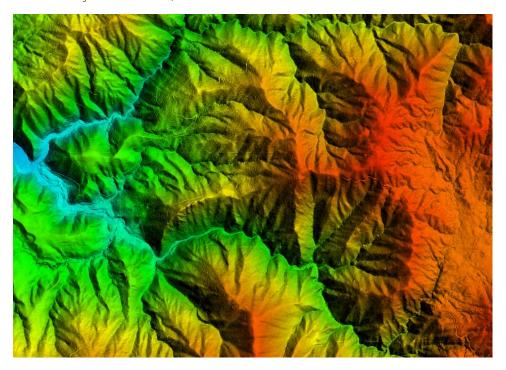


Figure 14: Example overhead image of DEM over cliffs

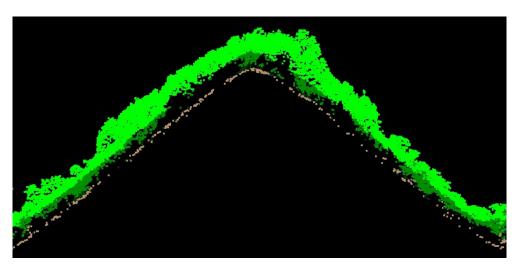


Figure 15: LAS point cloud profile view from previous figure

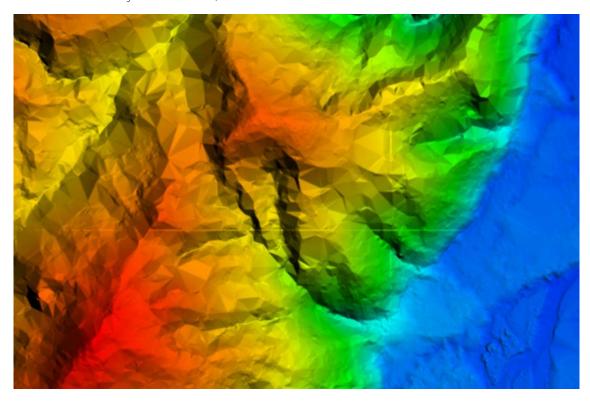


Figure 16: Example overhead image of DEM interpolation

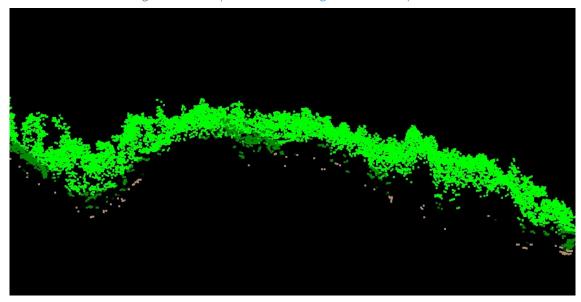


Figure 17: LAS Point cloud view from previous figure

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

2.10 Classification Consistency

LINZ PGF specification 6.9 requires that point classification must be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, flights, or other unnatural divisions are grounds for rejection of the entire deliverable.

As with classification accuracy there is no analytical means of measuring compliance. As such the classification consistency is reviewed via visual means. To mitigate against inconsistent classification, the following controls were employed:

- Systematic geometric issues that may lead to swath-based inconsistencies are identified by the Lidar Geopositioning process, as documented in the Project Method Statement, specifically in the intraswath, interswath & absolute accuracy analysis steps. Data swaths that do not pass this stage do not progress to later classification steps
- The automated classification process is a series of classification algorithm tools applied in a macro. The macro is designed and optimised to yield high classification accuracy across the variety of land cover types within the project area. Applying the one, optimised and flexible classification macro delivers consistent classification across the entire project area
- To avoid tile edge artefacts, all tile-based workflow steps utilise a buffer of lidar points from surrounding tiles. This allows for a better classification of both ground and vegetation points.
- Lidar Technicians are trained to deliver consistent results and use the same visualisation methods/aids. They are supervised by the Lidar Phase Manager and the 10% of classified point cloud tiles are peer reviewed by a dedicated QAQC team.
- DEM tiles are run after classification has been completed to review possible errors in Ground classification.
- Bridges are checked against a bridge shapefile (supplied by LINZ) to correctly identify and classify the bridges.

2.11 Classification Consistency – Bridges

As mentioned above the dataset was compared against the LINZ bridge shapefile. There was discussion between Ocean Infinity, WRC, Woolpert and AAM around the differentiation of bridges versus culverts. The subject is somewhat open to interpretation. It is noted that the classification of Bridges (or not) has implications for Water flow modelling and hydroflattening. The following images are a visual representation of some of the aspects discussed.

Below examples shows the DEM where a bridge has been removed.

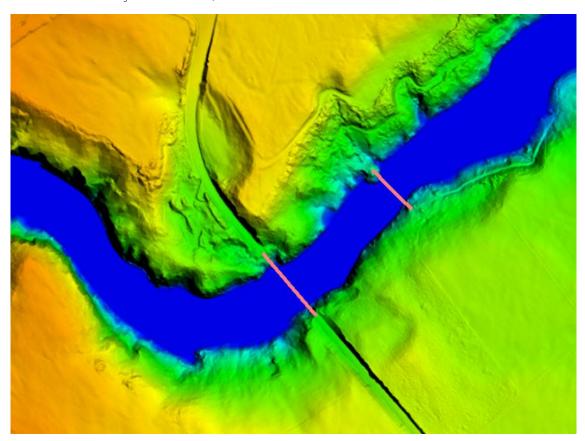


Figure 18: Tile DEM_BF35_2021_1000_2727 with LINZ bridge centreline

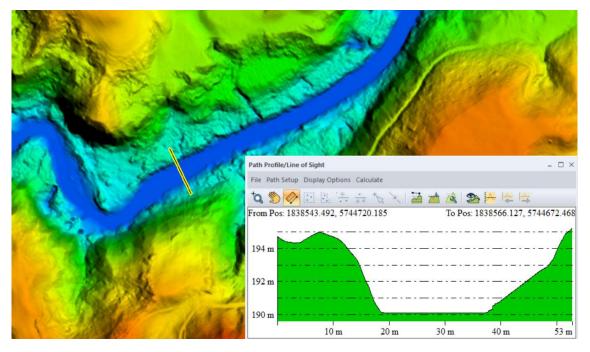


Figure 19: DEM Tile BF35_2021_1000_3022

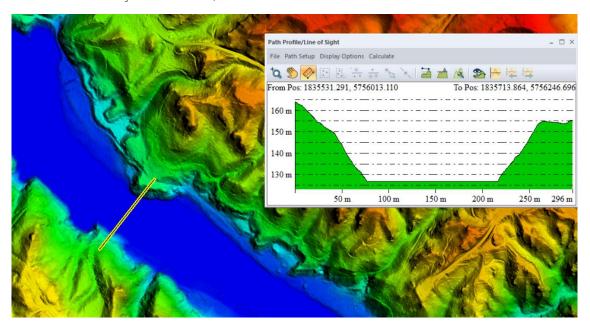


Figure 20: DEM Tile BH35_2021_1000_1416

The example below shows a road cut into a slope rather than a bridge.

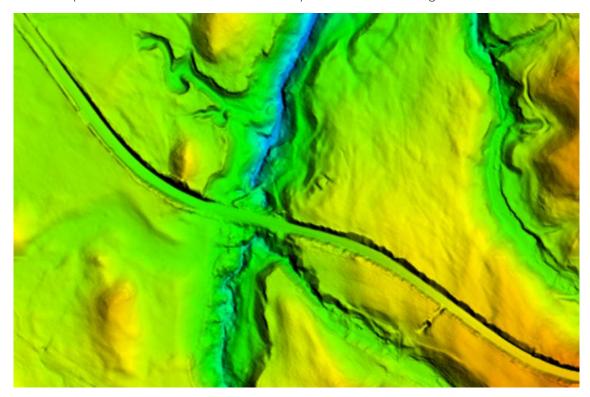


Figure 21: DEM Tile BF35_2021_1000_4741

The example below shows a Bridge in the LINZ shapefile that is a culvert and is therefore not edited to class 17.

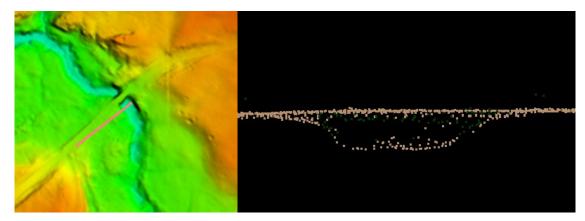


Figure 22: DEM Tile BE34_1000_3627

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

3 LiDAR Hydro-Flattening QAQC

LINZ PGF specification 7.0 details at length the requirements for Hydro flattening of Digital Elevation Models.

The methods for Hydro Break line Digitization, Hydro-Flattening and Hydro-Flattening quality control are described in the Lidar Processing and Data presentation section of the Project Method Statement.

Hydro-flattening generation methods will be detailed in the Processing Report.

The pertinent parts of the specification and the means of identifying the required hydro-flattening features are as follows:

- · Permanent islands 5,000 m2 or larger must be delineated
- · Islands of 5000m2 will be included as hole features within the parent hydro-flattening polygon.
- · Inland ponds and lakes water bodies of 10,000m2 or greater at the time of collection must be flattened
- Lake polygon features will be precisely digitized using lidar point cloud with supporting background intensity imagery and supported by open-source imagery as reference.
- Inland streams and rivers of >= 30m nominal width (width of water flow in a single channel at time of capture) must be flattened
- Streams/rivers that fulfil the minimum distance requirement will be identified by visual inspection of the point cloud.

Hydro-flattening was performed upon the project dataset, and hydro break lines were used during the creation of digital elevation models. Hydro Flattening digitizing are performed by Lidar technicians, under the supervision of the Lidar technical manager. The hydrological features were digitised in Microstation using a combination of manual and automatic digitizing ('Display boundary' function in TerraModeler). Stream islands that were 5 000m² or larger in size.

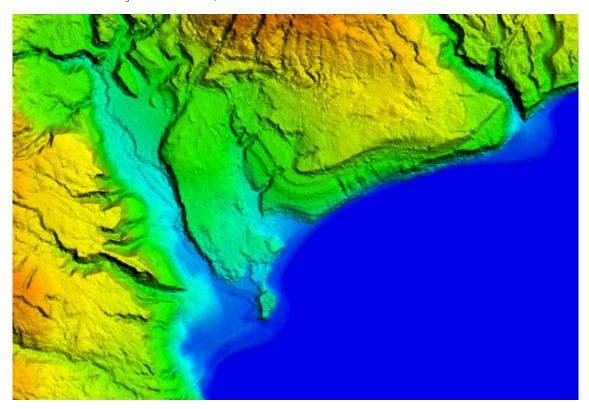


Figure 23: Example of a hydro-flattened DEM Lake Tile DEM_BG35_2021_1000_2037

When hydro-flattening a stream, the following process is used:

Identify a possible stream feature. Measure the width of the stream from bank to bank, and if greater than 30m wide, begin digitizing the feature. If the stream varies in width, the discretion of the geospatial specialist is applied.

Once the stream outline was completed, and that it was confirmed to be a polygon, a shapefile was imported into ArcMap and a centreline was created using the 'Create Centreline ´ script, which generates a centreline based on the stream polygon.

The centrelines were then checked for errors which may have occurred during its creation. It was then exported to Microstation where the centreline was then dropped to a surface (created by surrounding ground points). The tool 'Force Downstream Flow' was used to enforce correct elevations for the centreline, ensuring that each point's height was equal to or less than that of the point before it.

Figure 24: Example of Bridge with LINZ bridge centreline

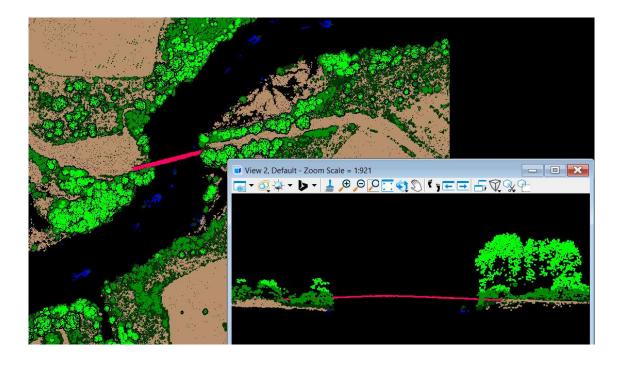


Figure 25: Same location as above DEM.

Laser with the Ground and Bridge classes (red) visible. Shows that the bridge has been classified.

The correct order of point heights was then checked by exporting the co-ordinates out as a text file which would be used for the creation of a new centreline shapefile. Figure 18 shows the example excerpt of river points used to create the centreline after downstream flow was enforced. Figure 19 shows the example highlighted script was used to generate the centreline for the stream within the project's survey.

```
1 1929744.8358 5615128.2638 7.7096
2 1929746.0769 5615130.8498 7.6863
3 1929746.4280 5615131.5996 7.6796
4 1929746.5107 5615131.7727 7.678
5 1929746.7841 5615132.3591 7.6728
6 1929748.0794 5615135.0799 7.6483
7 1929748.5703 5615136.1455 7.6388
8 1929749.4246 5615138.0643 7.622
9 1929749.8587 5615139.0742 7.6132
10 1929750.6288 5615140.9327 7.5973
11 1929751.0393 5615141.7916 7.5896
12 1929751.5292 5615142.7809 7.5805
13 1929754.3861 5615148.3485 7.529
14 1929754.7868 5615149.1041 7.5219
15 1929754.7991 5615149.1267 7.5217
16 1929757.3347 5615152.1834 7.4808
17 1929757.8445 5615152.7752 7.4594
```

Figure 26: Excerpt of river points used to create the centreline

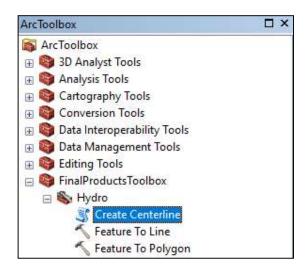


Figure 27: Centreline for the stream within the project's survey

After the new centreline had been created, it was conflated with the stream's shape using LP360 within ArcMap. This matched up the elevation of the stream's outline with that of the centreline. The new stream shape was attached to a DGN and opened in Microstation, exported as co-ordinates, and then read into the project. These points along with ground points were used to output lattice models which show the results of the hydro-flattening. Stream-island break line points were also included to ensure the correct modelling of the stream and its features.

The following settings were used for lattice model creation:

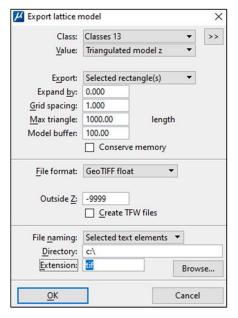


Figure 28: Settings used to export lattice models.

The product undergoes QC by the Lidar Phase Manager and is reviewed for any omissions or blunders. The following project specification are checked against:

- All Hydrologic break lines developed for use in hydro-flattening are in non-tiled ESRI feature class in polylineZ or polygonZ shape file format.
- · Water bodies (ponds, lakes, and reservoirs), wide streams and rivers ("double-line"), and other non-tidal water bodies are to be hydro-flattened within the DEM. The resulting pond and lake surfaces will be flat and double line rivers will be flat level bank-to-bank and be gradient.
- It is noted when hydro-flattening streams, significant breaks in water elevation as well as varying degrees of bends in the stream direction will create a triangulated appearance in the DEM. These affects will be minimized to an appropriate extent.
- · The entire water surface edge must be at or below the immediately surrounding terrain.
- · Hydro-flattening break line feature class use the NZTM2000 projection and NZVD0216 height datum
- · Hydro-flattening has applied to all streams that are nominally wider than 30 metres wide, and to all non-tidal boundary waters bordering the project area regardless of size.
- · Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are nominally larger than 10000m2 in area
- Stream channels should break at road crossings (culvert locations). These road fills should not be removed from the DEM.
- Streams and rivers should NOT break at elevated bridges. Bridges are removed from the DEM. When the identification of a feature such as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

A peer review of the Hydro flattening break line data products as well as the hydro-flattened DEM is performed on 10% of the dataset by an independent analyst or project manager. To distribute and track the progress amongst the editing & QAQC team, an ArcSDE tracker (multiuser database) is employed.

During the QA/QC, it was identified there will be instances of vegetation classifications contained within waterbody polygons. After investigation it was determined much of this occurs from overhanging vegetation from the outside of the hydro features. Occasionally there are instances of vegetation within waterways which is related to islands falling below the required threshold for collection. Additional processing steps were taken to limit the amount of vegetation that exists within the waterway while retaining the overhanging vegetation. This processing step primarily involved classification based on XYZ proximity to existing digitized hydro/island lines. After this process was performed some vegetation classified lidar points will still be present in the waterway.

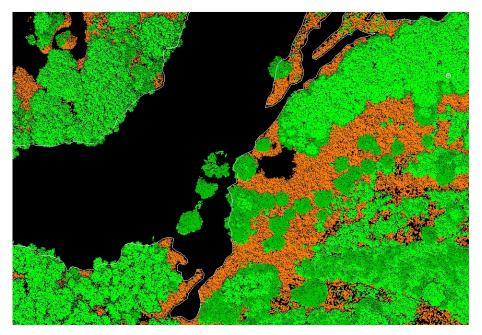


Figure 29: Pre-filter, overhead view of ground and veg points with hydro lines

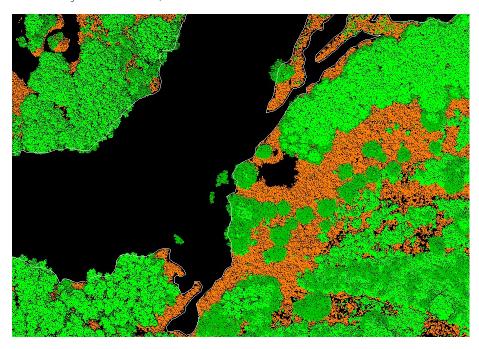


Figure 30: Post-filter, overhead view of ground and veg points with hydro lines

Additionally, during QC data review, it was discovered rocks and boulders within rivers are occasionally classified as vegetation. This is typically observed in high relief areas where water flows down steep terrain, i.e., rapids/white-water. Rivers tend to narrow in these areas and will not likely be caught during the aforementioned processing step based on proximity to linework. These points will continue to be classified as vegetation.

Figure 31: Point cloud – boulder filled stream

Figure 32: Imagery – boulder filled stream

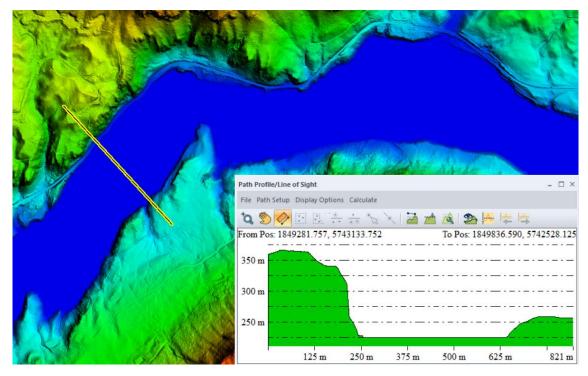


Figure 33: Example of hydroflattened DEM: DEM_BF35_2021_1000_3345

4 LiDAR Deliverables QAQC

Section 8 of the LINZ PGF specification details the project reporting, metadata requirements & deliverable requirements.

4.1 Reporting and metadata

4.1.1 Project reports

The following details the reports being delivered for this section of the project:

- Collection Report detailing mission planning and flight logs, including dates of collection
- Details of quality control tests, and conformance against Linz specifications
 - o Refer to AU411_WLASS-Collection_Report-10052021.pdf
- Survey Report detailing the collection of all ground control, including the following:
 - o Control points used to calibrate and process the LiDAR and derivative data
 - o Check sites used to validate the LiDAR point data or any derivative product
 - o Refer to AU411-R1-Waikato LiDAR Ground Control Report of Survey.pdf
- Geopositioning QA/QC Report, detailing analysis, accuracy assessment and validation of the following:
 - o Point cloud data, including a summary of relative (smooth surface repeatability and overlap consistency) and non-vegetated vertical and horizontal local accuracy.
 - o QA/QC analysis of the vertical and horizontal local accuracy assessment will include a table of the product data compared to each check site.
 - o Refer to AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
 - o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022.

Processing Report (This Document) detailing:

- Classification and product generation procedures including methodology used for break line collection, hydro-flattening break line collection, hydro-flattening processing, DEM & DSM creation, and deliverable generation.
- Details of quality control tests, and conformance against each of the relevant Linz specifications including:
 - o Workflow QAQC checklist
 - o Pre-Delivery QAQC worksheet as an embedded document

4.1.2 Extents

LINZ PGF specification 8.1.3 requires that a geo-referenced, digital spatial representation of the detailed extents of each delivered dataset.

The data for Block E was captured using Leica TerrainMapper sensor 513 and 559, flown on days 05th, 06th, 10th, 11th, 14th, 15th, 25th, 26th, 29th, 30th, 31st January, 1st, 3rd, 11th, 12th, 16th, 18th, 19th, 20th February, 11th, 13th, 21st, 22nd, 23rd, 24th March 2021.

Please note the dates above refer to all dates flown for the entirety of Block E inclusive of North (1), North (2) and South.

The extent of Block E can be seen in Figure 34. The flight lines relating to the area can be seen in Figure 35.

This extent was created by creating a surface in Microstation based on all points collected during the survey flight. The tool "Display boundary" was then used to generate the extent, which was then exported into a shapefile and assigned with the necessary horizontal and vertical co-ordinate system.

Another new Shapefile *Waikato_Block-Delivery_Final_NZTM_20230222* was provided to rectify a rounding error on tiles. The AOI changed minimally and is reflected in figure 33.

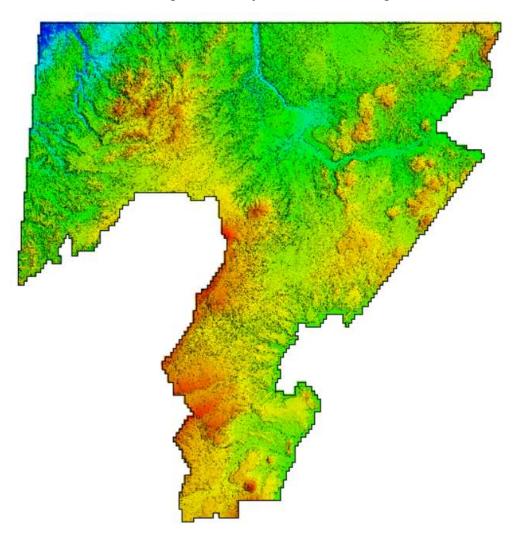


Figure 34: Extent of deliverable data for Block E North (2)

4.1.3 Flight Lines

LINZ PGF specification 8.1.3 requires that Flightline shapefiles as Esri polylines are required. Each flightline must be assigned a unique File Source ID that is equal to the Point Source ID assigned to each point collected during that flightline.

The Sensor trajectory was imported into Terrascan and edited to split the trajectory into discrete flight lines. Each flight line was then assigned discrete flight line ID, in accordance with the project flight plan. Each Lidar point was assigned a flight line ID by matching against its trajectory, using the Adjusted GPS time stored in both the trajectory and lidar point. The trajectories were exported to ESRI shape file format with a File Source ID attribute populated with the trajectory flight line ID value. This process will ensure that specification 8.1.3 is adhered to.

The image below shows the extend of the area covered. Refer to the purple polygon illustrating Block E North (2).

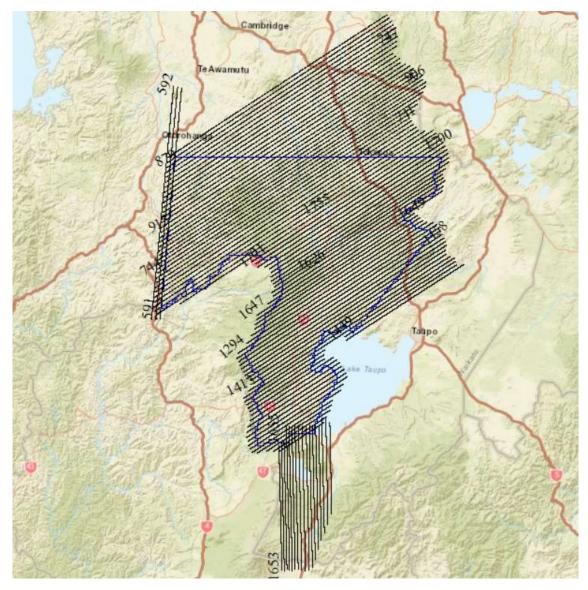


Figure 35: Flight lines for 4ppm2 data coverage over Block E North (2)

4.2 Classified point cloud tiles

LINZ PGF specification 8.2 details the requirement for the point cloud deliverables, and how adherence to the specifications is measured is listed below. Point cloud deliverable generation methods will be detailed in the Processing Report.

Deliverable QC checks are performed both by Lidar technicians, under the supervision of the Lidar Phase Manager and followed by a review of 10% of the data by an independent analyst or project manager:

- (a) Data from all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified, by tiles. Project swaths exclude calibration swaths, crossties, and other swaths not used in product generation.
- (b) Data is provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum.
- (c) Fully compliant LAS v1.4, Point Data Record Format (PDRF) 6-10. All files must have the same PDRF.
- (d) Each point includes a Point Source ID linking it to the flight line File Source ID.
- (e) Correct and properly formatted georeferenced information (EPSG: 2193 + 7839) as Open Geospatial Consortium (OGC) Well Known Text (WKT) included in all LAS file headers.
- (f) File Source ID set to 0 for tiled LAS files.
- (g) GPS times recorded as Adjusted GPS Time at a precision sufficient to allow unique timestamps for each pulse.
- (h) Points are provided in the order in which they were collected.
- (i) Height values reported to three decimal places (nearest mm). (While not significant for accuracy, this supports numerical processing and reduces the number of identical values caused by rounding.)
- (j) Intensity values, normalised to 16-bit by multiplying the value by 65,536/ (intensity range of the sensor) per LAS v1.4. This will result in an intensity range of 0-65,536.
- (k) Classification as required by the Contract Authority (Table 4 at a minimum).
- (I) Tiled delivery, without overlap, per the project tiling scheme in Section 9 Tiles.
- (m) Files named per Section 9 Tiles.

The point cloud tiles created for handover underwent multiple alterations before finalization. After the LAS tiles were created in Microstation, LASTools was used to assign the correct global encoding (17), system identifier and file source ID (0). WKT was also added to the LAS metadata, as illustrated in the figure below. The correct height values were also confirmed in LASTools ensuring that three decimal places were being used. The tiles were also named according to the required naming convention which is discussed in Section 6.

Figure 36: WKT of a LAS file shown by LASTools.

Intensity valued scaled from a range of 100 – 10000 output by HxMap, to full 16-bit dynamic range. Translation value = -100 Scale value = 6.5535

Once the point cloud was classified and was inspected manually in Microstation, the LAS files were loaded into LP360. The global coding, file source ID, WKT, VLRs, file format and LAS version were compared against to the LINZ specifications and after passing QA/QC, the files were renamed in accordance with the LINZ specifications.

A condensed version of the LP360's results can be found in the table below. A complete listing of the output from LP360 is included as an embedded document in Appendix A.

				1		
File	Points	Version	File Signature	File Source ID	CRS is WKT	Coordinate System
CL2_BG35_2021_1000_0405.las	3,030,325	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0406.las	3,746,394	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0407.las	4,888,335	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0408.las	4,717,818	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0418.las	5,431,876	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0419.las	4,767,456	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0420.las	3,401,279	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0422.las	2,639,543	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0423.las	3,244,777	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0427.las	3,780,786	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0428.las	3,035,123	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0439.las	2,878,256	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0440.las	3,293,866	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0446.las	2,805,652	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0447.las	3,311,312	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0448.las	4,731,069	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0449.las	3,645,816	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0503.las	2,940,714	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0504.las	3,886,904	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG35_2021_1000_0505.las	4,456,422	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016

Table 2: Representative output from LP360 illustrating LAS file specification compliance (Rev1)

Additionally, a pre-delivery script which invokes LASTools was run on all tiles. The script output was imported into a custom Excel Worksheet, which checked specification compliance. For a complete listing of analysis refer to Section 6.1 of this document.

4.3 Elevation models

LINZ PGF specification 8.3 details requirements for raster surface model deliverables. The specification and how adherence to the specifications is measured is listed below. Deliverable QC checks are performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a review of 10% of the data by an independent analysist or project manager:

- (a) Grid spacing: 1m cell size.
- (b) Generated to the limits of the project area
- (c) Raster format: Geotiff (.tif)
- (d) Geo-reference information (EPSG 2193) in each raster file.
- (e) Tiled delivery without overlap.
- (f) NOT clipped using polylines for land-water boundaries from national databases (for example coastlines, river or lake boundaries) as these can be inaccurate and subject to continual geomorphic change.
- (g) Tiles with no edge artefacts or mismatch. A quilted appearance in the overall surface can be grounds for rejection of the entire deliverable whether the rejection is caused by differences in processing quality or character among tiles, swaths, flights, or other unnatural divisions.
- (h) Void areas (for example, areas outside the project area but within the project tiling scheme such as offshore water) coded using "NODATA" value equal to -9999. This value must be identified in the appropriate location within the raster file header.
- (i) Constrained with any additional break lines required by the Contract Authority, such as stopbanks, streams, and narrower rivers.
- (j) Provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum. Additional vertical datums may be specified by the Contract Authority.

4.3.1 Bare-Earth Digital Elevation Models (DEM)

LINZ PGF specification 8.3.1 details additional requirements for Digital Elevation Models. The Bare-Earth DEM is the bare earth that has been classified and edited to remove vegetation and man-made structures within the bounds of the classification accuracy requirements. It must also include or conform to the following:

- (a) Based on Classification level 2 or better ground return points.
- (b) Hydro-flattening as outlined in Section 7 Hydro-Flattening.
- (c) Bridges removed from the surface, while culverts are treated as ground
- (d) Method for removal of buildings, structures or other ground cover/vegetation and interpolation techniques documented.

The Digital Elevation Models were created using a combined model based on both ground surface points and break line points. These break line points were created during the hydroflattening process mentioned in **Section 4**. By using these classes, a true representation of the ground points can be achieved while still maintaining a smooth water surface which gradually follows the terrain.

It is noted for Blocks F & G due to the dense vegetation and steep terrain the penetration of the LiDAR to the ground in some areas is minimal (Figure 18 is a good example). This will show in the DEM as large, triangulated areas or give the impression of pitting where only isolated ground returns have been identified.

For these areas it is recommended to compare any potential DEM discrepancies with the point cloud to confirm the absence of available ground points.

To generate DEMs, LAS format data files are loaded into TerraScan, only loading in class 2 points and breaklines. Additional data is referenced to avoid tile edge artefacts. Following import, TerraScan-Export Lattice Model command is used to create a grid file with uniform distances between points from one or more selected point classes. For each grid point, the lattice model file stores XY coordinates and elevation. Within the Export Lattice Models command we utilize "Triangulated model Z" to export the DEM tiffs. This triangulated model z derives an elevation value that is calculated from a TIN model of the lidar points using ground and breakline classifications.

The elevation grid is generated as a TerraScan Lattice model using the following settings:

- o Grid Method = TIN Model (Triangulated model z)
- o Grid Spacing = 1 meter

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

The tiles were loaded into LP360 to check the metadata of the images during both production and QA/QC of the deliverables. A Representative version of LP360's findings is found in the table below. A complete listing of the LP360 results is included as an embedded document in Appendix 1.

		NoData				Pixel	
File	Format	Value	BPB	Bands	Data Type	Size	Coordinate System
DEM_BF35_2021_1000_0314.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0334.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0335.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0336.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0414.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0415.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0432.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0433.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0434.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0435.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0436.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0439.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0440.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0441.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0514.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0515.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0540.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0541.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0614.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BF35_2021_1000_0714.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 3: Condensed output from LP360 illustrating DEM file specification compliance (Rev1)

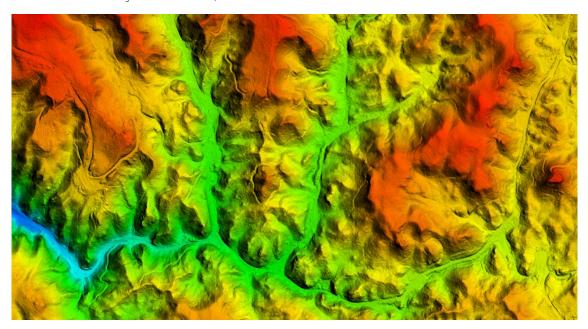


Figure 37: DEM Example Tiles BF35_1000_0919, BF35_1000_0920 & BF35_1000_0921

4.3.2 Digital Surface Models (DSM)

LINZ PGF specification 8.3.2 details additional requirements for Digital Surface Models. The DSM is the heights of the top of the highest feature at each gridpoint, including ground, vegetation, and manmade structures. The DSM is based on first return points after removal of noise.

LAS format data files are loaded into Terrascan only loading in First, First-of-many and Single returns. Additional data is loaded to avoid tile edge artefacts. Only coverage classed 1 to 6 & 17 points will be used in generation of Digital Surface Models. The elevation grid is generated as a TerraScan Lattice Model using the following settings:

- o Grid Method = Binning (Maximum Value DSM)
- o Grid Spacing = 1 metre

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

To meet the request to produce a DSM representative of the heights of the top of the highest feature at each grid point while incorporating hydro features, the hydro features used to create the DEM deliverables were included to produce a hydro flattened DSM.

Hydro-flattened DEM tiles are overlaid against the DSM tiles to identify and fill gaps in the data (such as the river), and then the tiles were exported in Geotiff format including settings for the datums and null data specifications, using the tile grid to clip & name the data files. The DSM deliverables undergo a visual spot check using Globalmapper.

In areas where valid data gaps (e.g. waterbodies) do not meet the LINZ specification for hydroflattening the surface model will triangulate across these voids to the nearest point per pixel (highest for DSM & lowest for DEM). No intervention is made to flatten or constrain these areas.

Digital surface models are created by combining points with only a single return, and points that have the first return of many (returns) and are then used to generate the DSM model. Figure 28 is an excerpt of one of the DSM tiles created for the project area.

Figure 38: Excerpt from DSM_BF36_1000_2824_&_BF36_1000_2825

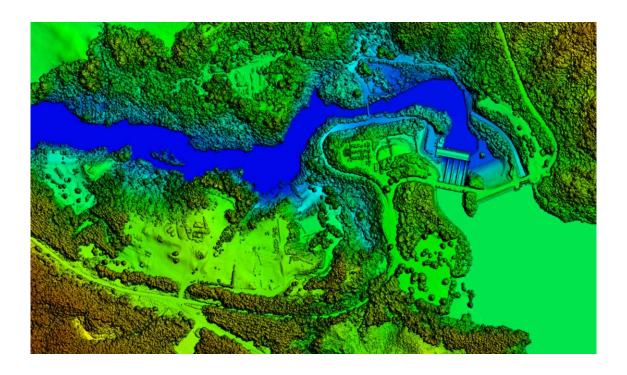


Figure 39: Excerpt from BF36_1000_3136 & BF36_1000_3137

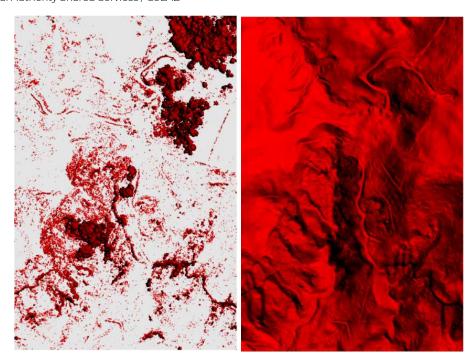


Figure 40: Difference between DSM and DEM differences in height along cliff lines

The tiles created are in GeoTiff floating 32-bit format and have been adjusted to display a NoData value of -9999 (Figure 29). The composite DSM was produced in 32-bit Geotiff format as requested and both the tiles and the composite had the correct horizontal and vertical co-ordinate systems assigned to the metadata in ArcMap.



Figure 41: Script used in ArcMap to achieve a NoData value of -9999.

Format	IMAGINE Image
Source Type	Generic
Pixel Type	floating point
Pixel Depth	32 Bit
NoData Value	-9999

Figure 42: Properties of the composite DSM file showing its format and NoData value

After these files were amended, they were loaded into LP360 to check the necessary metadata of the imagery. The results from LP360 can be found in the table below. A complete listing of the LP360 results are included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DSM_BF35_2021_1000_1046.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1047.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1048.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1049.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1050.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1101.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1102.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1103.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1104.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1105.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1106.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1107.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1108.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1109.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BF35_2021_1000_1110.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 4: LP360 DSM Results example table (rev1)

44 Break lines

LINZ PGF specification 8.4 details requirements for hydro-flattening break lines. Delivery of break lines representing all hydro-flattened features in a project is required. Additional break lines may also be required by the Contract Authority. These are to be delivered as ESRI Shape files (.shp) using the NZTM2000 projection.

Refer to section 7.0 of this document. The workflow methods will be documented in the project Processing Report. The digitized hydro features were included in the handover data set, under the Vector deliverable section. They are in shapefile (.shp) format and are in the NZTM2000 projection.

Stream and stream-island, lake and lake island break lines were delivered, with ocean features falling under the "Lake" feature category due to its uniform height. In figure 31 the geometry type is set to a polygon shape and has vertical and horizontal co-ordinate sets as well as Z values.

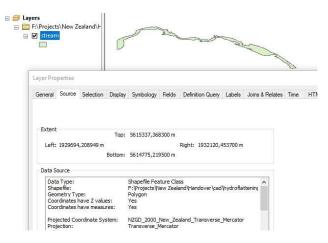


Figure 43: Stream break line properties in ArcMap.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

4.5 GNSS data

GNSS data is not a required deliverable for this project.

4.6 Backed up project source data

LINZ PGF specification 8.6 details the requirements for archival and storage of the project data. Raw project source data, such as native format LiDAR files and point cloud swaths, are NOT required for delivery; however, a copy has been provided to CoLAB. It is acknowledged that the Vendor must hold a copy of all relevant raw project data, for a minimum of five years beyond the final delivery of the project deliverables. The vendor must provide this data, with unrestricted copyright, to the Contract Authority on request. The vendor may charge a reasonable access and distribution charge in such instances.

Woolpert and Ocean Infinity will archive all raw & processed data collected for 5 years following project completion.

4.7 Contours

Contours with an interval of 0.5m will be generated for all project area.

Note Contours will be generated at Project conclusion to ensure there are no line breaks between blocks.

Contours will be generated from the DEM. Contour methodology is undergoing internal discussion and will be agreed with all parties prior to their generation. Samples have been provide of contours including those that straddle block joins.

Contours will be generated at 1,5 and 10 metre markers. They will adopt a naming convention as per WRC suggestion e.g. *CRT_BB35_2021_1000_1515*. *CRT refers to Cartographic and opposed to engineering contours*.

5 LiDAR QA Tiles

LINZ PGF specification 9.1 & 9.2 detail the requirements for project tiles geometry & naming convention.

- (a) NZTopo50 subtitles based on NZTM2000 coordinates. The 1-m gridded raster products and point clouds must be delivered at 1:1000 nominal scale (2500 720m high x 480m wide subtiles per full NZTopo50 sheet).
- (b) The origin of the raster tiles must be placed on a whole metre coordinate value of the southwest corner of each tile (for example, 5429500 mN_17490300mE).
- (c) The tiled deliverables must edge-match seamlessly and without gaps.
- (d) The tiled deliverables must conform to the project tiling scheme without overlap.
- (e) File naming must conform with the naming convention described in section 9.2.

A Tile Index must be provided in ESRI shape file format. The file name must be included as an attribute in the Tile Index file.

The Client supplied tiling grid shape file will be used as the tile clipping polygon when exporting the deliverable products. The shape file will have an attribute added for each deliverable type as specified in section 9.2. This attribute will contain the required tile name for each deliverable. This shape file will be used as the means of extracting all project data deliverables, so that the geometric aspects for specification 9.1, and the naming requirements of section 9.2 are fulfilled.

Deliverable QC checks have been performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team:

5.1 LAS Tiles QAQC - LASQC

Prior to delivery, Lidar data tiles have undergone a final analysis, using a custom developed Pre-Delivery QAQC tool called LASQC. This tool uses LASTools 'Lasinfo' in a batchscript called LASExtract, which collates information regarding each tile into an Excel worksheet. The tool analysis and reports compliance on the following items:

- o File naming accuracy
- o Check to ensure lidar points fall inside the extents bounded by the NZTOPO50/1:1000 tile name
- o Adjusted GPS time falling with correct extents for the survey
- o LAS file format, version, file source ID, point data record format & scale factor
- o Point counts by return, illustrating presence of multiple returns
- o Average point density for the tile, excluding overlap
- o Presence of the overlap (not applicable to all tiles) & withheld flags
- o Minimum, maximum & average intensity values.
- o Height above ground for building, low, medium & high vegetation classes

- Note it should be noted that this analysis is not accurate in steep terrain due to the different methods used for triangulation of between Terrascan & LASTools.
- o Check for presence of correct ESPG Codes for geodetic & vertical datums, and map projection
- o Raster Overviews for Point Source ID, Intensity, Point Density and Overlap Analysis

These analysis results will be included as an attachment referenced in Appendix A.

5.2 File naming

Project deliverables have been named in accordance with the project specification illustrated in Table 5.

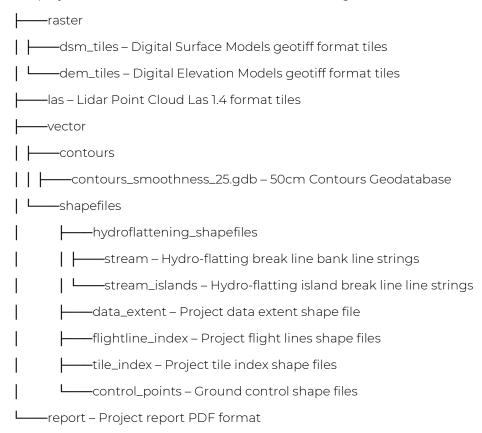

Product	DEM	CL2-Point Cloud Classification Level 2 DEM-Bare Earth Digital Elevation Model DSM-Digital Surface Model DTM-Digital Terrain Model UNC-Unclassified Point Cloud INT-Intensity image CHM - Canopy Height Model IMG-Aerial photography etc
Sheet	BK34	LINZ Topo50 identifier (4 characters)
Year	2016	Year of survey commencement
Scale	1000	Nominal scale of NZTopo50 subtiles
Tile	4118	Row number (41), Column number (18) of tile with respect to an upper left origin
ext	tif	File extension according to format conventions las tif shp etc

Table 5: File Naming

5.3 Delivery Folder

The project deliverables are structured in the following manner:

6 Setbacks and Solutions

During the production of the data sets for the preceding blocks, setbacks were encountered, with a varying impact on production time. Along with these setbacks, new methods of production were created to account for any necessary changes to improve the quality of the data set or save time when amending the data set. These setbacks impacted the delivery date of Block A and other areas.

6.1 Missing ground points under vegetation and low vegetation classification difficulties

During the processing of all Waikato Blocks it is noted there are areas of dense vegetation which limit and often prevent laser penetration to the ground surface. In these situations, it is common for data voids to appear in the DEM surface. In addition, low lying dense vegetation has caused difficulty in assessing the true ground surface. In these situations, it can be difficult to discern if points are part of the ground surface or the lowest part of low-lying vegetation. In these situations, it is common for the ground surface profile to transition to what may or may not be the lowest part of low-lying vegetation. During manual editing, these situations are monitored with the objective being to make the best interpretation of ground.

6.2 Production Delays

During production, it was determined a new technical team within Woolpert's US and Australian offices was necessary to continue production on the project. This handover from the previous team created project delivery delays as the new team became familiar with the project specifications as well as to address quality assurance workflow requests made by the prime contractor.

6.3 Lessons learned and collaboration

Thanks goes to the team at WRC for providing inputs to previous blocks that has informed decisions on processing for this block and the entirety of Block E. There is some challenging terrain and dense vegetation that hindered penetration is some parts and made for some difficult processing with significant manual editing.

6.4 WRC Tracking Spreadsheet

Below is a table showing one of the pages of the tracking spreadsheet which was supplied by WRC and LINZ and reviewed and commented on by Ocean Infinity and/or Woolpert. This was further supplemented by shapefiles, geodatabase files, reference images / snips and other information to support identification, rectification and repair.

Table 6: WRC Defect tracking Spreadsheet – Populated post rework

Date	Item	Product	Raised By	Description	Assigned to	Woolpert Review	Woolpert Comment
23/01/2023	1	All	RossM	All items in "WRC_IssuesPoints Defects" tab) and WRC_IssuesPoints featureclass	Audi/Zu	Reviewed	In Progress
23/01/2023	2	All	RossM	All items in "WRC_IssuesPolygons Defects" tab) and WRC_IssuesPolygons featureclass	Audi/Zu	Reviewed	In Progress
23/01/2023	3	All	RossM	All items in "LINZ_defects" tab and LINZ_ feature classes in the main geodatabase WRCReview20240125_EN2_v1.gdb	Audi/Zu	Reviewed	In Progress - LINZ feature class corrupt - shp resupplied
23/01/2023	_			Data processing report hasn't been delivered	Zu/Luke/OI	Supplied	All materials delivered to OI for report configuration
Dans additional r	manif	old checl	ks to follow	y (refer to repsective tabs)			
23/01/2023	5	DEM	DanB	[1110 BRIDGE REMOVAL] - Nine bridges have not been removed from the DEM. See layer [1110 BRIDGE REMOVAL.gpkg]	Zu	Fixed	
23/01/2023	6	DEM	DanB	[137 DEM VOID DETECTION] / [173 TILE COVER FULL EXTENT] - 3 tiles with DEM data voids. Two are over water on lake Taupo (but still shouldn't be there and on is overland. See layer [137 DEM VOID DETECTION.gpkg]	Zu	Fixed	No missing pixels observed in regenerated products
23/01/2023	7	DEM	DanB	[M3 NEGATIVE SUBTRACTION] - Pits and spikes in DEM. See QA layer [LidarQA_templates.gdb]::[IssuesPoints.SHAPE]	Audi/Zu	Fixed	All spikes and misclassification issues have been addressed.
23/01/2023	8	DEM	DanB	[137 DSM VOID DETECTION] / [190 DSM TILE COVER FULL EXTENT] - 5 tiles with single pixel voids and one tile with larger void over water in Lake Taupo. See [137 DSM VOID DETECTION.gpkg]	Zu	Fixed	No missing pixels observed in regenerated products
23/01/2023	9	DEM	DanB	[165 PC TILE AND CRS] - Single missing tile. In DEM/DSM supply but not in LAS. Overwater in Lake Taupo. See QA layer [LidarQA_templates.gdb]::[IssuesPoints.SHAPE]	Zu	Reviewed	No laser strikes within tile boundary
23/01/2023	10	DEM	DanB	[154 POINT SOURCE FLIGHLINE] - One tile with missing flightline data. See [154 POINT SOURCE FLIGHLINE.gpkg]	Luke	Fixed	Tile corruption fixed
23/01/2023	11	DEM	DanB	[I57 PC GPS EXTENDED TIME] - Of the 3% of las points randomly selected 4 tiles are without times in extended format. Please check entire dataset. TILE IDX BF36 1000 3142	Luke	Fixed	All tiles reviewed and corrected
				BF36 1000 3142 BF36 1000 3143 BG35 1000 2528			
				BG35_1000_2627			

6.5 Examples of Corrections after initial supply

The following pages are examples of defects that were identified by WRC and or LINZ and how they were rectified.

6.5.1 Aerosol spike in DEM

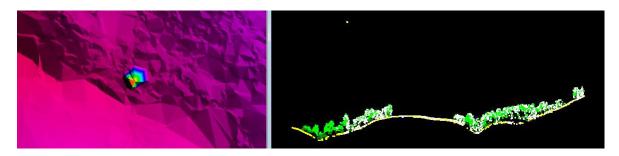


Figure 44: BF33_1000_1142 Before

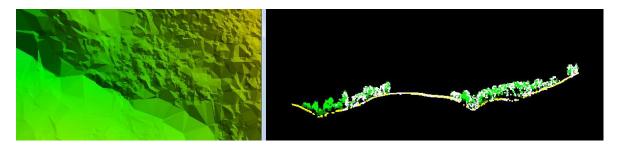


Figure 45: BF33_1000_1142 After

6.5.2 Pit in DEM

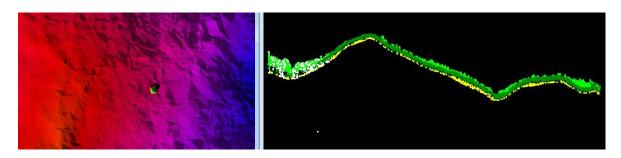


Figure 46: BF34_1000_4119 Before

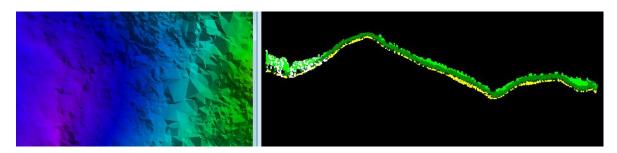


Figure 47: BF34_1000_4119 After

6.5.3 DEM texture issue - Canopy points classified as ground

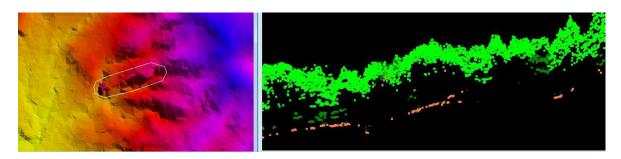


Figure 48: BF34_1000_1846 Before

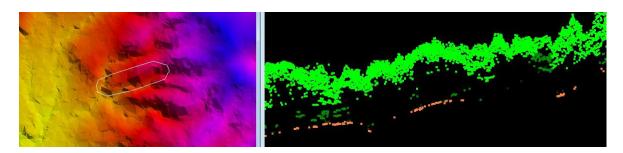


Figure 49: BF34_1000_1846 After

6.5.4 Patch of low density last & only points

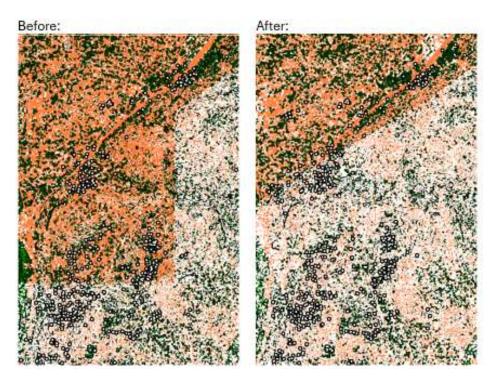


Figure 50: Tile BF36_1000_1918

6.5.5 Texture issue from vegetation in DEM (A)

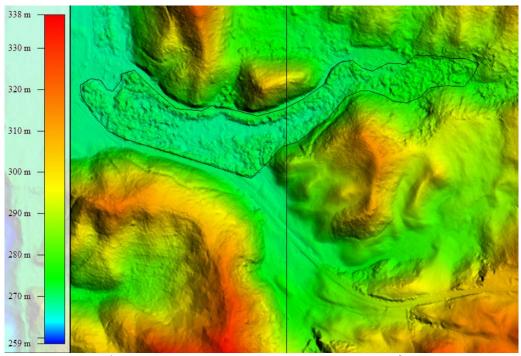


Figure 51: BF36_1000_3713 & BF36_1000_3714 Before

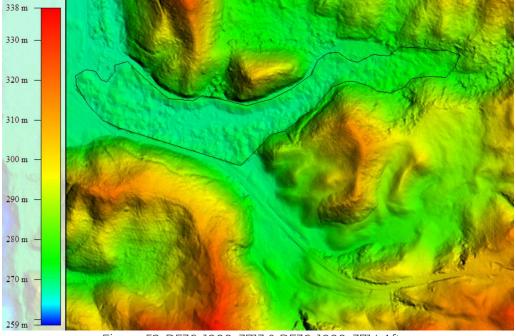


Figure 52: BF36_1000_3713 & BF36_1000_3714 After

6.5.6 Texture issue from vegetation in DEM (B)

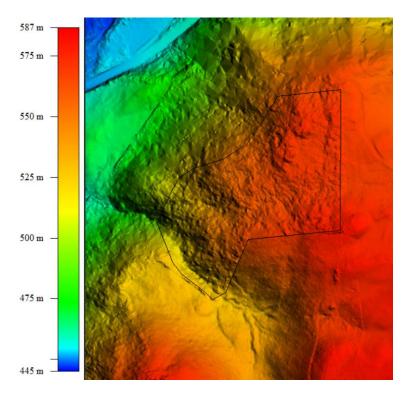


Figure 53: BH35_1000_0211 Before

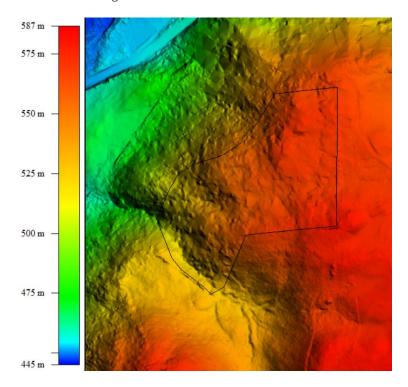


Figure 54: BH35_1000_0211 After

6.5.7 Intensity anomalous low values

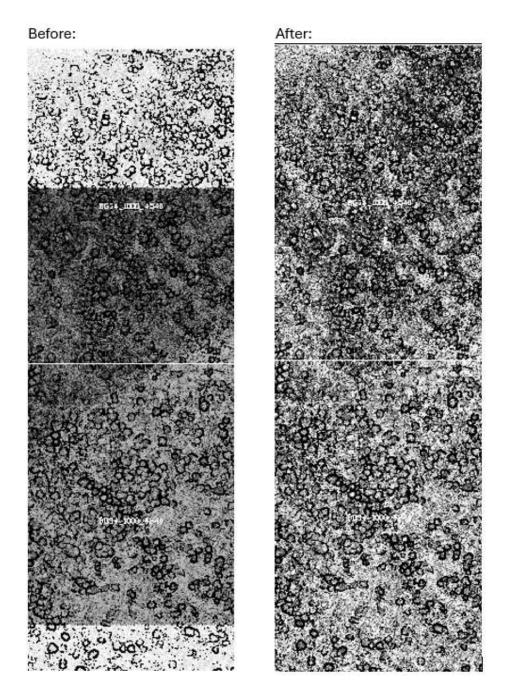


Figure 55: Tiles BG34_1000_4540 & BG34_1000_4640

6.5.8 Null pixel in DSM

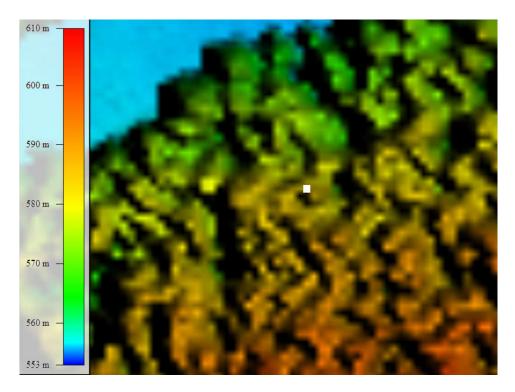


Figure 56: BG35_1000_2805 Before

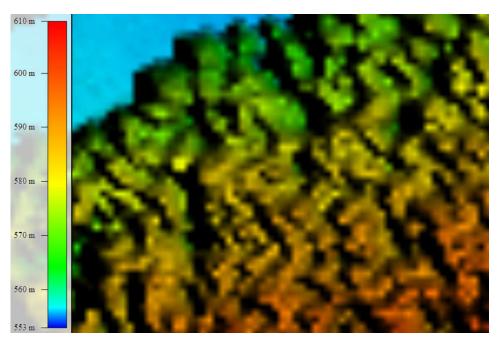


Figure 57: BG35_1000_2805 After

6.6 Examples of Corrections after rework and resupply

The following pages are examples of defects that were identified by WRC and or LINZ and how they were rectified. This was following the resupply in May 2024.

6.6.1 Bridge partially removed

No correction made to Classified LAS as LiDAR points are correctly classified, only hanging part (red dots as shown below) is bridge. However, synthetic points have been added in DEM creation to force triangulation to stop at bridge area.

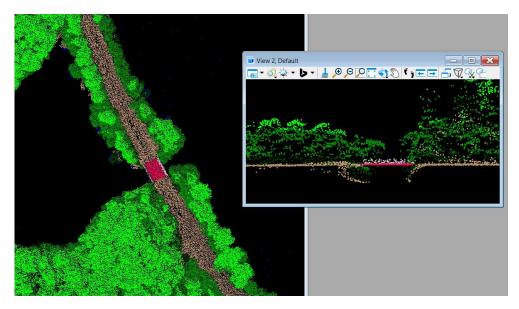


Figure 58: BF35_1000_1214 & BF35_1000_1314 Classified LAS

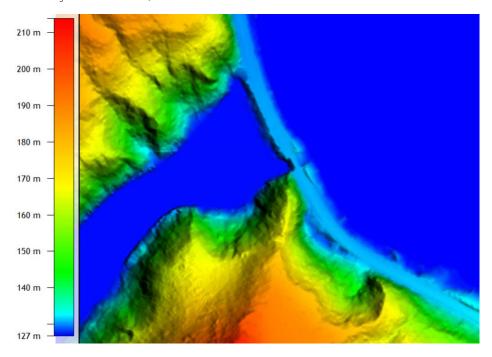


Figure 59: BF35_1000_1214 & BF35_1000_1314 DEM before correction

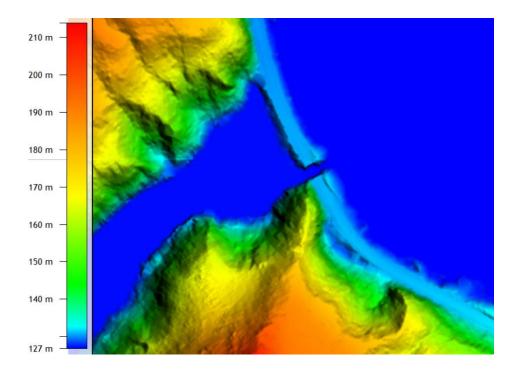


Figure 60: BF35_1000_1214 & BF35_1000_1314 DEM after correction

6.6.2 Unnecessary fix for DEM under forestry

Dense under-brush / borage / slash was judged to be out of scope. Low Vegetation reclassified back to ground and all products resupplied.

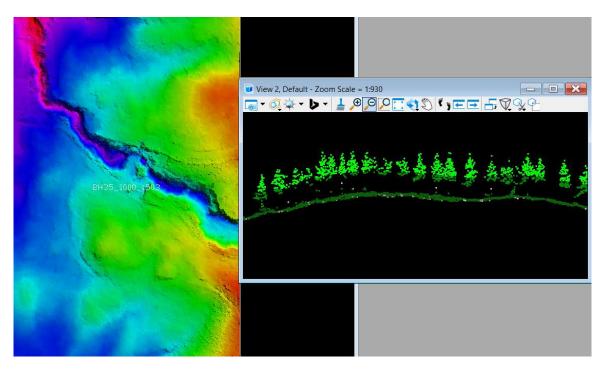


Figure 61: BH35_1000_1503 Classified LAS before correction

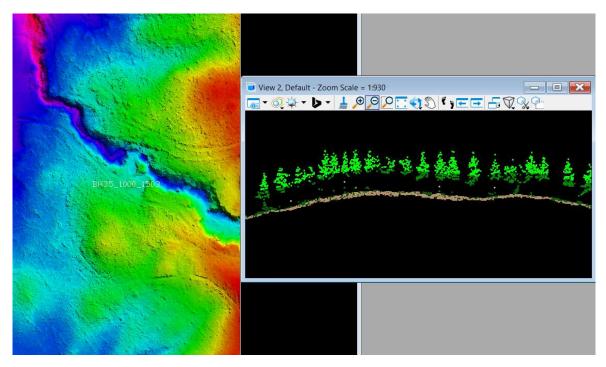


Figure 62: BH35_1000_1503 Classified LAS after correction

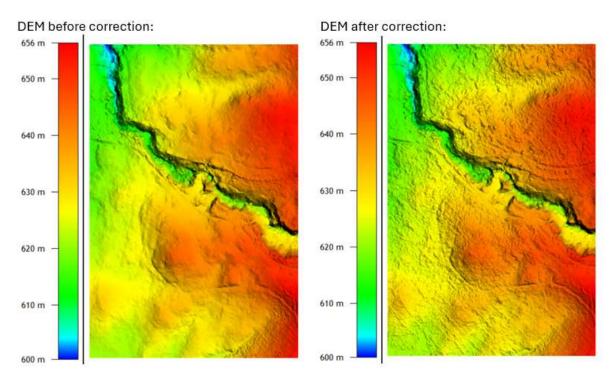


Figure 63: BH35_1000_1503 DEM

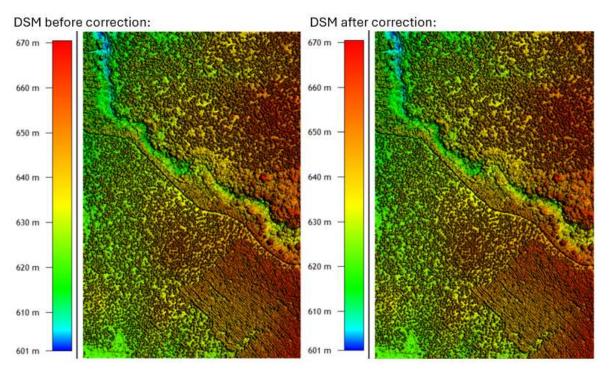


Figure 64: BH35_1000_1503 DSM

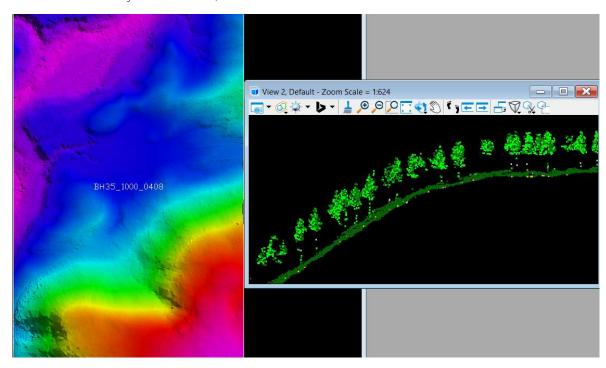


Figure 65: BH35_1000_0408 Classified LAS before correction

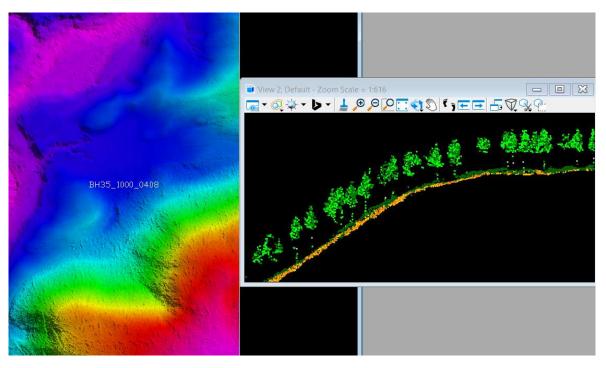


Figure 66: BH35_1000_0408 Classified LAS after correction

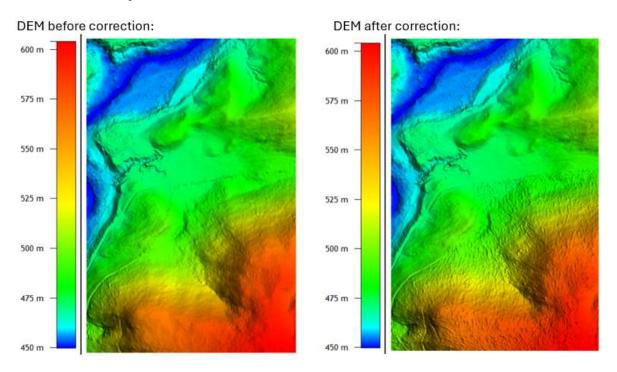


Figure 67: BH35_1000_0408 DEM

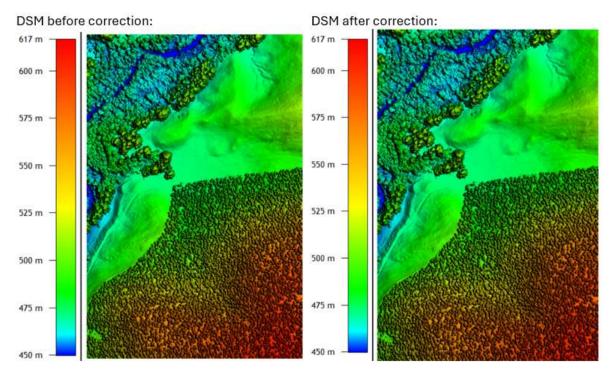


Figure 68: BH35_1000_0408 DSM

6.6.3 DEM artefact – Hydro Flattening

Hydro grids added in DEM creation.

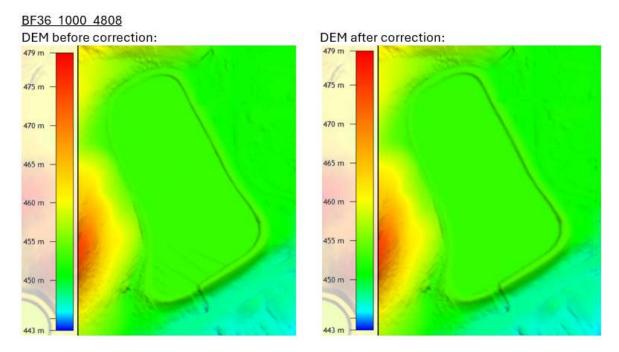


Figure 69: BF36_1000_4808 DEM

6.6.4 Hydro Flattening

Hydroflatten DEM to bank edge.

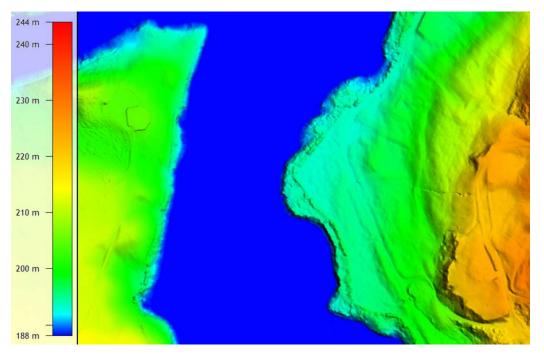


Figure 70: BF35_1000_2729 & BF35_1000_2730 DEM before correction

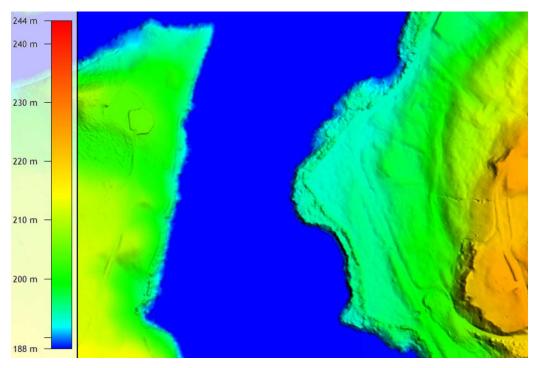


Figure 71: BF35_1000_2729 & BF35_1000_2730 DEM after correction

6.6.5 DEM artefact - vegetation/croppage

Low vegetation removed from ground class as best as possible.

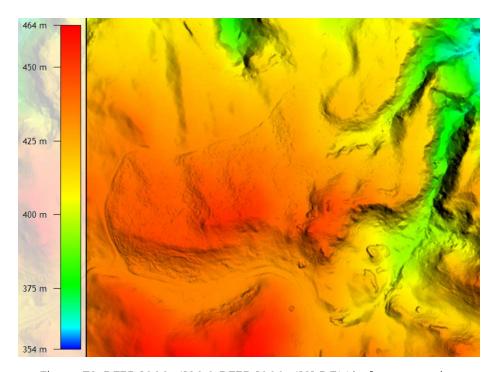


Figure 72: BF35_1000_4120 & BF35_1000_4121 DEM before correction

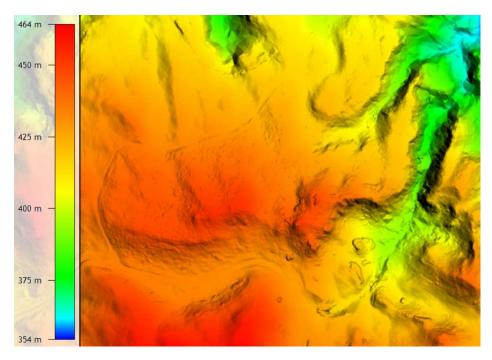


Figure 73: BF35_1000_4120 & BF35_1000_4121 DEM after correction

6.6.6 DSM artefact - tinned where PC shows building classification

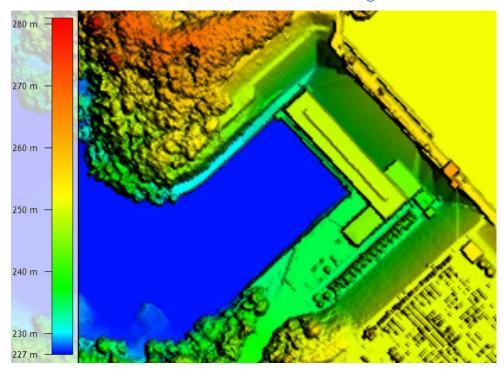


Figure 74: BF36_1000_2825 & BF36_1000_2826 DSM before correction

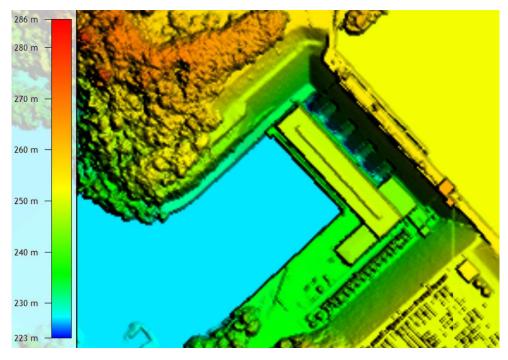


Figure 75: BF36_1000_2825 & BF36_1000_2826 DSM after correction

6.6.7 DSM artefacts - vegetation triangulation where void exist

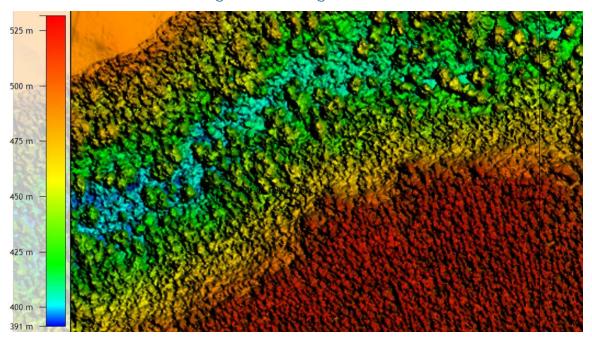


Figure 76: BF36_1000_0220 & BF36_1000_0221 DSM before correction

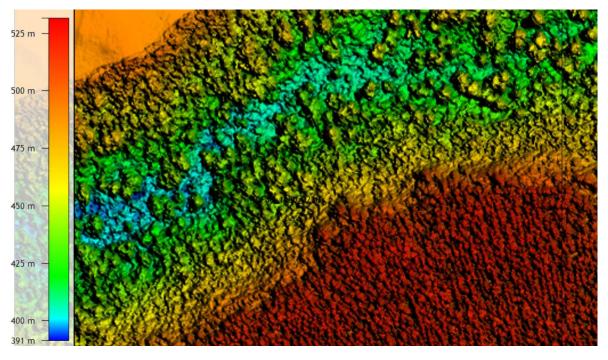


Figure 77: BF36_1000_0220 & BF36_1000_0221 DSM after correction

7 Results Acceptance & Signoff

An acceptance and signoff of the project QAQC supervisory review is listed below.

Result Acceptance						
Assessment Criteria	Status	Completed By	Date			
Point cloud classification accuracy	Complete	Woolpert/AAM	12 March 2024			
Point cloud classification consistency	Complete	Woolpert/AAM	12 March 2024			
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	12 March 2024			
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	12 March 2024			
Digital Survey Models	Complete	Woolpert/AAM	12 March 2024			
Contours	Complete	Woolpert/AAM	12 March 2024			
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	12 March 2024			
Project Manager / Supervisor Signoff	Complete	Luke Graham	12 March 2024			
Ocean Infinity Review	Complete	Luke Leydon	07 April 2024			

Table 7: Processing Results Acceptable Signoff

Result Acceptance						
Assessment Criteria	Status	Completed By	Date			
Point cloud classification accuracy	Complete	Woolpert/AAM	15 May 2024			
Point cloud classification consistency	Complete	Woolpert/AAM	15 May 2024			
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	15 May 2024			
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	15 May 2024			
Digital Survey Models	Complete	Woolpert/AAM	15 May 2024			
Contours	Complete	Woolpert/AAM	15 May 2024			
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	15 May 2024			
Project Manager / Supervisor Signoff	Complete	Luke Graham	15 May 2024			
Ocean Infinity Review	Complete	Luke Leydon	01 June 2024			

Table 8: Processing Results Acceptable Signoff (Rev 1)

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Appendix A: Lidar Quality Assurance Results

Provided as separate Documents in Appendix A upload

Waikato Local Authority Shared Services (WLASS) / CoLAB LiDAR Data Capture Services LiDAR Processing Report Block E South

Contract Number: AU411

Surveyed By: iXblue Pty Ltd / Ocean Infinity

Processing Completed By: Woolpert USA and Woolpert Australia

Prepared For: Colab (formerly WLASS)

Document Date: 6 June 2024

Ocean Infinity (Australia) Pty Ltd ABN 61 128 811 978 oceaninfinity.com

Document Control

Woolpert Inc. Representative

Name	Brian Foster
Position	Woolpert Senior Associate
Address	333 North Alabama St. Suite 200 Indianapolis, IN 46204
Telephone	+1 317 809 4685
Email	Brian.Foster@woolpert.com

Ocean Infinity Supervisor

Name	Dave Field
Position	Managing Director
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 277 755 532
Email	david.field@oceaninfinity.com

Ocean Infinity Project Manager

Name	Luke Leydon
Position	NZ Account Manager, Airborne
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 226 511 732
Email	luke.leydon@oceaninfinity.com

Client Representative

Name	Rolf Boswell
Position	Project Delivery Manager
Address	6/34D Lake Street, Cambridge 3434 NEW ZEALAND
Mobile	+64 27 420 0239
Email	<u>rolf.boswell@colabsolutions.govt.nz</u>

Document Revision

Revision No	Issue Purpose	Prepared	Checked	Approved
0	Issue LiDAR Processing Report	L Leydon	L Graham	D Field

Approval for Issue

Name	Signature	Date
Luke Leydon	Juke Jeydon	06 June 2024

Revision History

Item	Description of change	Section	Revision
1	New Introduction	1.1	1
1	Las stats for revision included	Figure 11	1
1	New LP360 tables added	4	1
1	Contours methodology updated	4.7	1
1	New sections added to setbacks and solutions	6.4	1
1	New results signoff table added	7	1

Contents

1	Intro	duction		8	
	1.1	Revision	n 1 Introduction	8	
2	LiDAR Data Processing and Handling				
	2.1	The ASF	PRS LAS File format	9	
	2.2	Time sta	amp of navigational data	10	
	2.3	2.3 Datums and coordinate reference system			
	2.4 Geometric Calibration			12	
	2.5	25 Positional accuracy validation			
	2.6	2.6 Use of the LAS withheld flag			
	2.7	2.7 Use of the LAS v1.4 Overlap Flag			
	2.8	Point Classification		13	
		2.8.1	Building Classification	17	
		2.8.2	Vegetation & Low-Level Noise Classification:	17	
	2.9	2.9 Classification Accuracy		18	
	2.10	0 Classification Consistency		20	
	2.11	Classific	ation Consistency – Bridges	21	
3	LiDA	R Hydro-F	Flattening QAQC	24	
4	LiDAR Deliverables QAQC			31	
	4.1	Reporti	ng and metadata	31	
		4.1.1	Project reports	31	
		4.1.2	Extents	31	
		4.1.3	Flight Lines	32	
	4.2 Classified point cloud tiles		33		
	4.3 Elevation models		n models	35	
		4.3.1	Bare-Earth Digital Elevation Models (DEM)	36	
		4.3.2	Digital Surface Models (DSM)	38	
	4.4	Break lii	nes	42	
	4.5	GNSS da	ata	42	
	4.6 Backed up project source data		42		
	4.7	4.7 Contours			
5	LiDAR QA Tiles			44	
	5.1	LAS Tile	s QAQC - LASQC	44	
	5.2	5.2 File naming			
	5.3 Delivery Folder			46	
6	Setbacks and Solutions			47	
	6.1	6.1 Missing ground points under vegetation and low vegetation classification difficulties			
	6.2	Product	tion Delays	47	
	6.3	Lessons	learned and collaboration	47	
	6.4	WRC/L	.INZ Tracking Spreadsheet	47	
7	Resu	lts Accept	tance & Signoff	49	

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Tables

Table 1: Point Classifications	13
Table 2: Representative output from LP360 illustrating LAS file specification compliance (Rev1)	
Table 3: Condensed output from LP360 illustrating DEM file specification compliance (Rev 1)	37
Table 4: Condensed output from LP360 illustrating DSM file specification compliance (Rev 1)	41
Table 5: File Naming	45
Table 6: Processing Results Acceptable Signoff	49
Table 7: Processing Results Acceptable Signoff (Rev 1)	49

Figures

Figure 1: Waikato Survey Area	7
Figure 2: LAS 1.4 being specified during project – example	
Figure 3: Project settings used in TerraScan project when importing points into the project	10
Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools	
Figure 5: Representative examples of LAS point attributes	11
Figure 6: Settings used when cutting overlap in Microstation	13
Figure 7: Automatic classification macro developed for the project areaarea	14
Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine	15
Figure 9: A smaller iteration distance value avoids classification of ground points on low objects	15
Figure 10: Statistics showing the classes of all the LAS points within the project area	16
Figure 11: Statistics showing the classes of all the LAS points within the project area (Rev 1)	16
Figure 11: The diagonal hatching seen above shows how the progress was tracked (example)	17
Figure 13: Example overhead image of DEM over cliffs	19
Figure 14: LAS point cloud profile view from previous figure	19
Figure 15: Example overhead image of DEM interpolation	20
Figure 16: LAS Point cloud view from previous figure	20
Figure 17: Tile DEM_BH36_2021_1000_1531 with LINZ bridge centreline	21
Figure 18: BH36_2021_1000_1531 – Top down	22
Figure 19: BH36_2021_1000_1531 – Side profile	22
Figure 20: DEM Tile BG38_2021_1000_4840	22
Figure 20: Pointcloud BG38_2021_1000_4840	
Figure 21: DEM Tile BH35_1826	
Figure 22: Pointcloud Tile BH35_1826	
Figure 23: Example of a hydro-flattened DEM Lake and river mouthmouth	
Figure 26: Excerpt of river points used to create the centreline	
Figure 27: Centreline for the stream within the project's survey	
Figure 28: Settings used to export lattice models.	
Figure 29: Pre-filter, overhead view of ground and veg points with hydro lines	
Figure 30: Post-filter, overhead view of ground and veg points with hydro lines	
Figure 31: Point cloud – boulder filled stream	
Figure 32: Imagery – boulder filled stream	
Figure 33: Example of DEM tile prior to hydroflattening: BH35_1000_1426 and neighbours	
Figure 32: Example of DEM tile post hydroflattening: BH35_1000_1426 and neighbours	30
Figure 34: Extent of deliverable data for Block E South	
Figure 35: Flight lines for 4ppm2 data coverage over Block E South	
Figure 36: WKT of a LAS file shown by LASTools	34
Figure 37: 1 Metre DEM	38
Figure 38: 1 Metre DSM	39
Figure 39: DEM Comparison	
Figure 40: DSM Comparison	
Figure 41: Script used in ArcMap to achieve a NoData value of -9999	
Figure 42: Properties of the composite DSM file showing its format and NoData value	
Figure 43: Stream break line properties in ArcMap	42

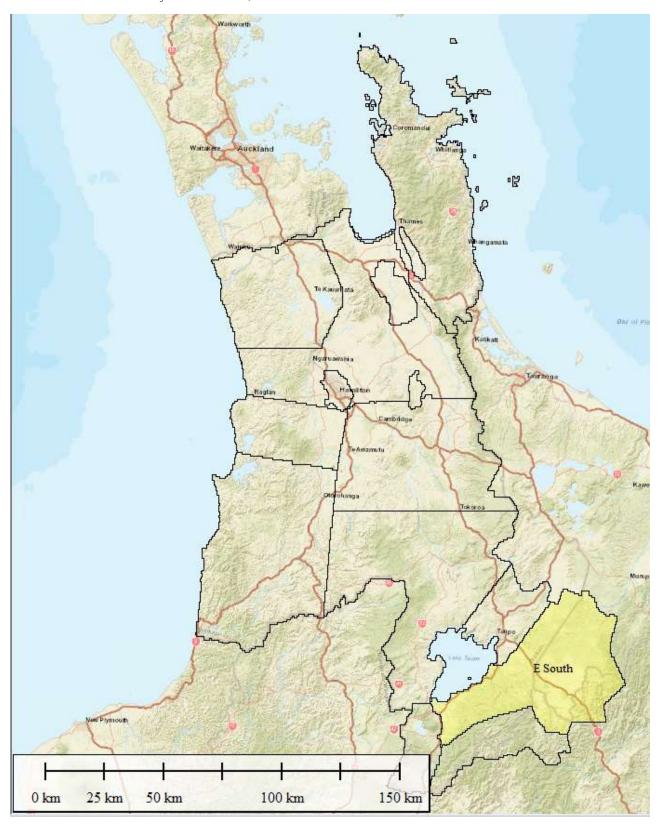


Figure 1: Waikato Survey Area

1 Introduction

Lidar survey projects are broken into three distinct phases. The survey commences with the data acquisition project phase. For matters pertaining to this phase of the project, refer to the document

• AU411_WLASS-Collection_Report-10052021.pdf.

The next phase of the project is the Geopositioning phase, which involves processing the raw sensor and trajectory data to produce a set of point clouds for each flight line.

The point clouds have several geometric optimizations performed, to optimise the relative and absolute spatial accuracy levels.

At completion of the Geopositioning phase, the point cloud geometry is final, and the point cloud classification and production generation project phases follow.

For matters pertaining to this phase of the project, refer to the documents

- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022

The following report covers the data processing project phase and describes the data processing methods used for the lidar classification and product generation, along with the QAQC procedures and results.

This report illustrates compliance with the LINZ PGF specifications sections 6 - 9.

This report pertains to the coverage of Block E South, as illustrated in yellow in Figure 1 - Waikato Survey. Block E was split into three during processing due to the size, 10,180km². Block E North (1), Block E North (2) and Block E South are the splits.

This dataset was uploaded by Woolpert Australia in parts completing Friday 10 November 2023. This was transferred to Waikato Regional Council (WRC) Monday 13 November 2023.

1.1 Revision 1 Introduction

E south was subject to two further resupplies on Wednesday 20 March and a final resupply post rework on Friday 17th of May.

The failure and subsequent resupply were accompanied by a spreadsheet and returned with comments. 'LINZ_QC_Block_E_South_180424'.

This listed the failures and improvements required. It was supported by Geospatial files which showed the areas of failures.

Thanks go to Emory Beck at LINZ for assistance with corrections to this dataset allowing publication.

2 LiDAR Data Processing and Handling

The LiDAR data processing method is described in the Project Method Statement, AU411-FOR-008-R5 Project Method Statement_WLASS. The following sections elaborate further but focus on adherence with compliance to the Linz PGF Specification (JAN 2020).

https://www.linz.govt.nz/system/files_force/media/doc/pgf_version_new_zealand_national_aerial_lidar_base_specification.pdf?download=1

QAQC steps for various workflow tasks have been tracked and recorded and included as an embedded document within Appendix 1.

2.1 The ASPRS LAS File format

LINZ PGF specification 6.1 requires that all point deliverables are required to be fully compliant with LAS Specification Version 1.4, using Point Data Record Format (PDRF) 6, 7, 8, 9 or 10 (referred to as LAS v1.4).

For this project, LAS 1.4 with PDRF 6 is to be delivered.

The LAS files created during the project during the Geopositioning phase and subsequent data cleaning and deliverable products are in ASPRS LAS 1.4 format, with PDRF 6. This was specified during the creation of the project in TerraScan, as shown in a representative image in the figure below:

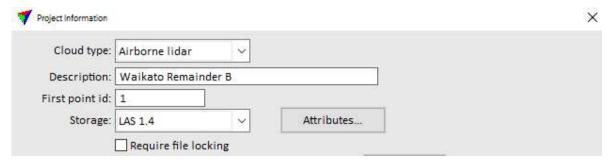


Figure 2: LAS 1.4 being specified during project - example

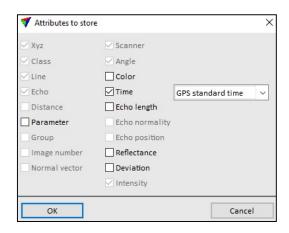


Figure 3: Project settings used in TerraScan project when importing points into the project.

The correct format of LAS is illustrated by use of LASTools, which shows the LAS files are in 1.4 format in the figure below.

Figure 4: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools

To verify that the project deliverables are in the correct LAS file format/version with PDRF, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.2 Time stamp of navigational data

LINZ PGF specification 6.2 requires that Each Global Navigation Satellite System (GNSS) aircraft positional measurement must be time stamped using Adjusted Global Positioning System (GPS) Time, at a precision enough to allow unique timestamps for each LiDAR pulse.

For this project, LAS 1.4 with PDRF 6 has been delivered including, with Global Encoding bit set to 1.

An example of how adjusted GPS time is visualized and monitored is illustrated in Figure 5: LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right).

To verify GPS time is set to adjusted GPS time, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar technical manager reviewed this analysis to ensure that all deliverable LAS files are compliant.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A. Figure 5 below shows representative examples of LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right)

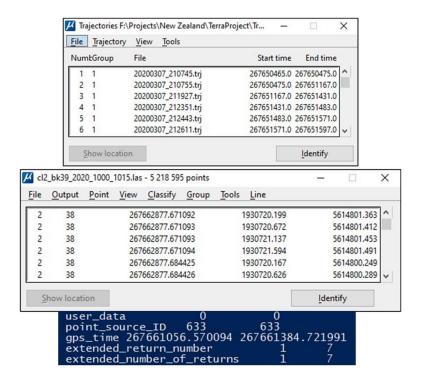


Figure 5: Representative examples of LAS point attributes

2.3 Datums and coordinate reference system

LINZ PGF specification 6.3 requires that the required datum for latitude, longitude, and ellipsoid heights is the New Zealand Geodetic Datum 2000. The required vertical datum for normal-orthometric heights is NZVD2016 (Reference 9). Projected data products are to be delivered in NZTM2000 projection (Reference 10) with NZVD2016 normal-orthometric heights.

The Survey Datums, Ground Control, Check Points and Lidar Geopositioning sections of the Project Methodology Statement describes in detail how the data is transformed and connected to the required project datum.

To verify that the correct datum information is recorded in the LAS 1.4 header, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files have the correct CRS applied in the header.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.4 Geometric Calibration

Following initial sensor data processing, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.

Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error. These calibration adjustments were performed using a combination of automated and manual corrections to the data to develop the geometrically calibrated data set to be utilized for all downstream processes.

2.5 Positional accuracy validation

LINZ PGF specification 6.4 details the positional accuracy verification methods. The Vendor is expected to apply best practice in assessing the project accuracy and achieving compliance with this specification. Before classifying and developing derivative products from the point cloud, the relative vertical, local vertical and horizontal accuracies of the point cloud must be verified. The Vendor must deliver a detailed report of the validation processes used.

Validation of the point cloud positional accuracies is the primary outcome of the Lidar Geopositioning workflow phase, using surveyed ground control & check points. The assessments methods and results of the positional accuracy validation is be reported in the LiDAR Geopositioning QA/QC Report

2.6 Use of the LAS withheld flag

LINZ PGF specification 6.5 requires that outliers, noise points, geometrically unreliable points near the extreme edge of the swath, and other points the Vendor deems unusable must be identified using the Withheld Flag, as defined in the LAS Specification.

Points classified as low noise (coverage class 7) and high noise (coverage class 18) will have the LAS withheld flag set.

To verify that the withheld flag has been correctly set, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analyst to ensure that the Las withheld flag is correctly applied. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A

2.7 Use of the LAS v1.4 Overlap Flag

LINZ PGF specification 6.6 requires identifying overage points is not required unless requested by the Contract Authority. However, if overage points are explicitly identified using LAS v1.4, they must be identified using the overlap flag.

Classification of the overlap points was done using TerraScan in Microstation. A macro step was created which allowed for points to be classified with the overlap bit by cutting the scan angle at zero degrees. The step used for the project dataset is illustrated in the figure below. This allowed for the overlap points to be withheld from DEM, DSM and intensity imagery generation. Figure 6 below shows Settings used when cutting overlap in Microstation. Note that the 'Action' is on "Set overlap bit.

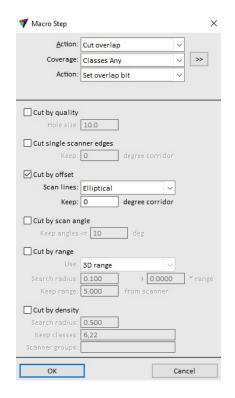


Figure 6: Settings used when cutting overlap in Microstation.

Verification of appropriate overlap flag application is performed using LP360 File Analyst. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.8 Point Classification

LINZ PGF specification 6.7 requires Lidar points are classified to the following coverage classes:

Code	Description				
1	Processed, but unclassified				
2	Ground				
3	Low vegetation <2m				
4	Medium vegetation				
5	High vegetation >8m				
6	Building				
7	Low noise				
9	Water				
17	Bridge deck				
18	High noise				

Table 1: Point Classifications

Point cloud classification is performed by automated classification algorithms developed by Woolpert's senior Lidar analysts and reviewed by the Lidar technical manager.

A first run automatic classification was carried out on the raw LiDAR points using TerraSolid's TerraScan software to classify the LiDAR points into ground hits and non-ground hits.

This results in a greater than 80% correct classification. Some of the steps used within this macro can be found within the screenshot below (Figure 7), including 5 of the 8 ground classification steps used on this data set.

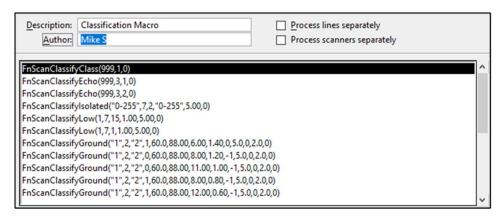


Figure 7: Automatic classification macro developed for the project area.

As documented by TerraSolid, the ground routine classifies ground points by creating a triangulated surface model iteratively. The routine is best suited for classifying ground in airborne laser data sets and in data sets where there is mainly natural terrain. For classifying ground in mobile data sets where the majority of ground is on hard surfaces, such as roads, use the Hard surface routine instead of the ground routine.

The routine is sensitive to low error points in the point cloud. Therefore, you should run one or more classification steps using the Low points routine before classifying ground. A more complex classification strategy is required for classifying ground in photogrammetric point clouds.

The ground routine starts by selecting local low points that are confident hits on the ground. The initial point selection is controlled with the Max building size parameter. If the maximum building size is, for example, set to 60.0 m, the routine assumes that any 60 by 60 m area has at least one point on the ground level and that the lowest point is on the ground level.

Then, the routine builds a surface model (TIN) from the initial ground points. The triangles in this initial model are mostly below the ground level and only the vertices are touching the ground. In the following iterations, the routine molds the model upwards by adding more and more points. Each added point makes the model following the true ground surface more closely.

The iteration parameters of the routine determine how close a point must be to a triangle plane for being accepted as ground point and added to the model. Iteration angle is the maximum angle between a point, its projection on the triangle plane and the closest triangle vertex. This is the main parameter controlling how many points are classified into the ground class. The smaller the Iteration angle, the less eager the routine is to follow variation in the ground level, such as small undulations in terrain or points on low vegetation. Use a smaller angle value (close to 4.0) in flat terrain and a bigger value (close to 10.0) in mountainous terrain.

Iteration distance makes sure that the iteration does not make big jumps upward if triangles are large.

This avoids ground points that are too high, for example within low vegetation or on low buildings.

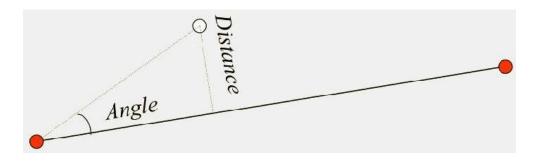


Figure 8: Illustration of iteration angle and iteration distance parameters in the ground routine.

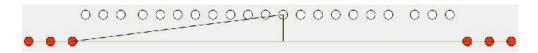


Figure 9: A smaller iteration distance value avoids classification of ground points on low objects.

The iteration angle can be reduced automatically if the triangles become small. This reduces the eagerness to classify more ground points inside small triangles and thus, avoids unnecessary point density of the ground model thus avoiding redundancy of inclusion of unnecessary ground points.

Related to this it is common to see default classified points within a classified ground point cloud surface. The iteration angle inside small triangles approaches zero if the longest triangle edge is shorter than a given Edge length value. Furthermore, the iteration can be stopped completely if triangle edges are shorter than a given limit.

After completion of the automated classification, a strenuous manual classification was carried out over the required area to edit the points thus minimizing gross classification errors that may have occurred in the automatic classification process.

Each block's data was checked in a systematic approach to reduce missing important features. Orthogonal views with background orthoimagery, and profile views are used to review the performance of the automatic classification results.

Tools such as 'Classify using brush', 'Classify above line' and 'Add Point to Ground' (all found within TerraScan) were used during manual classification, to achieve classification accuracy meeting project specifications. Before handover files were created, checks were done on the project's points by viewing statistics within TerraScan or LASTools as illustrated in the figure below.


```
histogram of classification of points:
        1262740 unclassified (1)
     7735746866 ground (2)
     3740813907 low vegetation (3)
     5679900409 medium vegetation (4)
    13090498621 high vegetation (5)
        9115015 building (6)
     1343067849 noise (7)
        1645643 water (9)
          97494 bridge deck (17)
      143428238 Reserved for ASPRS Definition (18)
 +-> flagged as withheld: 1486496087
           1343067849 of those are noise (7)
            143428238 of those are Reserved for ASPRS Definition (18)
 +-> flagged as extended overlap: 12378112493
 +--->
              440650 of those are unclassified (1)
 +--->
           2811890214 of those are ground (2)
        1519516029 of those are low vegetation (3)
 +--->
            2149944632 of those are medium vegetation (4)
 +---> 2149944632 of those are high vegetation (5)
             5037746 of those are building (6)
 +--->
           701176954 of those are noise (7)
           598173 of those are water (9)
 +--->
 +--->
                51474 of those are bridge deck (17)
 +--->
            18922733 of those are Reserved for ASPRS Definition (18)
```

Figure 10: Statistics showing the classes of all the LAS points within the project area

```
973344 unclassified (1)
     3861231281 ground (2)
     844526449 low vegetation (3)
     1141496319 medium vegetation (4)
     1838800569 high vegetation (5)
        7952009 building (6)
      621962604 noise (7)
         779013 water (9)
          58211 bridge deck (17)
      70532880 Reserved for ASPRS Definition (18)
+-> flagged as withheld: 692495484
+---> 621962604 of those are noise (7)
+---> 70532880 of those are Reserved for ASPRS Definition (18)
+-> flagged as extended overlap: 3413247520
+--->
                480493 of those are unclassified (1)
+---> 1478494786 of those are ground (2)
+---> 365467871 of those are low vegetation (3)
+---> 459292791 of those are medium vegetation (4)
        758797611 of those are high vegetation (5)
+--->
             4632322 of those are building (6)
+--->
+--->
           328578972 of those are noise (7)
             289701 of those are water (9)
+--->
+--->
                 34541 of those are bridge deck (17)
+--->
            17178432 of those are Reserved for ASPRS Definition (18)
```

Figure 11: Statistics showing the classes of all the LAS points within the project area (Rev 1)

To keep track of the data cleaning process, a hatching method was used on the DGN within Microstation. It allows the cleaners to systematically mark each tile which has been fully checked and editing, making sure the whole data set has been initially covered.

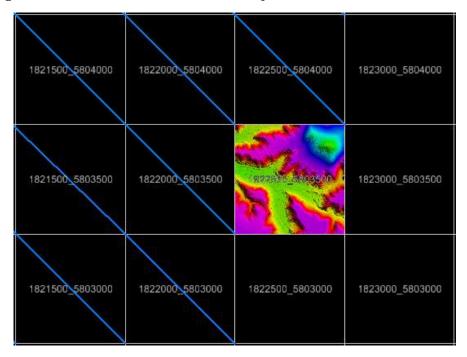


Figure 12: The diagonal hatching seen above shows how the progress was tracked (example)

To verify that only the required coverage classes are present & populated, LP360 File Analyst performs exhaustive testing on the LAS data records, and outputs the analysis results to an excel spreadsheet. Lidar Analysts review this data to ensure that all deliverable LAS files are compliant with the specification coverage classes. Point cloud QAQC/editing is performed by trained Lidar Technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team.

2.8.1 Building Classification

The classification of building points has been undertaken by utilizing the TerraScan *buildings* routine. This routine classifies points on buildings which form a planar surface, several rules can be set to fine tune these results including the minimum building size/footprint, z tolerance of the point alignment along the roof line and use of echo information.

The use of echo information can further support the classification as points on roofs mostly belong to the echo type 'only echo' whereas vegetation usually contains a lot of 'first of many' and 'intermediate' echoes.

Additionally, the LINZ building footprint was also integrated into the building classification workflow to further constrain the classification and improve the overall output.

2.8.2 Vegetation & Low-Level Noise Classification:

In agreeance with all parties, Woolpert have classified the lower 0-0.3m of the low vegetation class to class 7 (low noise).

This was done to effectively remove the lower noise stratification points and unused ground points from class 3 over areas which do not represent vegetation e.g. man-made surfaces and structures (sealed roads).

The remaining vegetation points were classified using TerraScan's classify by height from ground which uses the ground surface to calculate the distance of each point above and below ground. All identified vegetation points were classified to the nominated classes using the height ranges specified in the New Zealand Nation Aerial LiDAR Base Specification (See below).

Table 4 Minimum LAS point cloud classification scheme

Code	Description
1	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
18	High noise

2.9 Classification Accuracy

LINZ PGF specification 6.8 requires that non-withheld points must be classified to a classification accuracy level of 2%. No non-withheld points are to remain as class 0.

Realtime Digital Elevation models are generated using Terrascan/Terramodeler are used to verify ground classified points and lidar technicians review the DEMs to find anomalies such as spikes or pits that imply misclassified points and make corrections.

During DEM review profiles are cut across tiles where potential issues are detected. The Lidar Technician scans the profile view to identify if an issue exists and modifies the classification of points as required.

10% of the data tiles are subject to review by a senior analysis or project manager.

After data cleaning was completed, a comprehensive DEM review is performed to visualize the data over large areas for the purpose of identifying anomalies or areas for further investigation. Any potential errors were identified as shown in the red polygons below and later addressed via additional manual editing.

The indicated areas were revisited and manually classified as appropriate. Below is an example of an issue identified for further investigation. Multiple revisions of the point cloud were performed to address issues common to the terrain and vegetation cover found within the project AOI. Rugged terrain and heavy vegetation across areas within the AOI commonly created unavoidable laser penetration difficulties as well as areas within the DEM that that appear to have a rough surface.

The figures below illustrate such and occurrence. Issues were identified concerning what appeared to be excess noise in areas of gullies. After investigating it was determined the gully areas in question are densely vegetated and located within steep terrain. The sparseness of the consistent ground penetration and steepness of terrain led to points being classified as noise during ground filtering.

Additional filtering steps were taken to reclassify points into ground from noise class. The additional ground points added from noise provide improvement to the DEM quality as the points classified from noise to ground were sparsely distributed due to dense vegetation.

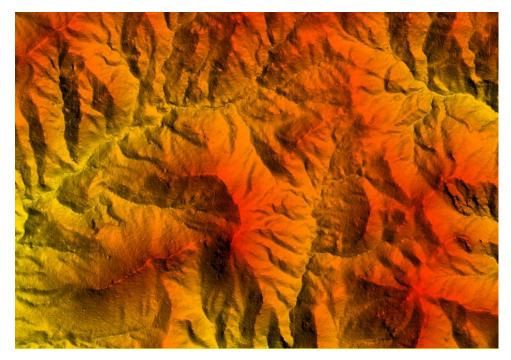


Figure 13: Example overhead image of DEM over cliffs

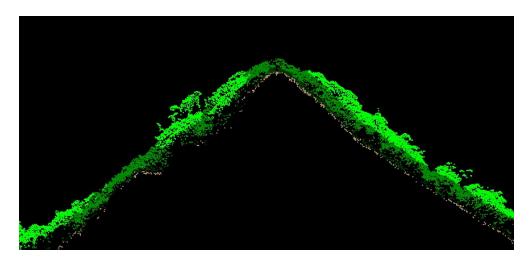


Figure 14: LAS point cloud profile view from previous figure

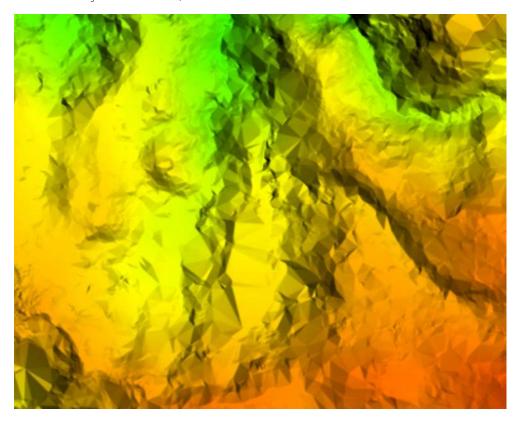


Figure 15: Example overhead image of DEM interpolation

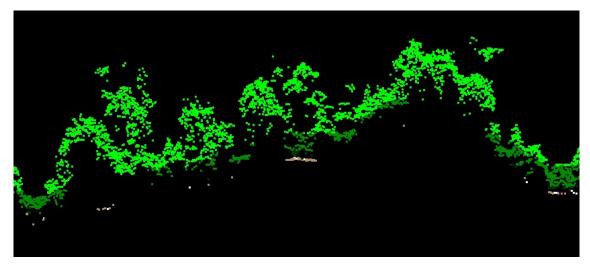


Figure 16: LAS Point cloud view from previous figure

2.10 Classification Consistency

LINZ PGF specification 6.9 requires that point classification must be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, flights, or other unnatural divisions are grounds for rejection of the entire deliverable.

As with classification accuracy there is no analytical means of measuring compliance. As such the classification consistency is reviewed via visual means. To mitigate against inconsistent classification, the following controls were employed:

- Systematic geometric issues that may lead to swath-based inconsistencies are identified by the Lidar Geopositioning process, as documented in the Project Method Statement, specifically in the intraswath, interswath & absolute accuracy analysis steps. Data swaths that do not pass this stage do not progress to later classification steps
- The automated classification process is a series of classification algorithm tools applied in a macro. The macro is designed and optimised to yield high classification accuracy across the variety of land cover types within the project area. Applying the one, optimised and flexible classification macro delivers consistent classification across the entire project area
- To avoid tile edge artefacts, all tile-based workflow steps utilise a buffer of lidar points from surrounding tiles. This allows for a better classification of both ground and vegetation points.
- Lidar Technicians are trained to deliver consistent results and use the same visualisation methods/aids. They are supervised by the Lidar Phase Manager and the 10% of classified point cloud tiles are peer reviewed by a dedicated QAQC team.
- DEM tiles are run after classification has been completed to review possible errors in Ground classification.
- Bridges are checked against a bridge shapefile (supplied by LINZ) to correctly identify and classify the bridges.

2.11 Classification Consistency – Bridges

As mentioned above the dataset was compared against the LINZ bridge shapefile. There was discussion between Ocean Infinity, WRC, Woolpert and AAM around the differentiation of bridges versus culverts. The subject is somewhat open to interpretation. It is noted that the classification of Bridges (or not) has implications for Water flow modelling and hydroflattening. The following images are a visual representation of some of the aspects discussed.

Below examples shows the DEM where a bridge has been removed.

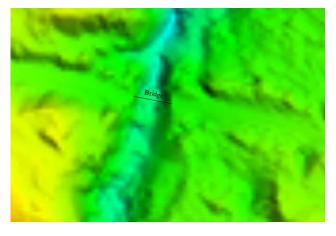


Figure 17: Tile DEM_BH36_2021_1000_1531 with LINZ bridge centreline

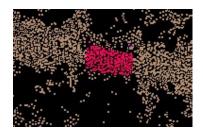


Figure 18: BH36_2021_1000_1531 - Top down

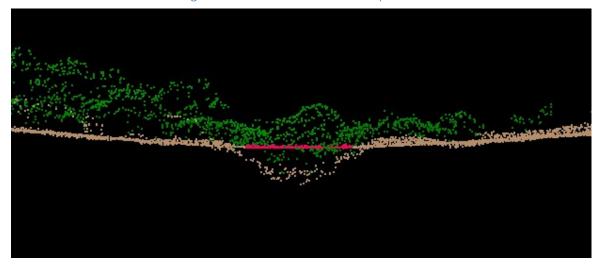


Figure 19: BH36_2021_1000_1531 - Side profile

The examples below shows no visible bridge at LINZ location: tile $BG38_4840$

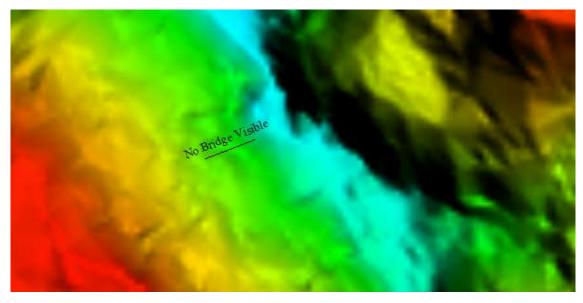


Figure 20: DEM Tile BG38_2021_1000_4840

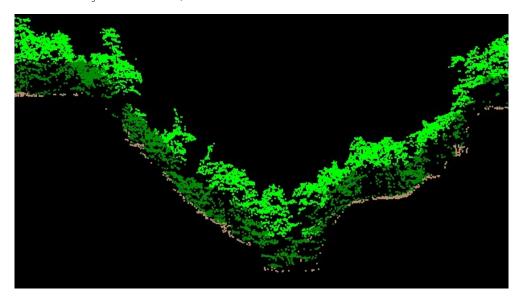


Figure 21: Pointcloud BG38_2021_1000_4840

The example below shows a Bridge in the LINZ shapefile that is a culvert and is therefore not edited to class 17.

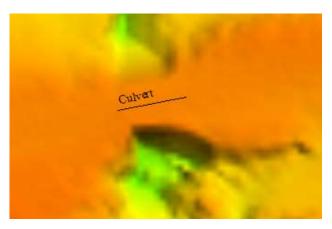


Figure 22: DEM Tile BH35_1826

Figure 23: Pointcloud Tile BH35_1826

3 LiDAR Hydro-Flattening QAQC

LINZ PGF specification 7.0 details at length the requirements for Hydro flattening of Digital Elevation Models.

The methods for Hydro Break line Digitization, Hydro-Flattening and Hydro-Flattening quality control are described in the Lidar Processing and Data presentation section of the Project Method Statement.

Hydro-flattening generation methods will be detailed in the Processing Report.

The pertinent parts of the specification and the means of identifying the required hydro-flattening features are as follows:

- · Permanent islands 5,000 m2 or larger must be delineated
- · Islands of 5000m2 will be included as hole features within the parent hydro-flattening polygon.
- · Inland ponds and lakes water bodies of 10,000m2 or greater at the time of collection must be flattened
- Lake polygon features will be precisely digitized using lidar point cloud with supporting background intensity imagery and supported by open-source imagery as reference.
- Inland streams and rivers of >= 30m nominal width (width of water flow in a single channel at time of capture) must be flattened
- Streams/rivers that fulfil the minimum distance requirement will be identified by visual inspection of the point cloud.

Hydro-flattening was performed upon the project dataset, and hydro break lines were used during the creation of digital elevation models. Hydro Flattening digitizing are performed by Lidar technicians, under the supervision of the Lidar technical manager. The hydrological features were digitised in Microstation using a combination of manual and automatic digitizing ('Display boundary' function in TerraModeler). Stream islands that were 5 000m² or larger in size.

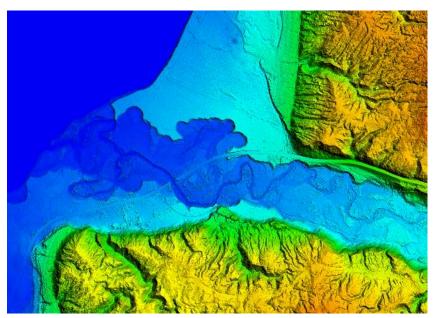


Figure 24: Example of a hydro-flattened DEM Lake and river mouth

When hydro-flattening a stream, the following process is used:

Identify a possible stream feature. Measure the width of the stream from bank to bank, and if greater than 30m wide, begin digitizing the feature. If the stream varies in width, the discretion of the geospatial specialist is applied.

Once the stream outline was completed, and that it was confirmed to be a polygon, a shapefile was imported into ArcMap and a centreline was created using the 'Create Centreline' script, which generates a centreline based on the stream polygon.

The centrelines were then checked for errors which may have occurred during its creation. It was then exported to Microstation where the centreline was then dropped to a surface (created by surrounding ground points). The tool 'Force Downstream Flow' was used to enforce correct elevations for the centreline, ensuring that each point's height was equal to or less than that of the point before it.

The correct order of point heights was then checked by exporting the co-ordinates out as a text file which would be used for the creation of a new centreline shapefile. Figure 18 shows the example excerpt of river points used to create the centreline after downstream flow was enforced. Figure 19 shows the example highlighted script was used to generate the centreline for the stream within the project's survey.

```
1 1929744.8358 5615128.2638 7.7096
2 1929746.0769 5615130.8498 7.6863
3 1929746.4280 5615131.5996 7.6796
4 1929746.5107 5615131.7727 7.678
5 1929746.7841 5615132.3591 7.6728
 6 1929748.0794 5615135.0799 7.6483
7 1929748.5703 5615136.1455 7.6388
 8 1929749.4246 5615138.0643 7.622
9 1929749.8587 5615139.0742 7.6132
10 1929750.6288 5615140.9327 7.5973
11 1929751.0393 5615141.7916 7.5896
12 1929751.5292 5615142.7809 7.5805
13 1929754.3861 5615148.3485 7.529
14 1929754.7868 5615149.1041 7.5219
15 1929754.7991 5615149.1267 7.5217
16 1929757.3347 5615152.1834 7.4808
17 1929757.8445 5615152.7752 7.4594
```

Figure 25: Excerpt of river points used to create the centreline

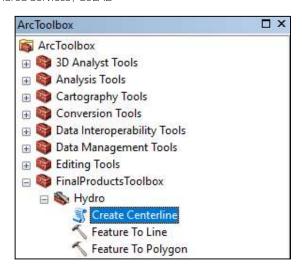


Figure 26: Centreline for the stream within the project's survey

After the new centreline had been created, it was conflated with the stream's shape using LP360 within ArcMap. This matched up the elevation of the stream's outline with that of the centreline. The new stream shape was attached to a DGN and opened in Microstation, exported as co-ordinates, and then read into the project. These points along with ground points were used to output lattice models which show the results of the hydro-flattening. Stream-island break line points were also included to ensure the correct modelling of the stream and its features.

The following settings were used for lattice model creation:

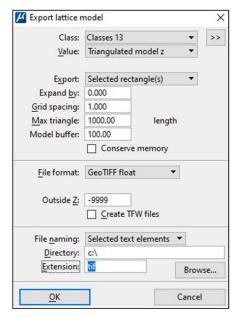


Figure 27: Settings used to export lattice models.

The product undergoes QC by the Lidar Phase Manager and is reviewed for any omissions or blunders. The following project specification are checked against:

- All Hydrologic break lines developed for use in hydro-flattening are in non-tiled ESRI feature class in polylineZ or polygonZ shape file format.
- Water bodies (ponds, lakes, and reservoirs), wide streams and rivers ("double-line"), and other non-tidal water bodies are to be hydro-flattened within the DEM. The resulting pond and lake surfaces will be flat and double line rivers will be flat level bank-to-bank and be gradient.
- It is noted when hydro-flattening streams, significant breaks in water elevation as well as varying degrees of bends in the stream direction will create a triangulated appearance in the DEM. These affects will be minimized to an appropriate extent.
- · The entire water surface edge must be at or below the immediately surrounding terrain.
- · Hydro-flattening break line feature class use the NZTM2000 projection and NZVD0216 height datum
- · Hydro-flattening has applied to all streams that are nominally wider than 30 metres wide, and to all non-tidal boundary waters bordering the project area regardless of size.
- · Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are nominally larger than 10000m2 in area
- Stream channels should break at road crossings (culvert locations). These road fills should not be removed from the DEM.
- Streams and rivers should NOT break at elevated bridges. Bridges are removed from the DEM. When the identification of a feature such as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

A peer review of the Hydro flattening break line data products as well as the hydro-flattened DEM is performed on 10% of the dataset by an independent analyst or project manager. To distribute and track the progress amongst the editing & QAQC team, an ArcSDE tracker (multiuser database) is employed.

During the QA/QC, it was identified there will be instances of vegetation classifications contained within waterbody polygons. After investigation it was determined much of this occurs from overhanging vegetation from the outside of the hydro features. Occasionally there are instances of vegetation within waterways which is related to islands falling below the required threshold for collection. Additional processing steps were taken to limit the amount of vegetation that exists within the waterway while retaining the overhanging vegetation. This processing step primarily involved classification based on XYZ proximity to existing digitized hydro/island lines. After this process was performed some vegetation classified lidar points will still be present in the waterway.

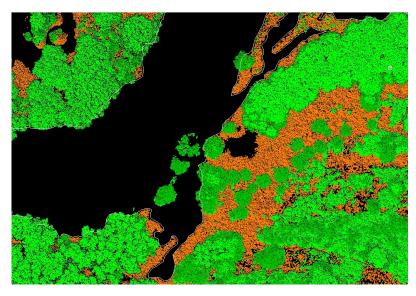


Figure 28: Pre-filter, overhead view of ground and veg points with hydro lines

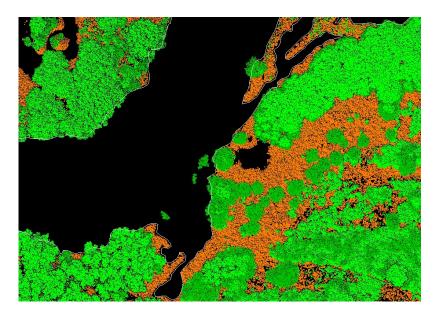


Figure 29: Post-filter, overhead view of ground and veg points with hydro lines

Additionally, during QC data review, it was discovered rocks and boulders within rivers are occasionally classified as vegetation. This is typically observed in high relief areas where water flows down steep terrain, i.e., rapids/white-water. Rivers tend to narrow in these areas and will not likely be caught during the aforementioned processing step based on proximity to linework. These points will continue to be classified as vegetation.

Figure 30: Point cloud – boulder filled stream

Figure 31: Imagery – boulder filled stream

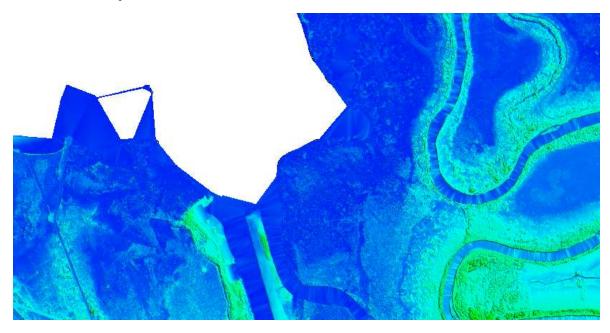


Figure 32: Example of DEM tile prior to hydroflattening: BH35_1000_1426 and neighbours

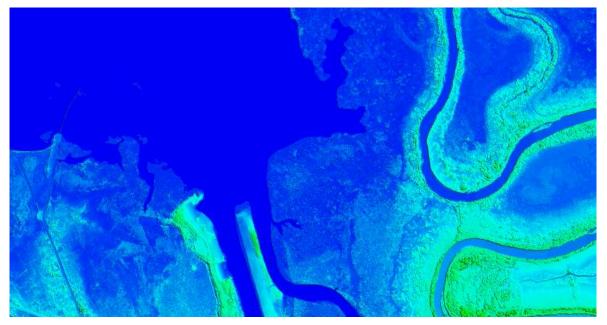


Figure 33: Example of DEM tile post hydroflattening: BH35_1000_1426 and neighbours

4 LiDAR Deliverables QAQC

Section 8 of the LINZ PGF specification details the project reporting, metadata requirements & deliverable requirements.

4.1 Reporting and metadata

4.1.1 Project reports

The following details the reports being delivered for this section of the project:

- Collection Report detailing mission planning and flight logs, including dates of collection
- Details of quality control tests, and conformance against Linz specifications
 - o Refer to AU411_WLASS-Collection_Report-10052021.pdf
- Survey Report detailing the collection of all ground control, including the following:
 - o Control points used to calibrate and process the LiDAR and derivative data
 - o Check sites used to validate the LiDAR point data or any derivative product
 - o Refer to AU411-R1-Waikato LiDAR Ground Control Report of Survey.pdf
- Geopositioning QA/QC Report, detailing analysis, accuracy assessment and validation of the following:
 - o Point cloud data, including a summary of relative (smooth surface repeatability and overlap consistency) and non-vegetated vertical and horizontal local accuracy.
 - o QA/QC analysis of the vertical and horizontal local accuracy assessment will include a table of the product data compared to each check site.
 - o Refer to AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
 - o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022.

Processing Report (This Document) detailing:

- Classification and product generation procedures including methodology used for break line collection, hydro-flattening break line collection, hydro-flattening processing, DEM & DSM creation, and deliverable generation.
- Details of quality control tests, and conformance against each of the relevant Linz specifications including:
 - o Workflow QAQC checklist
 - o Pre-Delivery QAQC worksheet as an embedded document

4.1.2 Extents

LINZ PGF specification 8.1.3 requires that a geo-referenced, digital spatial representation of the detailed extents of each delivered dataset.

The data for Block E was captured using Leica TerrainMapper sensor 513 and 559, flown on days 05th, 06th, 10th, 11th, 14th, 15th, 25th, 26th, 29th, 30th, 31st January, 1st, 3rd, 11th, 12th, 16th, 18th, 19th, 20th February, 11th, 13th, 21st, 22nd, 23rd, 24th March 2021.

Please note the dates above refer to all dates flown for the entirety of Block E inclusive of North (1), North (2) and South.

The extent of Block E can be seen in Figure 34. The flight lines relating to the area can be seen in Figure 35.

This extent was created by creating a surface in Microstation based on all points collected during the survey flight. The tool "Display boundary" was then used to generate the extent, which was then exported into a shapefile and assigned with the necessary horizontal and vertical co-ordinate system.

Another new Shapefile *Waikato_Block-Delivery_Final_NZTM_20230222* was provided to rectify a rounding error on tiles. The AOI changed minimally and is reflected in figure 41.

Figure 34: Extent of deliverable data for Block E South

4.1.3 Flight Lines

LINZ PGF specification 8.1.3 requires that Flightline shapefiles as Esri polylines are required. Each flightline must be assigned a unique File Source ID that is equal to the Point Source ID assigned to each point collected during that flightline.

The Sensor trajectory was imported into Terrascan and edited to split the trajectory into discrete flight lines. Each flight line was then assigned discrete flight line ID, in accordance with the project flight plan. Each Lidar point was assigned a flight line ID by matching against its trajectory, using the Adjusted GPS time stored in both the trajectory and lidar point. The trajectories were exported to ESRI shape file format with a File Source ID attribute populated with the trajectory flight line ID value. This process will ensure that specification 8.1.3 is adhered to.

The image below shows the extend of the area covered. Refer to the purple polygon illustrating Block E South.

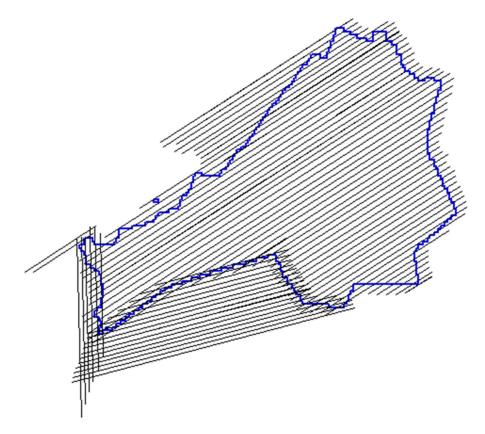


Figure 35: Flight lines for 4ppm2 data coverage over Block E South

4.2 Classified point cloud tiles

LINZ PGF specification 8.2 details the requirement for the point cloud deliverables, and how adherence to the specifications is measured is listed below. Point cloud deliverable generation methods will be detailed in the Processing Report. Deliverable QC checks are performed both by Lidar technicians, under the supervision of the Lidar Phase Manager and followed by a review of 10% of the data by an independent analyst or project manager:

- (a) Data from all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified, by tiles. Project swaths exclude calibration swaths, crossties, and other swaths not used in product generation.
- (b) Data is provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum.
- (c) Fully compliant LAS v1.4, Point Data Record Format (PDRF) 6-10. All files must have the same PDRF.
- (d) Each point includes a Point Source ID linking it to the flight line File Source ID.
- (e) Correct and properly formatted georeferenced information (EPSG: 2193 + 7839) as Open Geospatial Consortium (OGC) Well Known Text (WKT) included in all LAS file headers.
- (f) File Source ID set to 0 for tiled LAS files.
- (g) GPS times recorded as Adjusted GPS Time at a precision sufficient to allow unique timestamps for each pulse.

- (h) Points are provided in the order in which they were collected.
- (i) Height values reported to three decimal places (nearest mm). (While not significant for accuracy, this supports numerical processing and reduces the number of identical values caused by rounding.)
- (j) Intensity values, normalised to 16-bit by multiplying the value by 65,536/ (intensity range of the sensor) per LAS v1.4. This will result in an intensity range of 0-65,536.
- (k) Classification as required by the Contract Authority (Table 4 at a minimum).
- (I) Tiled delivery, without overlap, per the project tiling scheme in Section 9 Tiles.
- (m) Files named per Section 9 Tiles.

The point cloud tiles created for handover underwent multiple alterations before finalization. After the LAS tiles were created in Microstation, LASTools was used to assign the correct global encoding (17), system identifier and file source ID (0). WKT was also added to the LAS metadata, as illustrated in the figure below. The correct height values were also confirmed in LASTools ensuring that three decimal places were being used. The tiles were also named according to the required naming convention which is discussed in Section 6.

Figure 36: WKT of a LAS file shown by LASTools.

Intensity valued scaled from a range of 100 – 10000 output by HxMap, to full 16-bit dynamic range. Translation value = -100 Scale value = 6.5535

Once the point cloud was classified and was inspected manually in Microstation, the LAS files were loaded into LP360. The global coding, file source ID, WKT, VLRs, file format and LAS version were compared against to the LINZ specifications and after passing QA/QC, the files were renamed in accordance with the LINZ specifications. A condensed version of the LP360's results can be found in the table below. A complete listing of the output from LP360 is included as an embedded document in Appendix A.

E:I-	Deinte	\/	File	File Source	CRS	Consulinate Custom
File	Points	Version	Signature	ID	WKT	Coordinate System
CL2_BG38_2021_1000_4104.las	2,374,402	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
						Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4105.las	3,279,058	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
CL2_BG38_2021_1000_4106.las	2,660,226				-	Transverse Mercator 2000 + NZVD2016
CLZ_BG38_2021_1000_4106.1as	2,668,226	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4107.las	2115 577					NZGD2000 / NZGD2000 / New Zealand
CLZ_BG38_2021_1000_4107.1as	2,115,573	1.4	LASF	0	TRUE	· · · · · · · · · · · · · · · · · · ·
CL2_BG38_2021_1000_4201.las	2.014.442					Transverse Mercator 2000 + NZVD2016 NZGD2000 / NZGD2000 / New Zealand
CL2_BG36_2021_1000_4201.1aS	2,014,442	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4202.las	3,628,374					NZGD2000 / NZGD2000 / New Zealand
CLZ_B030_2021_1000_4202.las	3,020,374	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4203.las	2,957,649					NZGD2000 / NZGD2000 / New Zealand
CL2_B030_2021_1000_4203.1d3	2,557,045	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4204.las	2,431,375					NZGD2000 / NZGD2000 / New Zealand
CL2_B030_2021_1000_ 120 1d3	2, 101,070	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4205.las	1,837,787					NZGD2000 / NZGD2000 / New Zealand
	1,007,707	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4206.las	2,157,424	7.4				NZGD2000 / NZGD2000 / New Zealand
	' '	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4207.las	4,565,389	7.7	1.465	0	TOUE	NZGD2000 / NZGD2000 / New Zealand
		1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4208.las	4,728,640	1.4	LASF	0	TRUF	NZGD2000 / NZGD2000 / New Zealand
		1.4	LASF	0	IRUE	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4209.las	3,351,275	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
		1.4	LASI	U	IRUL	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4301.las	2,878,970	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
		1	D (9)	Ŭ	IIIOL	Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4302.las	2,290,613	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
			2 101			Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4303.las	2,788,100	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
				_		Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4304.las	3,168,250	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
CL2 DC70 2007 3002 (707)	/ 252 555					Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4305.las	4,252,550	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
CL2 DC70 202 3000 (705)	2.507.07.5					Transverse Mercator 2000 + NZVD2016
CL2_BG38_2021_1000_4306.las	2,791,845	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand
CL2_BG38_2021_1000_4307.las	2700020					Transverse Mercator 2000 + NZVD2016 NZGD2000 / NZGD2000 / New Zealand
CLZ_BU38_ZUZ1_1UUU_43U7.1as	2,300,920	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
			1	1		Transverse Mercator 2000 + NZVD2016

Table 2: Representative output from LP360 illustrating LAS file specification compliance (Rev1)

Additionally, a pre-delivery script which invokes LASTools was run on all tiles. The script output was imported into a custom Excel Worksheet, which checked specification compliance. For a complete listing of analysis refer to Section 6.1 of this document.

4.3 Elevation models

LINZ PGF specification 8.3 details requirements for raster surface model deliverables. The specification and how adherence to the specifications is measured is listed below. Deliverable QC checks are performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a review of 10% of the data by an independent analysist or project manager:

- (a) Grid spacing: 1m cell size.
- (b) Generated to the limits of the project area
- (c) Raster format: Geotiff (.tif)
- (d) Geo-reference information (EPSG 2193) in each raster file.
- (e) Tiled delivery without overlap.
- (f) NOT clipped using polylines for land-water boundaries from national databases (for example coastlines, river or lake boundaries) as these can be inaccurate and subject to continual geomorphic change.
- (g) Tiles with no edge artefacts or mismatch. A quilted appearance in the overall surface can be grounds for rejection of the entire deliverable whether the rejection is caused by differences in processing quality or character among tiles, swaths, flights, or other unnatural divisions.
- (h) Void areas (for example, areas outside the project area but within the project tiling scheme such as offshore water) coded using "NODATA" value equal to -9999. This value must be identified in the appropriate location within the raster file header.
- (i) Constrained with any additional break lines required by the Contract Authority, such as stopbanks, streams, and narrower rivers.
- (j) Provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum. Additional vertical datums may be specified by the Contract Authority.

4.3.1 Bare-Earth Digital Elevation Models (DEM)

LINZ PGF specification 8.3.1 details additional requirements for Digital Elevation Models. The Bare-Earth DEM is the bare earth that has been classified and edited to remove vegetation and man-made structures within the bounds of the classification accuracy requirements. It must also include or conform to the following:

- (a) Based on Classification level 2 or better ground return points.
- (b) Hydro-flattening as outlined in Section 7 Hydro-Flattening.
- (c) Bridges removed from the surface, while culverts are treated as ground
- (d) Method for removal of buildings, structures or other ground cover/vegetation and interpolation techniques documented.

The Digital Elevation Models were created using a combined model based on both ground surface points and break line points. These break line points were created during the hydroflattening process mentioned in **Section 4**. By using these classes, a true representation of the ground points can be achieved while still maintaining a smooth water surface which gradually follows the terrain.

It is noted for Blocks F & G due to the dense vegetation and steep terrain the penetration of the LiDAR to the ground in some areas is minimal (Figure 18 is a good example). This will show in the DEM as large, triangulated areas or give the impression of pitting where only isolated ground returns have been identified.

For these areas it is recommended to compare any potential DEM discrepancies with the point cloud to confirm the absence of available ground points.

To generate DEMs, LAS format data files are loaded into TerraScan, only loading in class 2 points and breaklines. Additional data is referenced to avoid tile edge artefacts. Following import, TerraScan-Export Lattice Model command is used to create a grid file with uniform distances between points from one or more selected point classes. For each grid point, the lattice model file stores XY coordinates and elevation. Within the Export Lattice Models command we utilize "Triangulated model Z" to export the DEM tiffs. This triangulated model z derives an elevation value that is calculated from a TIN model of the lidar points using ground and breakline classifications.

The elevation grid is generated as a TerraScan Lattice model using the following settings:

- o Grid Method = TIN Model (Triangulated model z)
- o Grid Spacing = 1 meter

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

The tiles were loaded into LP360 to check the metadata of the images during both production and QA/QC of the deliverables. A Representative version of LP360's findings is found in the table below. A complete listing of the LP360 results is included as an embedded document in Appendix1.

	Forma	NoData		Band	Data	Pixel	
File	t	Value	BPB	S	Туре	Size	Coordinate System
DEM_BG37_2021_1000_4444.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4445.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4446.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4447.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4448.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4449.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4450.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4530.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4531.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4532.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4533.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4534.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4535.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4536.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4537.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4538.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BG37_2021_1000_4539.tif	GTiff	-9999	32	1	FLOAT	7	EPSG: 2193

Table 3: Condensed output from LP360 illustrating DEM file specification compliance (Rev 1)

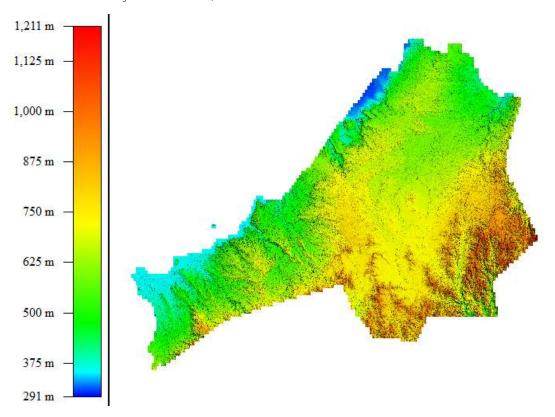


Figure 37: 1 Metre DEM

4.3.2 Digital Surface Models (DSM)

LINZ PGF specification 8.3.2 details additional requirements for Digital Surface Models. The DSM is the heights of the top of the highest feature at each gridpoint, including ground, vegetation, and manmade structures. The DSM is based on first return points after removal of noise.

LAS format data files are loaded into Terrascan only loading in First, First-of-many and Single returns. Additional data is loaded to avoid tile edge artefacts. Only coverage classed 1 to 6 & 17 points will be used in generation of Digital Surface Models. The elevation grid is generated as a TerraScan Lattice Model using the following settings:

- o Grid Method = Binning (Maximum Value DSM)
- o Grid Spacing = 1 metre

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

To meet the request to produce a DSM representative of the heights of the top of the highest feature at each grid point while incorporating hydro features, the hydro features used to create the DEM deliverables were included to produce a hydro flattened DSM.

Hydro-flattened DEM tiles are overlaid against the DSM tiles to identify and fill gaps in the data (such as the river), and then the tiles were exported in Geotiff format including settings for the datums and null data specifications, using the tile grid to clip & name the data files. The DSM deliverables undergo a visual spot check using Globalmapper.

In areas where valid data gaps (e.g. waterbodies) do not meet the LINZ specification for hydroflattening the surface model will triangulate across these voids to the nearest point per pixel (highest for DSM & lowest for DEM). No intervention is made to flatten or constrain these areas.

Digital surface models are created by combining points with only a single return, and points that have the first return of many (returns) and are then used to generate the DSM model. Figure 28 is an excerpt of one of the DSM tiles created for the project area.

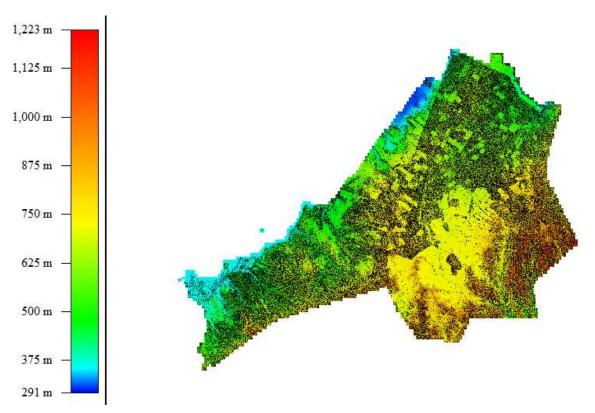


Figure 38: 1 Metre DSM

The figures below show a DEM and DSM Comparison:

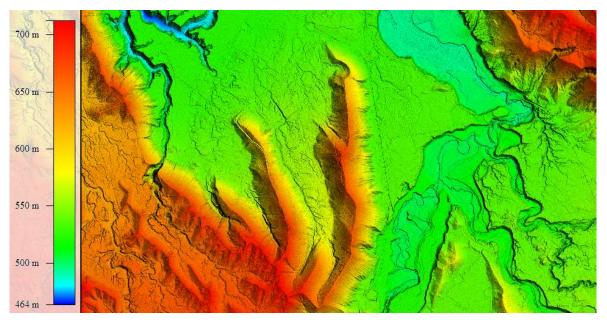


Figure 39: DEM Comparison

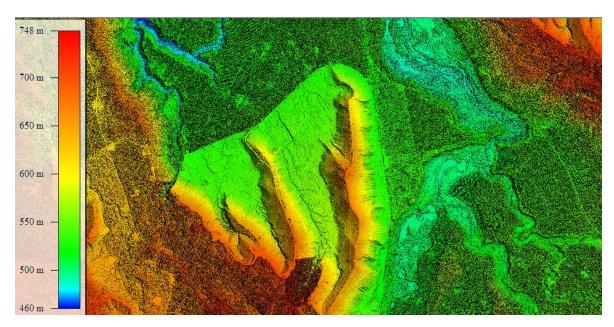


Figure 40: DSM Comparison

The tiles created are in GeoTiff floating 32-bit format and have been adjusted to display a NoData value of -9999 (Figure 29). The composite DSM was produced in 32-bit Geotiff format as requested and both the tiles and the composite had the correct horizontal and vertical co-ordinate systems assigned to the metadata in ArcMap.

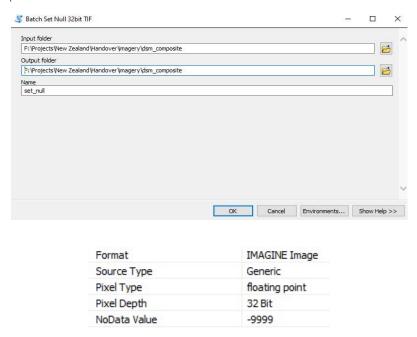


Figure 42: Properties of the composite DSM file showing its format and NoData value

After these files were amended, they were loaded into LP360 to check the necessary metadata of the imagery. The results from LP360 can be found in the table below. A complete listing of the LP360 results are included as an embedded document in Appendix 1.

		NoData			Data	Pixel	Coordinate
File	Format	Value	BPB	Bands	Туре	Size	System
DSM_BH35_2021_1000_2233.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2234.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2235.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2236.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2237.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2238.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2239.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2240.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2241.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2242.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2243.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2244.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2333.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2334.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_2335.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 4: Condensed output from LP360 illustrating DSM file specification compliance (Rev 1)

4.4 Break lines

LINZ PGF specification 8.4 details requirements for hydro-flattening break lines. Delivery of break lines representing all hydro-flattened features in a project is required. Additional break lines may also be required by the Contract Authority. These are to be delivered as ESRI Shape files (.shp) using the NZTM2000 projection.

Refer to section 7.0 of this document. The workflow methods will be documented in the project Processing Report. The digitized hydro features were included in the handover data set, under the Vector deliverable section. They are in shapefile (.shp) format and are in the NZTM2000 projection.

Stream and stream-island, lake and lake island break lines were delivered, with ocean features falling under the "Lake" feature category due to its uniform height. In figure 31 the geometry type is set to a polygon shape and has vertical and horizontal co-ordinate sets as well as Z values.



Figure 43: Stream break line properties in ArcMap.

4.5 GNSS data

GNSS data is not a required deliverable for this project.

4.6 Backed up project source data

LINZ PGF specification 8.6 details the requirements for archival and storage of the project data. Raw project source data, such as native format LiDAR files and point cloud swaths, are NOT required for delivery; however, a copy has been provided to CoLAB. It is acknowledged that the Vendor must hold a copy of all relevant raw project data, for a minimum of five years beyond the final delivery of the project deliverables. The vendor must provide this data, with unrestricted copyright, to the Contract Authority on request. The vendor may charge a reasonable access and distribution charge in such instances.

Woolpert and Ocean Infinity will archive all raw & processed data collected for 5 years following project completion.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

4.7 Contours

Note Contours will be generated at Project conclusion to ensure there are no line breaks between blocks.

Contours will be generated from the DEM. Samples have been provide of contours including those that straddle block joins.

Contours will be generated at 1,5 and 10 metre markers. They will adopt a naming convention as per WRC suggestion e.g. *CRT_BB35_2021_1000_1515*. *CRT refers to Cartographic and opposed to engineering contours*.

5 LiDAR QA Tiles

LINZ PGF specification 9.1 & 9.2 detail the requirements for project tiles geometry & naming convention.

- (a) NZTopo50 subtitles based on NZTM2000 coordinates. The 1-m gridded raster products and point clouds must be delivered at 1:1000 nominal scale (2500 720m high x 480m wide subtiles per full NZTopo50 sheet).
- (b) The origin of the raster tiles must be placed on a whole metre coordinate value of the southwest corner of each tile (for example, 5429500 mN_17490300mE).
- (c) The tiled deliverables must edge-match seamlessly and without gaps.
- (d) The tiled deliverables must conform to the project tiling scheme without overlap.
- (e) File naming must conform with the naming convention described in section 9.2.

A Tile Index must be provided in ESRI shape file format. The file name must be included as an attribute in the Tile Index file.

The Client supplied tiling grid shape file will be used as the tile clipping polygon when exporting the deliverable products. The shape file will have an attribute added for each deliverable type as specified in section 9.2. This attribute will contain the required tile name for each deliverable. This shape file will be used as the means of extracting all project data deliverables, so that the geometric aspects for specification 9.1, and the naming requirements of section 9.2 are fulfilled.

Deliverable QC checks have been performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team:

5.1 LAS Tiles QAQC - LASQC

Prior to delivery, Lidar data tiles have undergone a final analysis, using a custom developed Pre-Delivery QAQC tool called LASQC. This tool uses LASTools 'Lasinfo' in a batchscript called LASExtract, which collates information regarding each tile into an Excel worksheet. The tool analysis and reports compliance on the following items:

- o File naming accuracy
- o Check to ensure lidar points fall inside the extents bounded by the NZTOPO50/1:1000 tile name
- o Adjusted GPS time falling with correct extents for the survey
- o LAS file format, version, file source ID, point data record format & scale factor
- o Point counts by return, illustrating presence of multiple returns
- o Average point density for the tile, excluding overlap
- o Presence of the overlap (not applicable to all tiles) & withheld flags
- o Minimum, maximum & average intensity values.
- o Height above ground for building, low, medium & high vegetation classes

- Note it should be noted that this analysis is not accurate in steep terrain due to the different methods used for triangulation of between Terrascan & LASTools.
- o Check for presence of correct ESPG Codes for geodetic & vertical datums, and map projection
- o Raster Overviews for Point Source ID, Intensity, Point Density and Overlap Analysis

These analysis results will be included as an attachment referenced in Appendix A.

5.2 File naming

Project deliverables have been named in accordance with the project specification illustrated in Table 5.

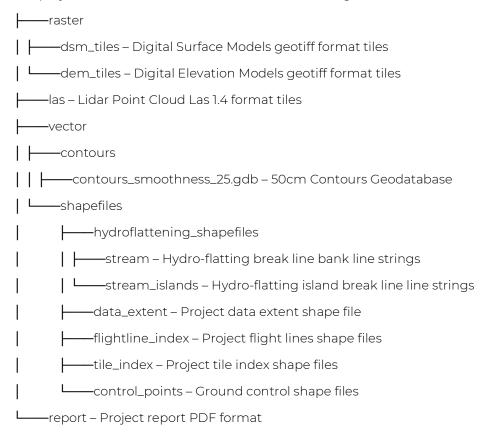

Product	DEM	CL2-Point Cloud Classification Level 2 DEM-Bare Earth Digital Elevation Model DSM-Digital Surface Model DTM-Digital Terrain Model UNC-Unclassified Point Cloud INT-Intensity image CHM - Canopy Height Model IMG-Aerial photography etc
Sheet	BK34	LINZ Topo50 identifier (4 characters)
Year	2016	Year of survey commencement
Scale	1000	Nominal scale of NZTopo50 subtiles
Tile	4118	Row number (41), Column number (18) of tile with respect to an upper left origin
ext	tif	File extension according to format conventions las tif shp etc

Table 5: File Naming

5.3 Delivery Folder

The project deliverables are structured in the following manner:

6 Setbacks and Solutions

During the production of the data sets for the preceding blocks, setbacks were encountered, with a varying impact on production time. Along with these setbacks, new methods of production were created to account for any necessary changes to improve the quality of the data set or save time when amending the data set. These setbacks impacted the delivery date of Block A and other areas.

6.1 Missing ground points under vegetation and low vegetation classification difficulties

During the processing of all Waikato Blocks it is noted there are areas of dense vegetation which limit and often prevent laser penetration to the ground surface. In these situations, it is common for data voids to appear in the DEM surface. In addition, low lying dense vegetation has caused difficulty in assessing the true ground surface. In these situations, it can be difficult to discern if points are part of the ground surface or the lowest part of low-lying vegetation. In these situations, it is common for the ground surface profile to transition to what may or may not be the lowest part of low-lying vegetation. During manual editing, these situations are monitored with the objective being to make the best interpretation of ground.

6.2 Production Delays

During production, it was determined a new technical team within Woolpert's US and Australian offices was necessary to continue production on the project. This handover from the previous team created project delivery delays as the new team became familiar with the project specifications as well as to address quality assurance workflow requests made by the prime contractor.

6.3 Lessons learned and collaboration

Thanks goes to the team at WRC for providing inputs to previous blocks that has informed decisions on processing for this block and the entirety of Block E. There is some challenging terrain and dense vegetation that hindered penetration is some parts and made for some difficult processing with significant manual editing.

6.4 WRC / LINZ Tracking Spreadsheet

Below is a table showing one of the pages of the tracking spreadsheet which was supplied by WRC and LINZ and reviewed and commented on by Ocean Infinity and/or Woolpert. This was further supplemented by shapefiles, geodatabase files, reference images / snips and other information to support identification, rectification and repair.

Failed Items		200000000	920 (00 con page 40 con
brus	Tile	Information	Waalpert Comment
Speckling/curdernying in DEM and DSM from low ver	Wirespread, Alimant every greated clearagen ground got of See instead extent effets to review and fix, PC, DSM and DEM.		
. Vnidr in voqotatina canupy frum Hniro clarrificatini	s en Pleasofix allziterin izzwez_revieu_rhp	Same or provinur blacks, Additional sites identified by 80 of resupply. Other sites over clear upon ground. Fix all affected products and resupply.	Edited tiles in larges ship
. Hydroflottoning	Ploaro fix allzitor in izzaez_revieu.zhp	Same ar previour blackr. Hydroflattento bank edge. Lake Taupoziter rhou artificial beach in DEM. Facur on Lake Taupo, Ignore for non-major bodier of water. Rerupply DEM	
			Have made the by drazurface clarer to the coart where pozzi (within provided mark-ups).
	CL2_BG38_2021_1000_2205	Fix and resupply PC - minor issue.	Dolotod 9 (broak line) paints in 2LAS tiles
. Paint saurce ID, Intensity, GPS time, etc ♦	CL2_BH36_2021_1000_1531		
. Paint zaurco ID, Intonrity, GPS time, etc 6 . Spiker in DSM (une general lucutiun) from high vego	CL2_BH36_2021_1000_1531	Roviewing PC, high vogetation classification mirrors what high noise looks like (linear strikes tronding near vertically)	Edited files in Issues shp

7 Results Acceptance & Signoff

An acceptance and signoff of the project QAQC supervisory review is listed below.

Result Acceptance					
Assessment Criteria	Status	Completed By	Date		
Point cloud classification accuracy	Complete	Woolpert/AAM	13 November 2023		
Point cloud classification consistency	Complete	Woolpert/AAM	13 November 2023		
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	13 November 2023		
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	13 November 2023		
Digital Survey Models	Complete	Woolpert/AAM	13 November 2023		
Contours	Complete	Woolpert/AAM	13 November 2023		
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	13 November 2023		
Project Manager / Supervisor Signoff	Complete	Luke Graham	13 November 2023		
Ocean Infinity Review	Complete	Luke Leydon	23 November 2023		

Table 6: Processing Results Acceptable Signoff

Result Acceptance					
Assessment Criteria	Status	Completed By	Date		
Point cloud classification accuracy	Complete	Woolpert/AAM	17 May 2024		
Point cloud classification consistency	Complete	Woolpert/AAM	17 May 2024		
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	17 May 2024		
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	17 May 2024		
Digital Survey Models	Complete	Woolpert/AAM	17 May 2024		
Contours	Complete	Woolpert/AAM	17 May 2024		
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	17 May 2024		
Project Manager / Supervisor Signoff	Complete	Luke Graham	17 May 2024		
Ocean Infinity Review	Complete	Luke Leydon	06 June 2024		

Table 7: Processing Results Acceptable Signoff (Rev 1)

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Appendix A: Lidar Quality Assurance Results

Provided as separate Documents in Appendix A upload

Waikato Local Authority Shared Services (WLASS) / CoLAB LiDAR Data Capture Services LiDAR Processing Report Blocks F&G (Rev 3)

Contract Number: AU411

Surveyed By: iXblue Pty Ltd / Ocean Infinity

Processing Completed By: Woolpert USA and Woolpert Australia

Prepared For: Colab (formerly WLASS)

Document Date: 6 May 2024

Ocean Infinity (Australia) Pty Ltd ABN 61 128 811 978 oceaninfinity.com

Document Control

Woolpert Inc. Representative

Name	Brian Foster
Position	Woolpert Senior Associate
Address	333 North Alabama St. Suite 200 Indianapolis, IN 46204
Telephone	+1 317 809 4685
Email	<u>Brian.Foster@woolpert.com</u>

Ocean Infinity Supervisor

Name	Dave Field
Position	Managing Director
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 277 755 532
Email	david.field@oceaninfinity.com

Ocean Infinity Project Manager

Name	Luke Leydon
Position	NZ Account Manager, Airborne
Address	Hangar AS7, Jean Batten Drive, Mt Maunganui, 3116, NEW ZEALAND
Mobile	+64 226 511 732
Email	<u>luke.leydon@oceaninfinity.com</u>

Client Representative

Name	Rolf Boswell
Position	Project Delivery Manager
Address	6/34D Lake Street, Cambridge 3434 NEW ZEALAND
Mobile	+64 27 420 0239
Email	<u>rolf.boswell@colabsolutions.govt.nz</u>

Document Revision

Revision No	Issue Purpose	Prepared	Checked	Approved
0	Issue Blocks F&G LiDAR Processing Report	L Leydon	L Graham	D Field
1	Issue LiDAR Processing Report at resupply	L Leydon	L Graham	D Field
2	Issue LiDAR Processing Report at resupply	L Leydon	L Graham	D Field
3	Issue LiDAR Processing Report at resupply	L Leydon	L Graham	D Field

Approval for Issue

Name	Signature	Date
Luke Leydon	Juke Jeydon	06 May 2024

Revision History

Item	Description of change	Section	Revision
1	New Section added to Introduction	1.1	1
2	Section added on building classification & vegetation and low-level noise classification	2.8.1, 2.8.2	1
3	New LP360 tables added	4.3	1
4	New Section added to setbacks and solutions	6.3	1
5	New Pointcloud statistics added	4.2	1
6	New results signoff table added	7	1
7	New Section added to Introduction	1.2	2
8	New Pointcloud statistics added	4.2	2
9	New Section added to setbacks and solutions	6.4	2
10	New results signoff table added	7	2
11	New Appendix added, defect spreadsheet completed	Appendix	2
12	New Section and figures added to Introduction	1.3	3
13	New Pointcloud statistics added	Figure 14	3
14	New LP360 tables added	4.3	3
15	New Sections added to setbacks and solutions	6.5	3
16	New results signoff table added	7	3

Contents

1	Introduction				
	1.1	Resupply post WRC and LINZ QA	8		
	1.2	Resupply post WRC and LINZ QA (2 nd round)	9		
2	LiDAR Data Processing and Handling				
	2.1	The ASPRS LAS File format	11		
	2.2	Time stamp of navigational data	12		
	2.3	Datums and coordinate reference system	13		
	2.4	Geometric Calibration	14		
	2.5	5 Positional accuracy validation			
	2.6	2.6 Use of the LAS withheld flag			
	2.7	7 Use of the LAS v1.4 Overlap Flag			
	2.8	Point Classification	15		
		2.8.1 Building Classification	22		
		2.8.2 Vegetation & Low-Level Noise Classification:	22		
	2.9	Classification Accuracy	23		
	2.10	Classification Consistency	26		
	2.11	Classification Consistency – Bridges	27		
3	LiDA	R Hydro-Flattening QAQC	30		
4	LiDA	R Deliverables QAQC	38		
	4.1	Reporting and metadata	38		
		4.1.1 Project reports	38		
		4.1.2 Extents	38		
		4.1.3 Flight Lines	41		
	4.2	Classified point cloud tiles	41		
	4.3	Elevation models	43		
		4.3.1 Bare-Earth Digital Elevation Models (DEM)	44		
		4.3.2 Digital Surface Models (DSM)	46		
	4.4	Break lines	50		
	4.5	GNSS data	50		
	4.6	Backed up project source data	50		
	4.7	Contours	51		
5	LiDAR QA Tiles				
	5.1	LAS Tiles QAQC - LASQC	52		
	5.2	File naming	53		
	5.3	Delivery Folder	54		
6	Setbacks and Solutions				
	6.1	Missing ground points under vegetation and low vegetation classification difficulties	55		
	6.2	Production Delays to Blocks F&G	55		
	6.3	Resupply of Blocks F&G	55		
	6.4	Resupply of Blocks F&G (Rev2)	55		
7	Resu	Its Acceptance & Signoff	57		

Tables

Table 1: Point Classifications	15
Table 2: Representative output from LP360 illustrating LAS file specification compliance- Block F & C	
Table 3: Condensed output from LP360 illustrating DEM file specification compliance – Block F & G.	45
Table 4: LP360 DSM Results example table – Block F& G	49
Table 5: File Naming	53
Table 6: Processing Results Acceptable Signoff	
Table 7: Processing Results Acceptable Signoff (Rev1)	57
Table 8: Processing Results Acceptable Signoff (Rev2)	
Table 9: Processing Results Acceptable Signoff (Rev3)	58

Figures

Figure 1: Waikato Survey Area	7
Figure 2: Island in Lake Rotoaira – prior to correction	10
Figure 3: Island in Lake Rotoaira – post correction	10
Figure 4: LAS 1.4 being specified during project – example	11
Figure 5: Project settings used in TerraScan project when importing points into the project	12
Figure 6: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools	
Figure 7: Representative examples of LAS point attributes	
Figure 8: Settings used when cutting overlap in Microstation	
Figure 9: Automatic classification macro developed for the project area	
Figure 10: Illustration of iteration angle and iteration distance parameters in the ground routine	
Figure 11: A smaller iteration distance value avoids classification of ground points on low objects	
Figure 12: Statistics showing the classes of all the LAS points within the project area (Block F)	
Figure 13: Statistics showing the classes of all the LAS points within the project area (Block G)	
Figure 14: Statistics showing the classes of all the LAS points within Blocks F&G (Rev1)	
Figure 15: Statistics showing the classes of all the LAS points within Blocks F&G (Rev2)	
Figure 16: Statistics showing the classes of all the LAS points within Blocks F&G (Rev3)	
Figure 17: The diagonal hatching seen above shows how the progress was tracked – Block F	
Figure 18: The diagonal hatching seen above shows how the progress was tracked – Block G	
Figure 19: The polygons are areas for further investigation – Block F	
Figure 20: The polygons are areas for further investigation – Block GBlock G	
Figure 21: Example overhead image of DEM over cliffs	
Figure 22: LAS point cloud profile view from previous figure	
Figure 23: Example overhead image of DEM interpolation	
Figure 24: LAS Point cloud view from previous figure	
Figure 25: Tile DEM_BH35_2021_1000_4134 with LINZ bridge centreline	
Figure 26: DEM Tile BH35_2021_1000_4730	
Figure 27: DEM Tile BH37_2021_1000_2708	
Figure 28: Example of a hydro-flattened DEM Lake Tile DEM_BH35_2021_1000_2611	
Figure 29: Example of Bridge with LINZ bridge centreline	
Figure 30: Same location as above DEM	
Figure 31: Excerpt of river points used to create the centreline	
Figure 32: Centreline for the stream within the project's survey	
Figure 33: Settings used to export lattice models.	
Figure 34: Pre-filter, overhead view of ground and veg points with hydro lines	
Figure 35: Post-filter, overhead view of ground and veg points with hydro lines	
Figure 36: Point cloud – boulder filled stream	
Figure 37: Imagery – boulder filled stream	
Figure 38: Example of hydroflattened DEMs: DEM_BH34_2021_1000_4947	
Figure 39: Extent of deliverable data for Block F	39
Figure 40: Extent of deliverable data for Block G	
Figure 41: Extent of deliverable data for Block F & G - DEM	
Figure 42: Flight lines for 4ppm2 data coverage over Block F & G	
Figure 43: WKT of a LAS file shown by LASTools	
Figure 44: DEM Example Tile DEM_BJ35_2021_1000_0314	
Figure 45: Excerpt from DSM_BH35_2021_1000_3428 – Block F	
Figure 46: Excerpt from DSM_BH37_2021_1000_3222 Block G	
Figure 47: Difference between DSM and DEM differences in height along cliff lines	
Figure 48: Script used in ArcMap to achieve a NoData value of -9999	
Figure 49: Properties of the composite DSM file showing its format and NoData value	
Figure 50: Stream break line properties in ArcMap	



Figure 1: Waikato Survey Area

F&G illustrated in Yellow

1 Introduction

Lidar survey projects are broken into three distinct phases. The survey commences with the data acquisition project phase. For matters pertaining to this phase of the project, refer to the document

• AU411_WLASS-Collection_Report-10052021.pdf.

The next phase of the project is the Geopositioning phase, which involves processing the raw sensor and trajectory data to produce a set of point clouds for each flight line.

The point clouds have several geometric optimizations performed, to optimise the relative and absolute spatial accuracy levels.

At completion of the Geopositioning phase, the point cloud geometry is final, and the point cloud classification and production generation project phases follow.

For matters pertaining to this phase of the project, refer to the documents

- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
- AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022

The following report covers the data processing project phase and describes the data processing methods used for the lidar classification and product generation, along with the QAQC procedures and results.

This report illustrates compliance with the LINZ PGF specifications sections 6 - 9.

This report pertains to the coverage of Blocks F&G, as illustrated in yellow in Figure 1 - Waikato Survey.

This dataset was uploaded by Woolpert Australia after hours on 10 March 2023. This was transferred to WRC the following day (11 March 2023).

1.1 Resupply post WRC and LINZ QA

The original supply of Blocks F & G was failed by both LINZ and WRC. The failure was accompanied by a spreadsheet 'AU411 WRC_Raised_Defect_Tracking_Block_FG_v1'. This listed the failures and improvements required. It was supported by Geospatial files which showed the areas of failures.

The dataset was formally failed on Tuesday 30 May. A technical meeting was held between LINZ, WRC, Ocean Infinity and Woolpert Australia on Tuesday 06 June to discuss the failures and methodologies to correct.

Revision 1 of the data was uploaded to Amazon S3 bucket on Monday 14 August 2023. This report was supplied on Wednesday 16 August.

Please refer to the extensive commentary and supplied images in the AU411 WRC_Raised_Defect_Tracking_Block_FG_v1.xlsx spreadsheet provide in Appendix A of the upload for the corrections made to this dataset.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

1.2 Resupply post WRC and LINZ QA (2nd round)

The revised (1) supply of Blocks F & G was failed by both LINZ and WRC. There were improvements made on the original supply but further rework was deemed necessary.

The failure was accompanied by a spreadsheet 'AU411 WRC_Raised_Defect_Tracking_Block_FG_v2'. This listed the failures and improvements required. It was supported by Geospatial files which showed the areas of failures.

Revision 2 of the data was uploaded to Amazon S3 bucket on Wednesday 11 October 2023. This report was supplied on Tuesday 24th October 2023.

Please refer to the extensive commentary and supplied images in the AU411 WRC_Raised_Defect_Tracking_Block_FG_v2.xlsx spreadsheet provide in Appendix A of the upload for the corrections made to this dataset.

1.3 Resupply post WRC and LINZ QA (3rd round)

Blocks F & G were resupplied to LINZ and WRC on 08 April 2024.

The failure and subsequent resupply was accompanied by a spreadsheet and returned with comments. 'AU411 WRC_Raised_Defect_Tracking_Block_FG_v5-Woolpert-Comments' This listed the failures and improvements required. It was supported by Geospatial files which showed the areas of failures.

Further corrections to the DEM/DSM over Lake Rotoaira, improving the hydroflattening were provided Monday 06 May 2024.

Thanks go to Emory Beck at LINZ for assistance with corrections to this dataset allowing publication.

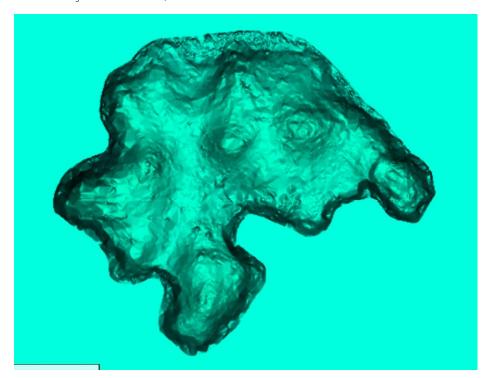


Figure 2: Island in Lake Rotoaira – prior to correction

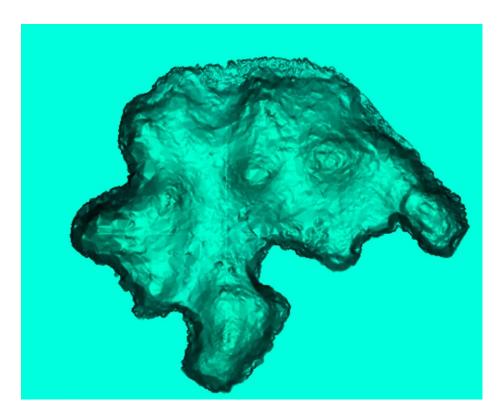


Figure 3: Island in Lake Rotoaira – post correction

2 LiDAR Data Processing and Handling

The LiDAR data processing method is described in the Project Method Statement, AU411-FOR-008-R5 Project Method Statement_WLASS. The following sections elaborate further but focus on adherence with compliance to the Linz PGF Specification (JAN 2020).

https://www.linz.govt.nz/system/files_force/media/doc/pgf_version_new_zealand_national_aerial_lidar_base_specification.pdf?download=1

QAQC steps for various workflow tasks have been tracked and recorded and included as an embedded document within Appendix 1.

2.1 The ASPRS LAS File format

LINZ PGF specification 6.1 requires that all point deliverables are required to be fully compliant with LAS Specification Version 1.4, using Point Data Record Format (PDRF) 6, 7, 8, 9 or 10 (referred to as LAS v1.4).

For this project, LAS 1.4 with PDRF 6 is to be delivered.

The LAS files created during the project during the Geopositioning phase and subsequent data cleaning and deliverable products are in ASPRS LAS 1.4 format, with PDRF 6. This was specified during the creation of the project in TerraScan, as shown in a representative image in the figure below:

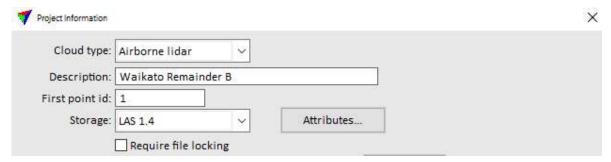


Figure 4: LAS 1.4 being specified during project - example

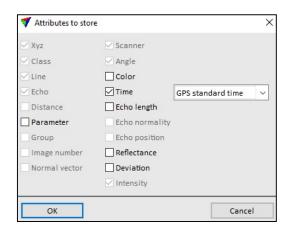


Figure 5: Project settings used in TerraScan project when importing points into the project.

The correct format of LAS is illustrated by use of LASTools, which shows the LAS files are in 1.4 format in the figure below.

Figure 6: Confirmation of LAS 1.4 being the file format of handover laser point files using LASTools

To verify that the project deliverables are in the correct LAS file format/version with PDRF, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.2 Time stamp of navigational data

LINZ PGF specification 6.2 requires that Each Global Navigation Satellite System (GNSS) aircraft positional measurement must be time stamped using Adjusted Global Positioning System (GPS) Time, at a precision enough to allow unique timestamps for each LiDAR pulse.

For this project, LAS 1.4 with PDRF 6 has been delivered including, with Global Encoding bit set to 1.

An example of how adjusted GPS time is visualized and monitored is illustrated in Figure 5: LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right).

To verify GPS time is set to adjusted GPS time, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar technical manager reviewed this analysis to ensure that all deliverable LAS files are compliant.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A. Figure 5 below shows representative examples of LAS point attributes being shown as class, flightline, GPS time stamp, Northing and Easting (left-to-right)

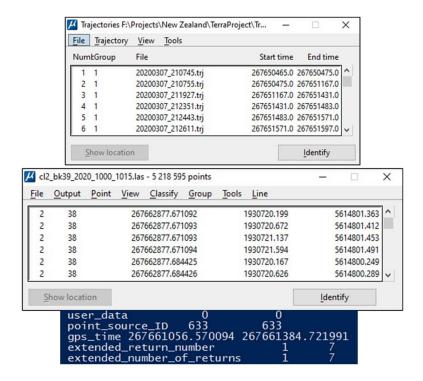


Figure 7: Representative examples of LAS point attributes

2.3 Datums and coordinate reference system

LINZ PGF specification 6.3 requires that the required datum for latitude, longitude, and ellipsoid heights is the New Zealand Geodetic Datum 2000. The required vertical datum for normal-orthometric heights is NZVD2016 (Reference 9). Projected data products are to be delivered in NZTM2000 projection (Reference 10) with NZVD2016 normal-orthometric heights.

The Survey Datums, Ground Control, Check Points and Lidar Geopositioning sections of the Project Methodology Statement describes in detail how the data is transformed and connected to the required project datum.

To verify that the correct datum information is recorded in the LAS 1.4 header, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files have the correct CRS applied in the header.

As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.4 Geometric Calibration

Following initial sensor data processing, a formal reduction process was performed on the data. Laser point position was calculated by associating the SBET position to each laser point return time, scan angle, intensity, etc. Raw laser point cloud data was created for the whole project area in LAS format. Line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.

Statistical reports were generated for comparison and used to make the necessary adjustments to remove any residual systematic error. These calibration adjustments were performed using a combination of automated and manual corrections to the data to develop the geometrically calibrated data set to be utilized for all downstream processes.

2.5 Positional accuracy validation

LINZ PGF specification 6.4 details the positional accuracy verification methods. The Vendor is expected to apply best practice in assessing the project accuracy and achieving compliance with this specification. Before classifying and developing derivative products from the point cloud, the relative vertical, local vertical and horizontal accuracies of the point cloud must be verified. The Vendor must deliver a detailed report of the validation processes used.

Validation of the point cloud positional accuracies is the primary outcome of the Lidar Geopositioning workflow phase, using surveyed ground control & check points. The assessments methods and results of the positional accuracy validation is be reported in the LiDAR Geopositioning QA/QC Report.

2.6 Use of the LAS withheld flag

LINZ PGF specification 6.5 requires that outliers, noise points, geometrically unreliable points near the extreme edge of the swath, and other points the Vendor deems unusable must be identified using the Withheld Flag, as defined in the LAS Specification.

Points classified as low noise (coverage class 7) and high noise (coverage class 18) will have the LAS withheld flag set.

To verify that the withheld flag has been correctly set, LP360 File Analyst was used. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analyst to ensure that the Las withheld flag is correctly applied. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.7 Use of the LAS v1.4 Overlap Flag

LINZ PGF specification 6.6 requires identifying overage points is not required unless requested by the Contract Authority. However, if overage points are explicitly identified using LAS v1.4, they must be identified using the overlap flag.

Classification of the overlap points was done using TerraScan in Microstation. A macro step was created which allowed for points to be classified with the overlap bit by cutting the scan angle at zero degrees.

The step used for the project dataset is illustrated in the figure below. This allowed for the overlap points to be withheld from DEM, DSM and intensity imagery generation. Figure 6 below shows Settings used when cutting overlap in Microstation. Note that the 'Action' is on "Set overlap bit.

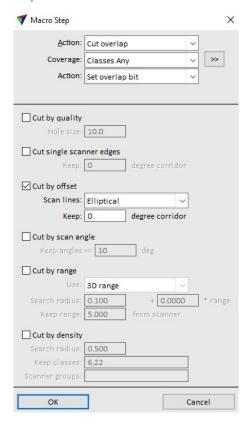


Figure 8: Settings used when cutting overlap in Microstation.

Verification of appropriate overlap flag application is performed using LP360 File Analyst. File Analyst performs exhaustive testing on the LAS file header and data records, and outputs the analysis results to an excel spreadsheet. The Lidar Phase Manager reviewed this analysis to ensure that all deliverable LAS files are compliant. As there are many tiles in the project area, the analysis results from LP360 are included as an imbedded document within Appendix A.

2.8 Point Classification

LINZ PGF specification 6.7 requires Lidar points are classified to the following coverage classes:

Code	Description
7	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
17	Bridge deck
18	High noise

Table 1: Point Classifications

Point cloud classification is performed by automated classification algorithms developed by Woolpert's senior Lidar analysts and reviewed by the Lidar technical manager.

A first run automatic classification was carried out on the raw LiDAR points using TerraSolid's TerraScan software to classify the LiDAR points into ground hits and non-ground hits. This results in a greater than 80% correct classification. Some of the steps used within this macro can be found within the screenshot below (Figure 7), including 5 of the 8 ground classification steps used on this data set.

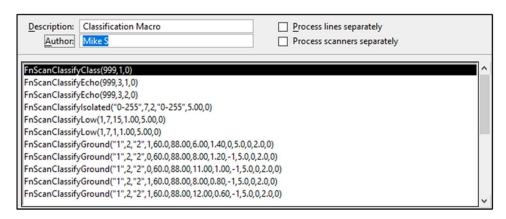


Figure 9: Automatic classification macro developed for the project area.

As documented by TerraSolid, the ground routine classifies ground points by creating a triangulated surface model iteratively. The routine is best suited for classifying ground in airborne laser data sets and in data sets where there is mainly natural terrain. For classifying ground in mobile data sets where the majority of ground is on hard surfaces, such as roads, use the Hard surface routine instead of the ground routine.

The routine is sensitive to low error points in the point cloud. Therefore, you should run one or more classification steps using the Low points routine before classifying ground. A more complex classification strategy is required for classifying ground in photogrammetric point clouds.

The ground routine starts by selecting local low points that are confident hits on the ground. The initial point selection is controlled with the Max building size parameter. If the maximum building size is, for example, set to 60.0 m, the routine assumes that any 60 by 60 m area has at least one point on the ground level and that the lowest point is on the ground level.

Then, the routine builds a surface model (TIN) from the initial ground points. The triangles in this initial model are mostly below the ground level and only the vertices are touching the ground. In the following iterations, the routine molds the model upwards by adding more and more points. Each added point makes the model following the true ground surface more closely.

The iteration parameters of the routine determine how close a point must be to a triangle plane for being accepted as ground point and added to the model. Iteration angle is the maximum angle between a point, its projection on the triangle plane and the closest triangle vertex. This is the main parameter controlling how many points are classified into the ground class. The smaller the Iteration angle, the less eager the routine is to follow variation in the ground level, such as small undulations in terrain or points on low vegetation. Use a smaller angle value (close to 4.0) in flat terrain and a bigger value (close to 10.0) in mountainous terrain.

Iteration distance makes sure that the iteration does not make big jumps upward if triangles are large.

This avoids ground points that are too high, for example within low vegetation or on low buildings.

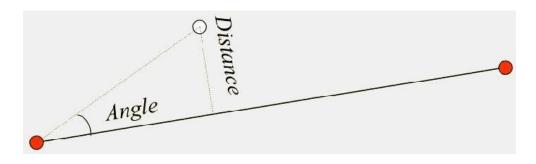


Figure 10: Illustration of iteration angle and iteration distance parameters in the ground routine.

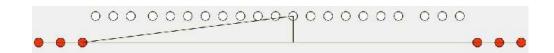


Figure 11: A smaller iteration distance value avoids classification of ground points on low objects.

The iteration angle can be reduced automatically if the triangles become small. This reduces the eagerness to classify more ground points inside small triangles and thus, avoids unnecessary point density of the ground model thus avoiding redundancy of inclusion of unnecessary ground points.

Related to this it is common to see default classified points within a classified ground point cloud surface. The iteration angle inside small triangles approaches zero if the longest triangle edge is shorter than a given Edge length value. Furthermore, the iteration can be stopped completely if triangle edges are shorter than a given limit.

After completion of the automated classification, a strenuous manual classification was carried out over the required area to edit the points thus minimizing gross classification errors that may have occurred in the automatic classification process.

Each block's data was checked in a systematic approach to reduce missing important features. Orthogonal views with background orthoimagery, and profile views are used to review the performance of the automatic classification results.

Tools such as 'Classify using brush', 'Classify above line' and 'Add Point to Ground' (all found within TerraScan) were used during manual classification, to achieve classification accuracy meeting project specifications. Before handover files were created, checks were done on the project's points by viewing statistics within TerraScan as illustrated in the figure below.


```
histogram of classification of points:
        1528010 unclassified (1)
     2949029832 ground (2)
      792030835 low vegetation (3)
     1878651495 medium vegetation (4)
     2513966571 high vegetation (5)
         831521 building (6)
      723568959 noise (7)
        1144991 water (9)
          64431 bridge deck (17)
       15287833 Reserved for ASPRS Definition (18)
+-> flagged as withheld: 738856792
            723568959 of those are noise (7)
 +--->
             15287833 of those are Reserved for ASPRS Definition (18)
+-> flagged as extended overlap: 4688873644
                817892 of those are unclassified (1)
 +--->
            1419157770 of those are ground (2)
 +--->
           430825780 of those are low vegetation (3)
          1054698727 of those are medium vegetation (4)
 +--->
 +--->
            1384798231 of those are high vegetation (5)
 +--->
             549777 of those are building (6)
 +--->
             393234636 of those are noise (7)
            564900 of those are water (9)
 +--->
 +--->
                44304 of those are bridge deck (17)
              4181627 of those are Reserved for ASPRS Definition (18)
```

Figure 12: Statistics showing the classes of all the LAS points within the project area (Block F).

```
26524 unclassified (1)
     1421073454 ground (2)
     820957841 low vegetation (3)
     2291775788 medium vegetation (4)
     8334381876 high vegetation (5)
         48530 building (6)
     416744149 noise (7)
        858253 water (9)
         12096 bridge deck (17)
       21036752 Reserved for ASPRS Definition (18)
+-> flagged as withheld: 437780901
+--->
           416744149 of those are noise (7)
+--->
            21036752 of those are Reserved for ASPRS Definition (18)
+-> flagged as extended overlap: 6565126277
+--->
                12287 of those are unclassified (1)
+--->
           688676655 of those are ground (2)
           407897676 of those are low vegetation (3)
+--->
           1121505365 of those are medium vegetation (4)
+--->
+--->
           4122900802 of those are high vegetation (5)
+--->
                33288 of those are building (6)
            215581162 of those are noise (7)
+--->
+--->
              469679 of those are water (9)
                 9761 of those are bridge deck (17)
+--->
              8039602 of those are Reserved for ASPRS Definition (18)
+--->
```

Figure 13: Statistics showing the classes of all the LAS points within the project area (Block G).


```
46144906 unclassified (1)
     5163752883 ground (2)
    1689471333 low vegetation (3)
    4616554361 medium vegetation (4)
    11872305404 high vegetation (5)
         883829 building (6)
     1109387457 noise (7)
        2150987 water (9)
         79116 bridge deck (17)
      27237049 Reserved for ASPRS Definition (18)
+-> flagged as withheld: 1136624506
       1109387457 of those are noise (7)
             27237049 of those are Reserved for ASPRS Definition (18)
+--->
+-> flagged as extended overlap: 12219098930
+--->
             27687918 of those are unclassified (1)
          2380374556 of those are ground (2)
+--->
+---> 865306664 of those are low vegetation (3)
+---> 2360642839 of those are medium vegetation (4)
+---> 5965339902 of those are high vegetation (5)
            584398 of those are building (6)
+--->
+---> 584398 of those are bullding
+---> 611651312 of those are noise (7)
          1134439 of those are water (9)
+--->
                55995 of those are bridge deck (17)
+--->
             6320907 of those are Reserved for ASPRS Definition (18)
+--->
```

Figure 14: Statistics showing the classes of all the LAS points within Blocks F&G (Rev1).

```
584507 unclassified (1)
3703758369 ground (2)
1096458573 low vegetation (3)
2462052088 medium vegetation (4)
3911928480 high vegetation (5)
830619 building (6)
423358202 noise (7)
1533510 water (9)
76754 bridge deck (17)
17599387 Reserved for ASPRS Definition (18)
+-> flagged as withheld: 440957589
      423358202 of those are noise (7)
+---> 17599387 of those are Reserved for ASPRS Definition (18)
+-> flagged as extended overlap: 6081427451
+---> 418641 of those are unclassified (1)
+---> 1764135424 of those are ground (2)
+---> 590575783 of those are low vegetation (3)
+---> 1364074916 of those are medium vegetation (4)
+---> 2115086303 of those are high vegetation (5)
       549107 of those are building (6)
      241122678 of those are noise (7)
+---> 837569 of those are water (9)
+--->
        53990 of those are bridge deck (17)
+---> 4573040 of those are Reserved for ASPRS Definition (18)
```

Figure 15: Statistics showing the classes of all the LAS points within Blocks F&G (Rev2).


```
20954 unclassified (1)
      66577057 ground (2)
      12305458 low vegetation (3)
      27736240 medium vegetation (4)
      29497079 high vegetation (5)
          20243 building (6)
       8655076 noise (7)
       2772185 water (9)
           214 bridge deck (17)
        351985 Reserved for ASPRS Definition (18)
+-> flagged as withheld: 9007061
              8655076 of those are noise (7)
+--->
 +--->
               351985 of those are Reserved for ASPRS Definition (18)
+-> flagged as extended overlap: 91527471
                17882 of those are unclassified (1)
 +--->
 +--->
             33834022 of those are ground (2)
 +--->
              9129676 of those are low vegetation (3)
             20687115 of those are medium vegetation (4)
 +--->
             21449556 of those are high vegetation (5)
 +--->
 +--->
                 9925 of those are building (6)
              5165104 of those are noise (7)
 +--->
 +--->
              1049919 of those are water (9)
                   20 of those are bridge deck (17)
 +--->
 +--->
               184252 of those are Reserved for ASPRS Definition (18)
```

Figure 16: Statistics showing the classes of all the LAS points within Blocks F&G (Rev3).

To keep track of the data cleaning process, a hatching method was used on the DGN within Microstation. It allows the cleaners to systematically mark each tile which has been fully checked and editing, making sure the whole data set has been initially covered.

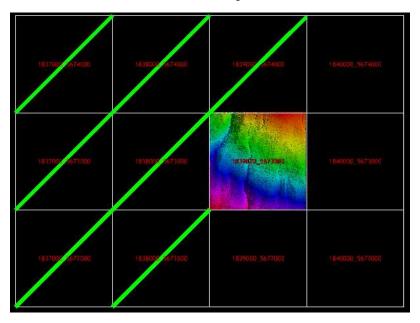


Figure 17: The diagonal hatching seen above shows how the progress was tracked - Block F

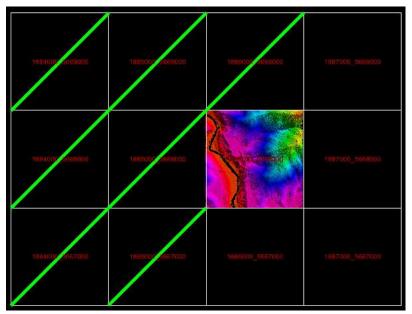


Figure 18: The diagonal hatching seen above shows how the progress was tracked – Block G

To verify that only the required coverage classes are present & populated, LP360 File Analyst performs exhaustive testing on the LAS data records, and outputs the analysis results to an excel spreadsheet. Lidar Analysts review this data to ensure that all deliverable LAS files are compliant with the specification coverage classes. Point cloud QAQC/editing is performed by trained Lidar Technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team.

2.8.1 Building Classification

The classification of building points has been undertaken by utilizing the TerraScan *buildings* routine. This routine classifies points on buildings which form a planar surface, several rules can be set to fine tune these results including the minimum building size/footprint, z tolerance of the point alignment along the roof line and use of echo information.

The use of echo information can further support the classification as points on roofs mostly belong to the echo type 'only echo' whereas vegetation usually contains a lot of 'first of many' and 'intermediate' echoes.

Additionally, the LINZ building footprint was also integrated into the building classification workflow to further constrain the classification and improve the overall output.

2.8.2 Vegetation & Low-Level Noise Classification:

In agreeance with all parties, Woolpert have classified the lower 0 – 0.3m of the low vegetation class to class 7 (low noise).

This was done to effectively remove the lower noise stratification points and unused ground points from class 3 over areas which do not represent vegetation e.g. man-made surfaces and structures (sealed roads).

The remaining vegetation points were classified using TerraScan's classify *By height from ground* which uses the ground surface to calculate the distance of each point above and below ground. All identified vegetation points were classified to the nominated classes using the height ranges specified in the *New Zealand Nation Aerial LiDAR Base Specification* (See below).

Table 4 Minimum LAS point cloud classification scheme

Code	Description
1	Processed, but unclassified
2	Ground
3	Low vegetation <2m
4	Medium vegetation
5	High vegetation >8m
6	Building
7	Low noise
9	Water
18	High noise

2.9 Classification Accuracy

LINZ PGF specification 6.8 requires that non-withheld points must be classified to a classification accuracy level of 2%. No non-withheld points are to remain as class 0.

Realtime Digital Elevation models are generated using Terrascan/Terramodeler are used to verify ground classified points and lidar technicians review the DEMs to find anomalies such as spikes or pits that imply misclassified points and make corrections.

During DEM review profiles are cut across tiles where potential issues are detected. The Lidar Technician scans the profile view to identify if an issue exists and modifies the classification of points as required.

10% of the data tiles are subject to review by a senior analysis or project manager.

After data cleaning was completed, a comprehensive DEM review is performed to visualize the data over large areas for the purpose of identifying anomalies or areas for further investigation. Any potential errors were identified as shown in the red polygons below and later addressed via additional manual editing.

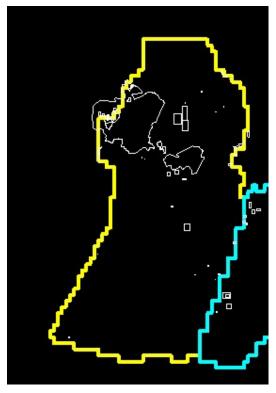


Figure 19: The polygons are areas for further investigation – Block F

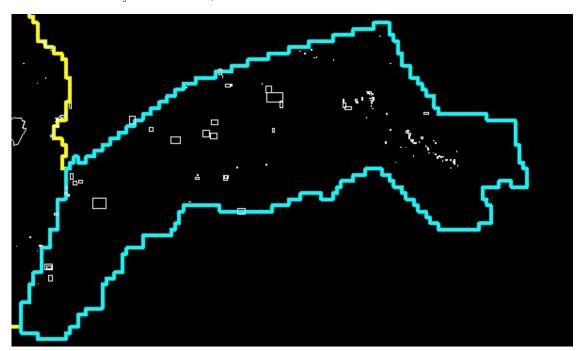


Figure 20: The polygons are areas for further investigation – Block G

The indicated areas were revisited and manually classified as appropriate. Below is an example of an issue identified for further investigation. Multiple revisions of the point cloud were performed to address issues common to the terrain and vegetation cover found within the project AOI. Rugged terrain and heavy vegetation across areas within the AOI commonly created unavoidable laser penetration difficulties as well as areas within the DEM that that appear to have a rough surface.

The figures below illustrate such and occurrence. Issues were identified concerning what appeared to be excess noise in areas of gullies. After investigating it was determined the gully areas in question are densely vegetated and located within steep terrain. The sparseness of the consistent ground penetration and steepness of terrain led to points being classified as noise during ground filtering. Additional filtering steps were taken to reclassify points into ground from noise class. The additional ground points added from noise provide improvement to the DEM quality as the points classified from noise to ground were sparsely distributed due to dense vegetation.

Further figures and commentary is contained within the defect spreadsheet supplied in Appendix A.

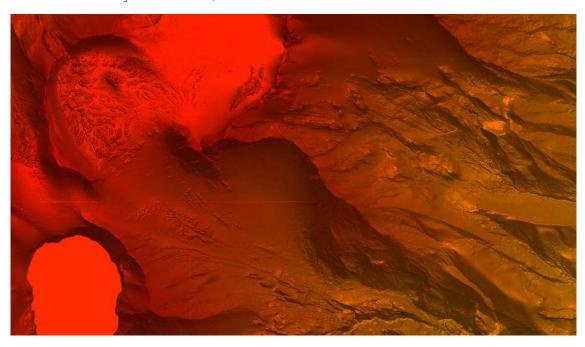


Figure 21: Example overhead image of DEM over cliffs

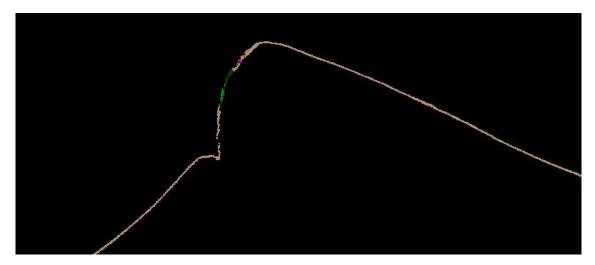


Figure 22: LAS point cloud profile view from previous figure

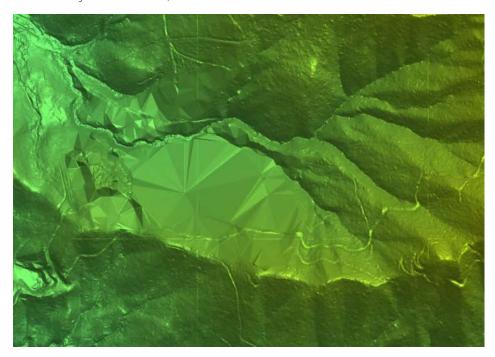


Figure 23: Example overhead image of DEM interpolation

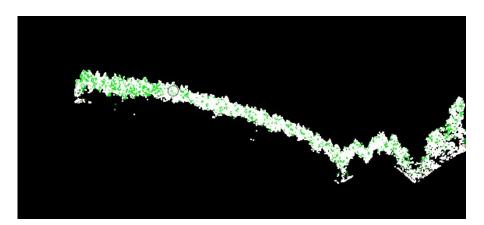


Figure 24: LAS Point cloud view from previous figure

2.10 Classification Consistency

LINZ PGF specification 6.9 requires that point classification must be consistent across the entire project. Noticeable variations in the character, texture, or quality of the classification between tiles, swaths, flights, or other unnatural divisions are grounds for rejection of the entire deliverable.

As with classification accuracy there is no analytical means of measuring compliance. As such the classification consistency is reviewed via visual means. To mitigate against inconsistent classification, the following controls were employed:

- Systematic geometric issues that may lead to swath-based inconsistencies are identified by the Lidar Geopositioning process, as documented in the Project Method Statement, specifically in the intraswath, interswath & absolute accuracy analysis steps. Data swaths that do not pass this stage do not progress to later classification steps
- The automated classification process is a series of classification algorithm tools applied in a macro. The macro is designed and optimised to yield high classification accuracy across the variety of land cover types within the project area. Applying the one, optimised and flexible classification macro delivers consistent classification across the entire project area
- To avoid tile edge artefacts, all tile-based workflow steps utilise a buffer of lidar points from surrounding tiles. This allows for a better classification of both ground and vegetation points.
- Lidar Technicians are trained to deliver consistent results and use the same visualisation methods/aids. They are supervised by the Lidar Phase Manager and the 10% of classified point cloud tiles are peer reviewed by a dedicated QAQC team.
- DEM tiles are run after classification has been completed to review possible errors in Ground classification.
- Bridges are checked against a bridge shapefile (supplied by LINZ) to correctly identify and classify the bridges.

2.11 Classification Consistency – Bridges

As mentioned above the dataset was compared against the LINZ bridge shapefile. There was discussion between Ocean Infinity, WRC, Woolpert and AAM around the differentiation of bridges versus culverts. The subject is somewhat open to interpretation. It is noted that the classification of Bridges (or not) has implications for Water flow modelling and hydroflattening. The following images are a visual representation of some of the aspects discussed.

Below examples shows the DEM where a bridge has been removed.

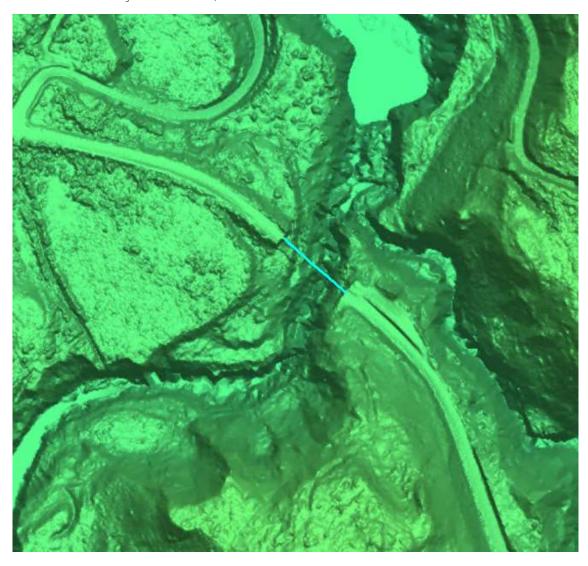


Figure 25: Tile DEM_BH35_2021_1000_4134 with LINZ bridge centreline

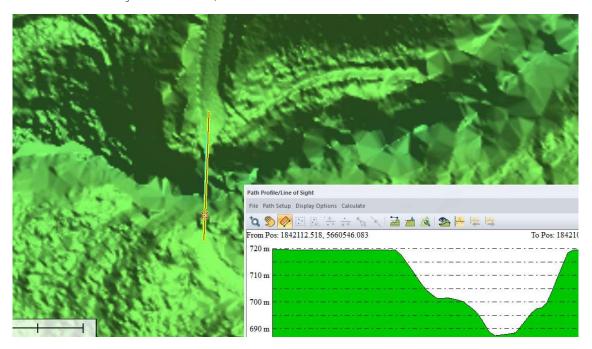


Figure 26: DEM Tile BH35_2021_1000_4730

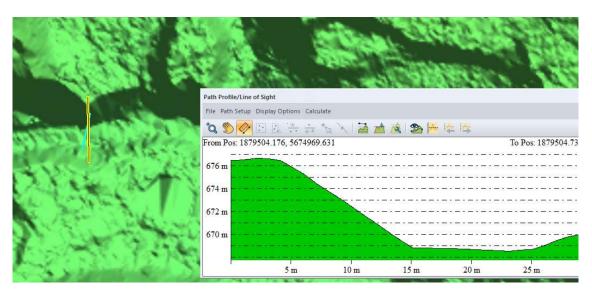


Figure 27: DEM Tile BH37_2021_1000_2708

3 LiDAR Hydro-Flattening QAQC

LINZ PGF specification 7.0 details at length the requirements for Hydro flattening of Digital Elevation Models.

The methods for Hydro Break line Digitization, Hydro-Flattening and Hydro-Flattening quality control are described in the Lidar Processing and Data presentation section of the Project Method Statement.

Hydro-flattening generation methods will be detailed in the Processing Report.

The pertinent parts of the specification and the means of identifying the required hydro-flattening features are as follows:

- · Permanent islands 5,000 m2 or larger must be delineated
- · Islands of 5000m2 will be included as hole features within the parent hydro-flattening polygon.
- · Inland ponds and lakes water bodies of 10,000m2 or greater at the time of collection must be flattened
- Lake polygon features will be precisely digitized using lidar point cloud with supporting background intensity imagery and supported by open-source imagery as reference.
- Inland streams and rivers of >= 30m nominal width (width of water flow in a single channel at time of capture) must be flattened
- Streams/rivers that fulfil the minimum distance requirement will be identified by visual inspection of the point cloud.

Hydro-flattening was performed upon the project dataset, and hydro break lines were used during the creation of digital elevation models. Hydro Flattening digitizing are performed by Lidar technicians, under the supervision of the Lidar technical manager. The hydrological features were digitised in Microstation using a combination of manual and automatic digitizing ('Display boundary' function in TerraModeler). Stream islands that were 5 000m² or larger in size.

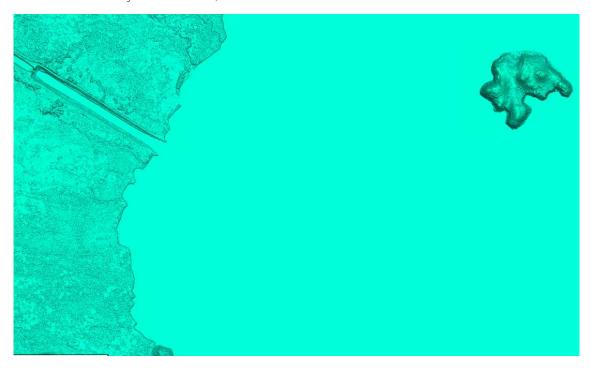


Figure 28: Example of a hydro-flattened DEM Lake Tile DEM_BH35_2021_1000_2611

When hydro-flattening a stream, the following process is used:

Identify a possible stream feature. Measure the width of the stream from bank to bank, and if greater than 30m wide, begin digitizing the feature. If the stream varies in width, the discretion of the geospatial specialist is applied.

Once the stream outline was completed, and that it was confirmed to be a polygon, a shapefile was imported into ArcMap and a centreline was created using the 'Create Centreline' script, which generates a centreline based on the stream polygon.

The centrelines were then checked for errors which may have occurred during its creation. It was then exported to Microstation where the centreline was then dropped to a surface (created by surrounding ground points). The tool 'Force Downstream Flow' was used to enforce correct elevations for the centreline, ensuring that each point's height was equal to or less than that of the point before it.

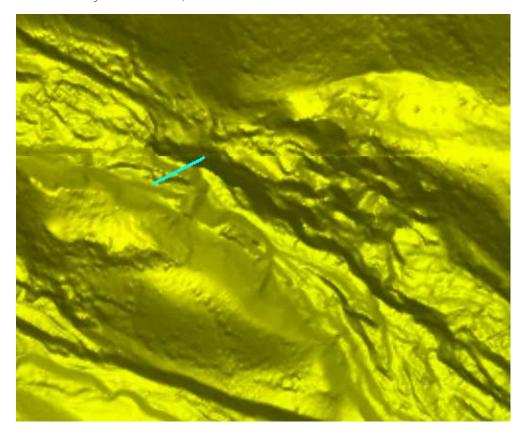


Figure 29: Example of Bridge with LINZ bridge centreline

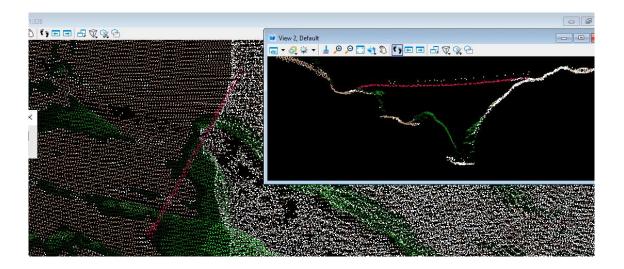


Figure 30: Same location as above DEM.

Laser with the Ground and Bridge classes (red) visible. Shows that the bridge has been classified.

The correct order of point heights was then checked by exporting the co-ordinates out as a text file which would be used for the creation of a new centreline shapefile. Figure 18 shows the example excerpt of river points used to create the centreline after downstream flow was enforced. Figure 19 shows the example highlighted script was used to generate the centreline for the stream within the project's survey.

```
1 1929744.8358 5615128.2638 7.7096
2 1929746.0769 5615130.8498 7.6863
3 1929746.4280 5615131.5996 7.6796
4 1929746.5107 5615131.7727 7.678
5 1929746.7841 5615132.3591 7.6728
6 1929748.0794 5615135.0799 7.6483
7 1929748.5703 5615136.1455 7.6388
8 1929749.4246 5615138.0643 7.622
9 1929749.8587 5615139.0742 7.6132
10 1929750.6288 5615140.9327 7.5973
11 1929751.0393 5615141.7916 7.5896
12 1929751.5292 5615142.7809 7.5805
13 1929754.3861 5615148.3485 7.529
14 1929754.7868 5615149.1041 7.5219
15 1929754.7991 5615149.1267 7.5217
16 1929757.3347 5615152.1834 7.4808
17 1929757.8445 5615152.7752 7.4594
```

Figure 31: Excerpt of river points used to create the centreline

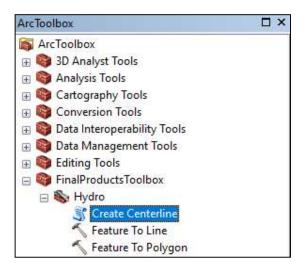


Figure 32: Centreline for the stream within the project's survey

After the new centreline had been created, it was conflated with the stream's shape using LP360 within ArcMap. This matched up the elevation of the stream's outline with that of the centreline. The new stream shape was attached to a DGN and opened in Microstation, exported as co-ordinates, and then read into the project. These points along with ground points were used to output lattice models which show the results of the hydro-flattening. Stream-island break line points were also included to ensure the correct modelling of the stream and its features.

The following settings were used for lattice model creation:

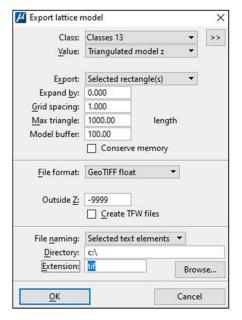


Figure 33: Settings used to export lattice models.

The product undergoes QC by the Lidar Phase Manager and is reviewed for any omissions or blunders. The following project specification are checked against:

- All Hydrologic break lines developed for use in hydro-flattening are in non-tiled ESRI feature class in polylineZ or polygonZ shape file format.
- Water bodies (ponds, lakes, and reservoirs), wide streams and rivers ("double-line"), and other non-tidal water bodies are to be hydro-flattened within the DEM. The resulting pond and lake surfaces will be flat and double line rivers will be flat level bank-to-bank and be gradient.
- It is noted when hydro-flattening streams, significant breaks in water elevation as well as varying degrees of bends in the stream direction will create a triangulated appearance in the DEM. These affects will be minimized to an appropriate extent.
- The entire water surface edge must be at or below the immediately surrounding terrain.
- · Hydro-flattening break line feature class use the NZTM2000 projection and NZVD0216 height datum
- · Hydro-flattening has applied to all streams that are nominally wider than 30 metres wide, and to all non-tidal boundary waters bordering the project area regardless of size.
- · Hydro-flattening shall be applied to all water impoundments, natural or man-made, that are nominally larger than 10000m2 in area
- Stream channels should break at road crossings (culvert locations). These road fills should not be removed from the DEM.
- Streams and rivers should NOT break at elevated bridges. Bridges are removed from the DEM. When the identification of a feature such as a bridge or culvert cannot be made reliably, the feature should be regarded as a culvert.

A peer review of the Hydro flattening break line data products as well as the hydro-flattened DEM is performed on 10% of the dataset by an independent analyst or project manager. To distribute and track the progress amongst the editing & QAQC team, an ArcSDE tracker (multiuser database) is employed.

During the QA/QC, it was identified there will be instances of vegetation classifications contained within waterbody polygons. After investigation it was determined much of this occurs from overhanging vegetation from the outside of the hydro features. Occasionally there are instances of vegetation within waterways which is related to islands falling below the required threshold for collection. Additional processing steps were taken to limit the amount of vegetation that exists within the waterway while retaining the overhanging vegetation. This processing step primarily involved classification based on XYZ proximity to existing digitized hydro/island lines. After this process was performed some vegetation classified lidar points will still be present in the waterway.

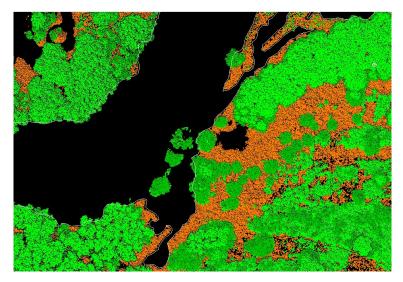


Figure 34: Pre-filter, overhead view of ground and veg points with hydro lines

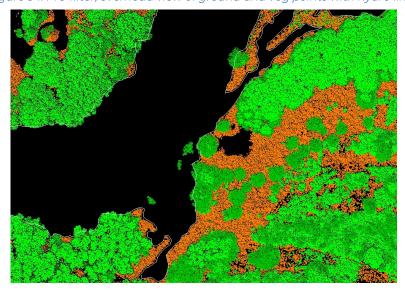


Figure 35: Post-filter, overhead view of ground and veg points with hydro lines

Additionally, during QC data review, it was discovered rocks and boulders within rivers are occasionally classified as vegetation. This is typically observed in high relief areas where water flows down steep terrain, i.e., rapids/white-water. Rivers tend to narrow in these areas and will not likely be caught during the aforementioned processing step based on proximity to linework. These points will continue to be classified as vegetation.

Figure 36: Point cloud – boulder filled stream

Figure 37: Imagery – boulder filled stream

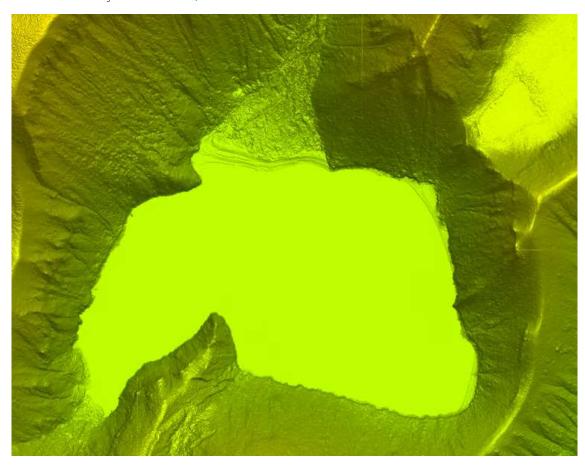


Figure 38: Example of hydroflattened DEMs: DEM_BH34_2021_1000_4947

4 LiDAR Deliverables QAQC

Section 8 of the LINZ PGF specification details the project reporting, metadata requirements & deliverable requirements.

4.1 Reporting and metadata

4.1.1 Project reports

The following details the reports being delivered for this section of the project:

- Collection Report detailing mission planning and flight logs, including dates of collection
- Details of quality control tests, and conformance against Linz specifications
 - o Refer to AU411_WLASS-Collection_Report-10052021.pdf
- Survey Report detailing the collection of all ground control, including the following:
 - o Control points used to calibrate and process the LiDAR and derivative data
 - o Check sites used to validate the LiDAR point data or any derivative product
 - o Refer to AU411-R1-Waikato LiDAR Ground Control Report of Survey.pdf
- Geopositioning QA/QC Report, detailing analysis, accuracy assessment and validation of the following:
 - o Point cloud data, including a summary of relative (smooth surface repeatability and overlap consistency) and non-vegetated vertical and horizontal local accuracy.
 - o QA/QC analysis of the vertical and horizontal local accuracy assessment will include a table of the product data compared to each check site.
 - o Refer to AU411_Lidar_Geopos_QAQC_Reports_Waikato_Blocks_15062022
 - o AU411_Lidar_Geopos_QAQC_Reports_Waikato_Entirety_09092022.

Processing Report (This Document) detailing:

- Classification and product generation procedures including methodology used for break line collection, hydro-flattening break line collection, hydro-flattening processing, DEM & DSM creation, and deliverable generation.
- Details of quality control tests, and conformance against each of the relevant Linz specifications including:
 - o Workflow QAQC checklist
 - o Pre-Delivery QAQC worksheet as an embedded document

4.1.2 Extents

LINZ PGF specification 8.1.3 requires that a geo-referenced, digital spatial representation of the detailed extents of each delivered dataset.

The data for Block F was captured using Leica TerrainMapper sensor 513 and 559, flown on day 25th January 2021. The extent of Block F can be seen in Figure 25. The flight lines relating to the area can be seen in Figure 28.

The data for Block G was captured using Leica TerrainMapper sensor 513 and 559, flown on days 25th, 26th & 31st January 2021. The extent of Block G can be seen in Figure 25. The flight lines relating to the area can be seen in Figure 28.

This extent was created by creating a surface in Microstation based on all points collected during the survey flight. The tool "Display boundary" was then used to generate the extent, which was then exported into a shapefile and assigned with the necessary horizontal and vertical co-ordinate system.

Another new Shapefile *Waikato_Block-Delivery_Final_NZTM_20230222* was provided to rectify a rounding error on tiles. The AOI changed minimally and is reflected in figure 41.

Figure 39: Extent of deliverable data for Block F

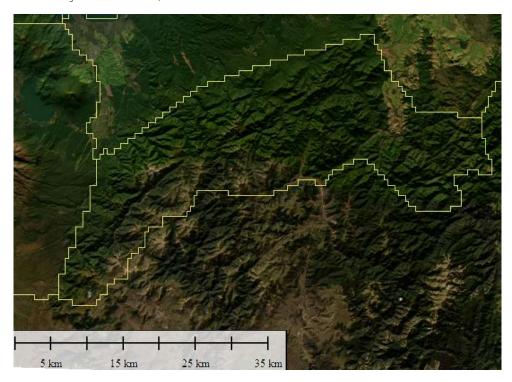


Figure 40: Extent of deliverable data for Block G

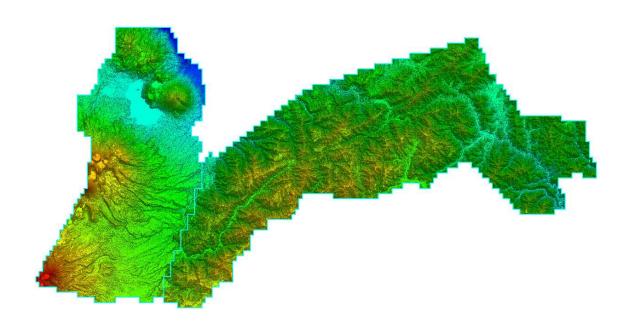


Figure 41: Extent of deliverable data for Block F & G - DEM

4.1.3 Flight Lines

LINZ PGF specification 8.1.3 requires that Flightline shapefiles as Esri polylines are required. Each flightline must be assigned a unique File Source ID that is equal to the Point Source ID assigned to each point collected during that flightline.

The Sensor trajectory was imported into Terrascan and edited to split the trajectory into discrete flight lines. Each flight line was then assigned discrete flight line ID, in accordance with the project flight plan. Each Lidar point was assigned a flight line ID by matching against its trajectory, using the Adjusted GPS time stored in both the trajectory and lidar point. The trajectories were exported to ESRI shape file format with a File Source ID attribute populated with the trajectory flight line ID value. This process will ensure that specification 8.1.3 is adhered to.

The image below shows the extend of the area covered.

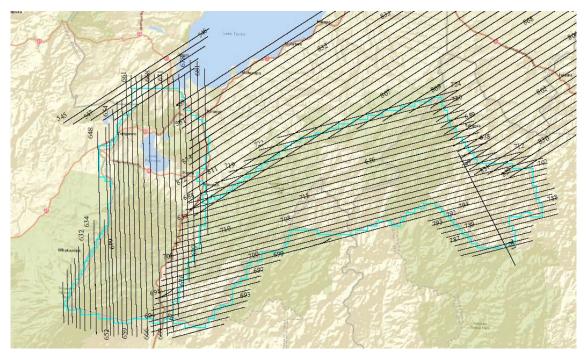


Figure 42: Flight lines for 4ppm2 data coverage over Block F & G

4.2 Classified point cloud tiles

LINZ PGF specification 8.2 details the requirement for the point cloud deliverables, and how adherence to the specifications is measured is listed below. Point cloud deliverable generation methods will be detailed in the Processing Report. Deliverable QC checks are performed both by Lidar technicians, under the supervision of the Lidar Phase Manager and followed by a review of 10% of the data by an independent analyst or project manager:

- (a) Data from all project swaths, returns, and collected points, fully calibrated, adjusted to ground, and classified, by tiles. Project swaths exclude calibration swaths, crossties, and other swaths not used in product generation.
- (b) Data is provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum.
- (c) Fully compliant LAS v1.4, Point Data Record Format (PDRF) 6-10. All files must have the same PDRF.
- (d) Each point includes a Point Source ID linking it to the flight line File Source ID.
- (e) Correct and properly formatted georeferenced information (EPSG: 2193 + 7839) as Open Geospatial Consortium (OGC) Well Known Text (WKT) included in all LAS file headers.
- (f) File Source ID set to 0 for tiled LAS files.
- (g) GPS times recorded as Adjusted GPS Time at a precision sufficient to allow unique timestamps for each pulse.
- (h) Points are provided in the order in which they were collected.
- (i) Height values reported to three decimal places (nearest mm). (While not significant for accuracy, this supports numerical processing and reduces the number of identical values caused by rounding.)
- (j) Intensity values, normalised to 16-bit by multiplying the value by 65,536/ (intensity range of the sensor) per LAS v1.4. This will result in an intensity range of 0-65,536.
- (k) Classification as required by the Contract Authority (Table 4 at a minimum).
- (I) Tiled delivery, without overlap, per the project tiling scheme in Section 9 Tiles.
- (m) Files named per Section 9 Tiles.

The point cloud tiles created for handover underwent multiple alterations before finalization. After the LAS tiles were created in Microstation, LASTools was used to assign the correct global encoding (17), system identifier and file source ID (0). WKT was also added to the LAS metadata, as illustrated in the figure below. The correct height values were also confirmed in LASTools ensuring that three decimal places were being used. The tiles were also named according to the required naming convention which is discussed in Section 6.

Figure 43: WKT of a LAS file shown by LASTools.

Intensity valued scaled from a range of 100 – 10000 output by HxMap, to full 16-bit dynamic range. Translation value = -100 Scale value = 6.5535

Once the point cloud was classified and was inspected manually in Microstation, the LAS files were loaded into LP360. The global coding, file source ID, WKT, VLRs, file format and LAS version were compared against to the LINZ specifications and after passing QA/QC, the files were renamed in accordance with the LINZ specifications. A condensed version of the LP360's results can be found in the table below. A complete listing of the output from LP360 is included as an embedded document in Appendix A.

	I					
File	Points	Version	File Signature	File Source ID	CRS is WKT	Coordinate System
			0.9			NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4101.las	4,832,688	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
SEE_B1166_E6E1_1666_T161.iid6	1,002,000		2 101			NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4102.las	3.891.585	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
				_		NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4103.las	3,829,035	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4104.las	4,421,763	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4105.las	3,242,130	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4106.las	4,140,306	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4107.las	3,918,064	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4108.las	3,335,392	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4109.las	4,151,556	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4110.las	2,464,457	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4111.las	4,105,340	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4112.las	2,590,690	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4113.las	3,965,798	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
				_		NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4114.las	2,309,666	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
				_		NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4115.las	4,815,002	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
010 0175 0007 7000 (775)						NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4116.las	3,133,834	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2 DUZE 2021 1000 (1771	/ / 55 335	1	1.465		TDUE	NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4117.las	4,476,117	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CL2 DUZE 2021 1000 /1101	4 170 000	1 ,	1,405	0	TDUE	NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4118.las	4,170,609	1.4	LASF	U	TRUE	Transverse Mercator 2000 + NZVD2016
CL2_BH35_2021_1000_4119.las	4,831,415	1.4	LASF	0	TRUE	NZGD2000 / NZGD2000 / New Zealand Transverse Mercator 2000 + NZVD2016
CLZ_DH33_ZUZI_IUUU_4119.lä\$	4,031,415	1.4	LASE	U	IKUE	NZGD2000 / NZGD2000 / New Zealand
CL2_BH35_2021_1000_4120.las	6,304,948	1.4	LASF	0	TRUE	Transverse Mercator 2000 + NZVD2016
CLZ_DH33_Z0Z1_1000_41Z0.ldS	0,504,548	1.4	LASE	U	IKUE	Transverse Mercator 2000 + NZ VD2016

Table 2: Representative output from LP360 illustrating LAS file specification compliance- Block F & G

Additionally, a pre-delivery script which invokes LASTools was run on all tiles. The script output was imported into a custom Excel Worksheet, which checked specification compliance. For a complete listing of analysis refer to Section 6.1 of this document.

4.3 Elevation models

LINZ PGF specification 8.3 details requirements for raster surface model deliverables. The specification and how adherence to the specifications is measured is listed below. Deliverable QC checks are performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a review of 10% of the data by an independent analysist or project manager:

- (a) Grid spacing: 1m cell size.
- (b) Generated to the limits of the project area
- (c) Raster format: Geotiff (.tif)
- (d) Geo-reference information (EPSG 2193) in each raster file.
- (e) Tiled delivery without overlap.
- (f) NOT clipped using polylines for land-water boundaries from national databases (for example coastlines, river or lake boundaries) as these can be inaccurate and subject to continual geomorphic change.
- (g) Tiles with no edge artefacts or mismatch. A quilted appearance in the overall surface can be grounds for rejection of the entire deliverable whether the rejection is caused by differences in processing quality or character among tiles, swaths, flights, or other unnatural divisions.
- (h) Void areas (for example, areas outside the project area but within the project tiling scheme such as offshore water) coded using "NODATA" value equal to -9999. This value must be identified in the appropriate location within the raster file header.
- (i) Constrained with any additional break lines required by the Contract Authority, such as stopbanks, streams, and narrower rivers.
- (j) Provided in the NZTM2000 coordinate system and the NZVD2016 vertical datum. Additional vertical datums may be specified by the Contract Authority.

4.3.1 Bare-Earth Digital Elevation Models (DEM)

LINZ PGF specification 8.3.1 details additional requirements for Digital Elevation Models. The Bare-Earth DEM is the bare earth that has been classified and edited to remove vegetation and man-made structures within the bounds of the classification accuracy requirements. It must also include or conform to the following:

- (a) Based on Classification level 2 or better ground return points.
- (b) Hydro-flattening as outlined in Section 7 Hydro-Flattening.
- (c) Bridges removed from the surface, while culverts are treated as ground
- (d) Method for removal of buildings, structures or other ground cover/vegetation and interpolation techniques documented.

The Digital Elevation Models were created using a combined model based on both ground surface points and break line points. These break line points were created during the hydroflattening process mentioned in **Section 4**. By using these classes, a true representation of the ground points can be achieved while still maintaining a smooth water surface which gradually follows the terrain.

It is noted for Blocks F & G due to the dense vegetation and steep terrain the penetration of the LiDAR to the ground in some areas is minimal (Figure 18 is a good example). This will show in the DEM as large, triangulated areas or give the impression of pitting where only isolated ground returns have been identified.

For these areas it is recommended to compare any potential DEM discrepancies with the point cloud to confirm the absence of available ground points.

To generate DEMs, LAS format data files are loaded into TerraScan, only loading in class 2 points and breaklines. Additional data is referenced to avoid tile edge artefacts. Following import, TerraScan-Export Lattice Model command is used to create a grid file with uniform distances between points from one or more selected point classes. For each grid point, the lattice model file stores XY coordinates and elevation. Within the Export Lattice Models command we utilize "Triangulated model Z" to export the DEM tiffs. This triangulated model z derives an elevation value that is calculated from a TIN model of the lidar points using ground and breakline classifications.

The elevation grid is generated as a TerraScan Lattice model using the following settings:

- o Grid Method = TIN Model (Triangulated model z)
- o Grid Spacing = 1 meter

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

The tiles were loaded into LP360 to check the metadata of the images during both production and QA/QC of the deliverables. A Representative version of LP360's findings is found in the table below. A complete listing of the LP360 results is included as an embedded document in Appendix1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DEM_BH35_2021_1000_4904.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4905.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4906.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4907.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4908.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4909.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4910.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4911.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4912.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4913.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4914.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4915.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4916.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4917.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4918.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4919.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4920.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4921.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4922.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DEM_BH35_2021_1000_4923.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 3: Condensed output from LP360 illustrating DEM file specification compliance - Block F & G

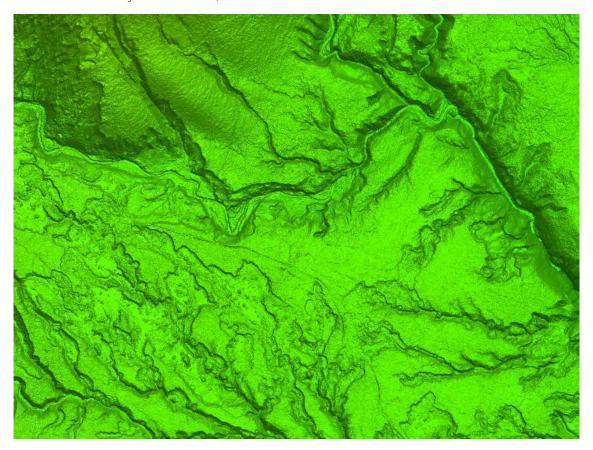


Figure 44: DEM Example Tile DEM_BJ35_2021_1000_0314

4.3.2 Digital Surface Models (DSM)

LINZ PGF specification 8.3.2 details additional requirements for Digital Surface Models. The DSM is the heights of the top of the highest feature at each gridpoint, including ground, vegetation, and manmade structures. The DSM is based on first return points after removal of noise.

LAS format data files are loaded into Terrascan only loading in First, First-of-many and Single returns. Additional data is loaded to avoid tile edge artefacts. Only coverage classed 1 to 6 & 17 points will be used in generation of Digital Surface Models. The elevation grid is generated as a TerraScan Lattice Model using the following settings:

- o Grid Method = Binning (Maximum Value DSM)
- o Grid Spacing = 1 metre

Following Lattice model export, the data was processed using Esri to produce GeoTiff files.

To meet the request to produce a DSM representative of the heights of the top of the highest feature at each grid point while incorporating hydro features, the hydro features used to create the DEM deliverables were included to produce a hydro flattened DSM.

Hydro-flattened DEM tiles are overlaid against the DSM tiles to identify and fill gaps in the data (such as the river), and then the tiles were exported in Geotiff format including settings for the datums and null

data specifications, using the tile grid to clip & name the data files. The DSM deliverables undergo a visual spot check using Globalmapper.

In areas where valid data gaps (e.g. waterbodies) do not meet the LINZ specification for hydro-flattening the surface model will triangulate across these voids to the nearest point per pixel (highest for DSM & lowest for DEM). No intervention is made to flatten or constrain these areas.

Digital surface models are created by combining points with only a single return, and points that have the first return of many (returns) and are then used to generate the DSM model. Figure 28 is an excerpt of one of the DSM tiles created for the project area.

Figure 45: Excerpt from DSM_BH35_2021_1000_3428 - Block F

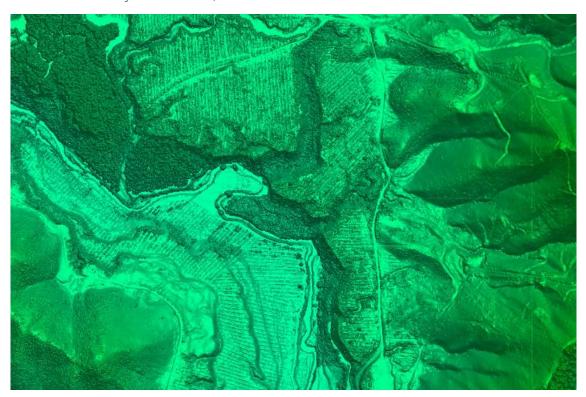


Figure 46: Excerpt from DSM_BH37_2021_1000_3222 Block G

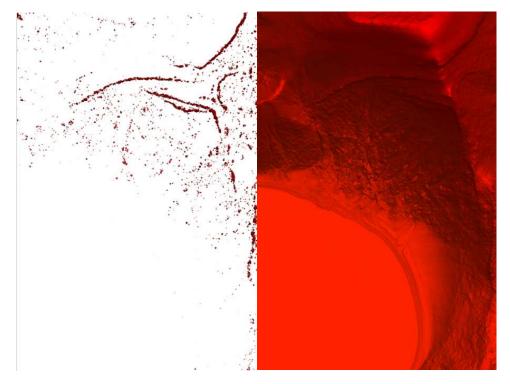


Figure 47: Difference between DSM and DEM differences in height along cliff lines

The tiles created are in GeoTiff floating 32-bit format and have been adjusted to display a NoData value of -9999 (Figure 29). The composite DSM was produced in 32-bit Geotiff format as requested and both the tiles and the composite had the correct horizontal and vertical co-ordinate systems assigned to the metadata in ArcMap.

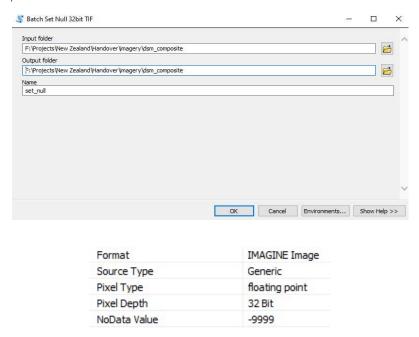


Figure 49: Properties of the composite DSM file showing its format and NoData value

After these files were amended, they were loaded into LP360 to check the necessary metadata of the imagery. The results from LP360 can be found in the table below. A complete listing of the LP360 results are included as an embedded document in Appendix 1.

File	Format	NoData Value	BPB	Bands	Data Type	Pixel Size	Coordinate System
DSM_BH35_2021_1000_4805.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4806.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4807.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4808.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4809.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4810.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4811.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4812.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4813.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4814.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4815.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4816.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4817.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4818.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193
DSM_BH35_2021_1000_4819.tif	GTiff	-9999	32	1	FLOAT	1	EPSG: 2193

Table 4: LP360 DSM Results example table – Block F& G

44 Break lines

LINZ PGF specification 8.4 details requirements for hydro-flattening break lines. Delivery of break lines representing all hydro-flattened features in a project is required. Additional break lines may also be required by the Contract Authority. These are to be delivered as ESRI Shape files (.shp) using the NZTM2000 projection.

Refer to section 7.0 of this document. The workflow methods will be documented in the project Processing Report. The digitized hydro features were included in the handover data set, under the Vector deliverable section. They are in shapefile (.shp) format and are in the NZTM2000 projection.

Stream and stream-island, lake and lake island break lines were delivered, with ocean features falling under the "Lake" feature category due to its uniform height. In figure 31 the geometry type is set to a polygon shape and has vertical and horizontal co-ordinate sets as well as Z values.

Figure 50: Stream break line properties in ArcMap.

4.5 GNSS data

GNSS data is not a required deliverable for this project.

4.6 Backed up project source data

LINZ PGF specification 8.6 details the requirements for archival and storage of the project data. Raw project source data, such as native format LiDAR files and point cloud swaths, are NOT required for delivery; however, a copy has been provided to CoLAB. It is acknowledged that the Vendor must hold a copy of all relevant raw project data, for a minimum of five years beyond the final delivery of the project deliverables. The vendor must provide this data, with unrestricted copyright, to the Contract Authority on request. The vendor may charge a reasonable access and distribution charge in such instances.

Woolpert and Ocean Infinity will archive all raw & processed data collected for 5 years following project completion.

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

4.7 Contours

Note Contours will be generated at Project conclusion to ensure there are no line breaks between blocks.

Contours will be generated from the DEM. Contour methodology samples have been provided including those that straddle block joins.

Contours will be generated at 1,5 and 10 metre markers. They will adopt a naming convention as per WRC suggestion e.g. CRT_BB35_2021_1000_1515.

CRT refers to Cartographic and opposed to engineering contours.

5 LiDAR QA Tiles

LINZ PGF specification 9.1 & 9.2 detail the requirements for project tiles geometry & naming convention.

- (a) NZTopo50 subtitles based on NZTM2000 coordinates. The 1-m gridded raster products and point clouds must be delivered at 1:1000 nominal scale (2500 720m high x 480m wide subtiles per full NZTopo50 sheet).
- (b) The origin of the raster tiles must be placed on a whole metre coordinate value of the southwest corner of each tile (for example, 5429500 mN_17490300mE).
- (c) The tiled deliverables must edge-match seamlessly and without gaps.
- (d) The tiled deliverables must conform to the project tiling scheme without overlap.
- (e) File naming must conform with the naming convention described in section 9.2.

A Tile Index must be provided in ESRI shape file format. The file name must be included as an attribute in the Tile Index file.

The Client supplied tiling grid shape file will be used as the tile clipping polygon when exporting the deliverable products. The shape file will have an attribute added for each deliverable type as specified in section 9.2. This attribute will contain the required tile name for each deliverable. This shape file will be used as the means of extracting all project data deliverables, so that the geometric aspects for specification 9.1, and the naming requirements of section 9.2 are fulfilled.

Deliverable QC checks have been performed both by Lidar technicians, under the supervision the Lidar Phase Manager and followed by a dedicated QA/QC team:

5.1 LAS Tiles QAQC - LASQC

Prior to delivery, Lidar data tiles have undergone a final analysis, using a custom developed Pre-Delivery QAQC tool called LASQC. This tool uses LASTools 'Lasinfo' in a batchscript called LASExtract, which collates information regarding each tile into an Excel worksheet. The tool analysis and reports compliance on the following items:

- o File naming accuracy
- o Check to ensure lidar points fall inside the extents bounded by the NZTOPO50/1:1000 tile name
- o Adjusted GPS time falling with correct extents for the survey
- o LAS file format, version, file source ID, point data record format & scale factor
- o Point counts by return, illustrating presence of multiple returns
- o Average point density for the tile, excluding overlap
- o Presence of the overlap (not applicable to all tiles) & withheld flags
- o Minimum, maximum & average intensity values.
- o Height above ground for building, low, medium & high vegetation classes

- Note it should be noted that this analysis is not accurate in steep terrain due to the different methods used for triangulation of between Terrascan & LASTools.
- o Check for presence of correct ESPG Codes for geodetic & vertical datums, and map projection
- o Raster Overviews for Point Source ID, Intensity, Point Density and Overlap Analysis

These analysis results will be included as an attachment referenced in Appendix A.

5.2 File naming

Project deliverables have been named in accordance with the project specification illustrated in Table 5.

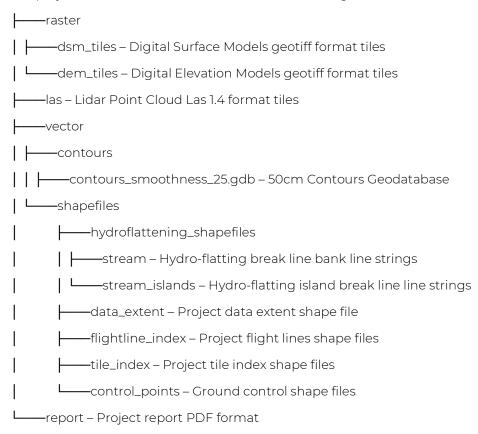

Product	DEM	CL2-Point Cloud Classification Level 2 DEM-Bare Earth Digital Elevation Model DSM-Digital Surface Model DTM-Digital Terrain Model UNC-Unclassified Point Cloud INT-Intensity image CHM - Canopy Height Model IMG-Aerial photography etc
Sheet	BK34	LINZ Topo50 identifier (4 characters)
Year	2016	Year of survey commencement
Scale	1000	Nominal scale of NZTopo50 subtiles
Tile	4118	Row number (41), Column number (18) of tile with respect to an upper left origin
ext	tif	File extension according to format conventions las tif shp etc

Table 5: File Naming

5.3 Delivery Folder

The project deliverables are structured in the following manner:

6 Setbacks and Solutions

During the production of the data sets for the preceding blocks, setbacks were encountered, with a varying impact on production time. Along with these setbacks, new methods of production were created to account for any necessary changes to improve the quality of the data set or save time when amending the data set. These setbacks impacted the delivery date of Block A and other areas.

6.1 Missing ground points under vegetation and low vegetation classification difficulties

During the processing of all Waikato Blocks it is noted there are areas of dense vegetation which limit and often prevent laser penetration to the ground surface. In these situations, it is common for data voids to appear in the DEM surface. In addition, low lying dense vegetation has caused difficulty in assessing the true ground surface. In these situations, it can be difficult to discern if points are part of the ground surface or the lowest part of low-lying vegetation. In these situations, it is common for the ground surface profile to transition to what may or may not be the lowest part of low-lying vegetation. During manual editing, these situations are monitored with the objective being to make the best interpretation of ground.

6.2 Production Delays to Blocks F&G

During production, it was determined a new technical team within Woolpert's US and Australian offices was necessary to continue production on the project. This handover from the previous team created project delivery delays as the new team became familiar with the project specifications as well as to address quality assurance workflow requests made by the prime contractor.

6.3 Resupply of Blocks F&G

Blocks F & G required extensive manual rework. The dense vegetation including Beech forests present in this area caused issues with the automated classification. This was compounded by the lack of LiDAR penetration through this vegetation. The automated classification incorrectly classified the tops of vegetation as ground, due to the lack of penetration. This has been rectified with the most recent supply. Further information can be found in the defect spreadsheet.

6.4 Resupply of Blocks F&G (Rev2)

Further manual rework was carried out on these blocks supported by information supplied by LINZ and WRC. Repairs were made to the Pointcloud, DEM and DSM. Please refer to the spreadsheet for explanation of what was required and the fixes implemented.

6.5 Resupply of Blocks F&G (Rev3)

Further manual rework was carried out on these blocks supported by information supplied by LINZ and WRC. Repairs were made to the Pointcloud, DEM and DSM.

Specific Polygons were provided by WRC where any small, innocuous vegetation that was present was mandated to turn to ground classification.

Below is a table showing one of the pages of the tracking spreadsheet which was supplied by WRC and LINZ and reviewed and commented on by Ocean Infinity and/or Woolpert. This was further supplemented by shapefiles, geodatabase files, reference images / snips and other information to support identification, rectification and repair.

Date	Item	Product	Raised By	Description	Status	Woolpert Comment	
12/03/2024	1156	DSM	DanB	See WRC_Issues_points; Spike in DSM			
					Fixed	Spikes not identified in laser. Rasters regeneration	
				See WRC_issues_polygons; Disasterous triangulation on DEM surface			
				introduced since v2. Fix patch, check boundary of patch for linear texture		Spikes not identified in laser. Rasters regeneration	
12/03/2024		DEM	RossM	defect			
					Fixed		
12/02/2024		All	Cwa a w .D	Contint foiled thouse and LINT show of the	-	Fixed where issues raised. Vegetation in	
12/03/2024		AII	EmoryB	See LINZ_failed items and LINZ shapefiles		ground over alpine areas hasn't as per initial	
					1	WRC instructions	
				[I51 PC HDR COORDSYS WKT] - Two las tiles with a coordinate system string			
	which parses t	which parses to NZTM, but is inconsistent with master WKT coordsys string.	Fixed	Updated - BJ34-937 & BJ34-938			
12/03/2024		PC	DanB	Please refer to image [PGF LAS WKT COORDSYS].	. IXCu	Space 303+337 & 503+330	
				[I54 POINT SOURCE FLIGHLINE] - One tile CL2_BH35_2021_1000_3930.las with	F1		
12/03/2024		PC	DanB	no corresponding flightline data.	Fixed	Updated - Incorrect timestamp for 2030 fixed	
			DanB	See PGF LAS WKT COORDSYS.tiff		Updated - BJ34-937 & BJ34-938	
12/03/2024		DEM	DanB	Triangles - see PGF DEM TRIANGLE DETECTION.tiff	Fixed	Corrected in latest DEM/DSM generation	

7 Results Acceptance & Signoff

An acceptance and signoff of the project QAQC supervisory review is listed below.

Result Acceptance						
Assessment Criteria	Status	Completed By	Date			
Point cloud classification accuracy	Complete	Woolpert/AAM	09 May 2023			
Point cloud classification consistency	Complete	Woolpert/AAM	09 May 2023			
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	09 May 2023			
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	09 May 2023			
Digital Survey Models	Complete	Woolpert/AAM	09 May 2023			
Contours	Complete	Woolpert/AAM	09 May 2023			
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	09 May 2023			
Project Manager / Supervisor Signoff	Complete	Luke Graham	16 May 2023			
Ocean Infinity Review	Complete	Luke Leydon	19 May 2023			

Table 6: Processing Results Acceptable Signoff

Result Acceptance						
Assessment Criteria	Status	Completed By	Date			
Point cloud classification accuracy	Complete	Woolpert/AAM	12 August 2023			
Point cloud classification consistency	Complete	Woolpert/AAM	12 August 2023			
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	12 August 2023			
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	12 August 2023			
Digital Survey Models	Complete	Woolpert/AAM	12 August 2023			
Contours	Complete	Woolpert/AAM	12 August 2023			
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	12 August 2023			
Project Manager / Supervisor Signoff	Complete	Luke Graham	12 August 2023			
Ocean Infinity Review	Complete	Luke Leydon	16 August 2023			

Table 7: Processing Results Acceptable Signoff (Rev1)

Result Acceptance							
Assessment Criteria	Status	Completed By	Date				
Point cloud classification accuracy	Complete	Woolpert/AAM	10 October 2023				
Point cloud classification consistency	Complete	Woolpert/AAM	10 October 2023				
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	10 October 2023				
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	10 October 2023				
Digital Survey Models	Complete	Woolpert/AAM	10 October 2023				
Contours	Complete	Woolpert/AAM	10 October 2023				
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	10 October 2023				
Project Manager / Supervisor Signoff	Complete	Luke Graham	10 October 2023				
Ocean Infinity Review	Complete	Luke Leydon	24 October 2023				

Table 8: Processing Results Acceptable Signoff (Rev2)

Result Acceptance							
Assessment Criteria	Status	Completed By	Date				
Point cloud classification accuracy	Complete	Woolpert/AAM	08 April 2024				
Point cloud classification consistency	Complete	Woolpert/AAM	08 April 2024				
Point Cloud LAS tiled deliverables	Complete	Woolpert/AAM	08 April 2024				
Hydro-flattened Digital Elevation Models	Complete	Woolpert/AAM	08 April 2024				
Digital Survey Models	Complete	Woolpert/AAM	08 April 2024				
Contours	Complete	Woolpert/AAM	08 April 2024				
Extents, Flight Lines, Break lines, Tile Index	Complete	Woolpert/AAM	08 April 2024				
Project Manager / Supervisor Signoff	Complete	Luke Graham	08 April 2024				
Ocean Infinity Review	Complete	Luke Leydon	06 May 2024				

Table 9: Processing Results Acceptable Signoff (Rev3)

Project: LiDAR Data Capture Services Client: Waikato Local Authority Shared Services / CoLAB

Appendix A: Lidar Quality Assurance Results

Provided as separate Documents in Appendix A upload