Coordinate systems and other basic concepts

J Ramón Arrowsmith
Chelsea Scott
School of Earth and Space Exploration
Arizona State University

Christopher J. Crosby
UNAVCO

Tutorial notes
October 4, 2021

OpenTopography
High-Resolution Topography Data and Tools
Outline

• Coordinate systems
• Alignment and rigid body transformations
• Digital elevation models and point clouds
• Orthophotos and parallax
Reference Datum

Represents the same surface or elevation at all points on the earth and that remains constant over time. By using an oblate ellipsoid as a datum for the earth we have a shape that approximates the shape of the earth fairly well and provides a datum to which points all over the earth's surface can be referenced (hence the term 'reference datum').

We typically use WGS84 as it is the basis of GPS
Map Projections

Conical

Oblique

Cylindrical

Equatorial

Transverse

http://geology.isu.edu/wapi/geostac/Field_Exercise/topomaps/map_proj.htm
UTM - Universal Transverse Mercator Geographic Coordinate System

http://geology.isu.edu/wapi/geostac/Field_Exercise/topomaps/utm.htm
UTM Zones of the World

http://www.dmap.co.uk/utmworld.htm
State Plane Coordinate System (US-agencies...)

https://www.ngs.noaa.gov/SPCS/index.shtml
The EPSG Geodetic Parameter Dataset is a structured dataset of Coordinate Reference Systems and Coordinate Transformations.

http://www.epsg-registry.org/
Aligning point clouds—Manual or ICP

- The **iterative closest point** algorithm (ICP) is a method for registering (aligning) irregular point clouds, well known in computer vision and medical imaging.
- ICP minimizes closest point pair distances using iterative **rigid-body transformations**, each one comprising a **translation** $[t_x, t_y, t_z]$ and a **rotation** $[\alpha, \beta, \gamma]$.

\[
\Phi = \begin{pmatrix} 1 - \gamma & \beta & t_x \\ -\gamma & 1 - \alpha & t_y \\ -\beta & -\alpha & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}
\]

![ICP iterations = 1](image)

While: Original point cloud
Red: ICP aligned point cloud

pointclouds.org/documentation/tutorials/interactive_icp.php
Attempt to explain cloud to cloud and cloud to plane
• 1 meter grid

• LiDAR returns from EarthScope data collection

• Example from flat area with little or no vegetation so ground is sampled approx. 5+ times per square meter

• How do we best fit a continuous surface to these points?
 • Triangular irregular network, splines/kriging, local min/max/mean, etc.

• Ultimately wish to represent irregularly sampled data on a regularized grid.
Digital Elevation Models

- Digital representation of topography / terrain
 - “Raster” format – a grid of squares or “pixels”
 - Continuous surface where Z (elevation) is estimated on a regular X,Y grid
 - “2.5D”

- Grid resolution is defined by the size in the horizontal dimension of the pixel
 - 1 meter DEM has pixels 1 m x 1m assigned a single elevation value.

Source: http://www.ncgia.ucsb.edu/giscc/extra/e001/e001.html
Gridded products

Digital surface model—Mostly what we are getting in SfM

Digital terrain model
An orthophoto, orthophotograph or orthoimage is an aerial photograph or satellite imagery geometrically corrected ("orthorectified") such that the scale is uniform: the photo or image has follows a given map projection. Unlike an uncorrected aerial photograph, an orthophoto can be used to measure true distances, because it is an accurate representation of the Earth's surface, having been adjusted for topographic relief,[1] lens distortion, and camera tilt.