

Intro to Lidar, Data Access, and Processing with OpenTopography

Chelsea Scott & Emily Zawacki AGIC - Wednesday, August 31, 2022

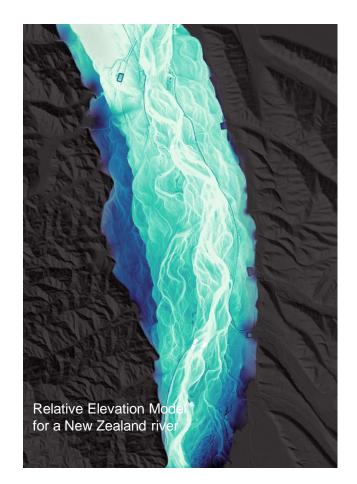
Supported by the US National Science Foundation (EAR/IF No. 1833703, 1833643 & 1833632

Workshop Outline

https://opentopography.org/workshops/AGIC2022

- Introductions (1:30-1:40): Where do you work? Experience with lidar? What do you want to learn today?
- Lecture: Intro to Lidar (1:40-2:10)
- Hands on Point Clouds and raster processing on OpenTopography (2:10-2:35)
- Break (2:35-2:45)
- Lecture & Hands on: Topographic Differencing (2:45-3:45)
- Break (3:45-3:50)
- Lecture & Hands on: Extracting hydrologic information from DEMS (3:50-4:50)
- Questions/revisit topics of interest/General (4:50-5:00)

Introduction to Lidar


- What is OpenTopography?
- Lidar basics
- Data collection
- Deliverables: Point clouds and DEMs
- Making DEMs

Access to topography data and processing tools via your web browser

- Lidar, photogrammetry & satellite data
- Tiered data access—raw point cloud to easy-touse derived products
- On-demand processing tools accessed via a user-friendly interface
- Education: Online resources and short courses

Open access to high resolution topography and tools

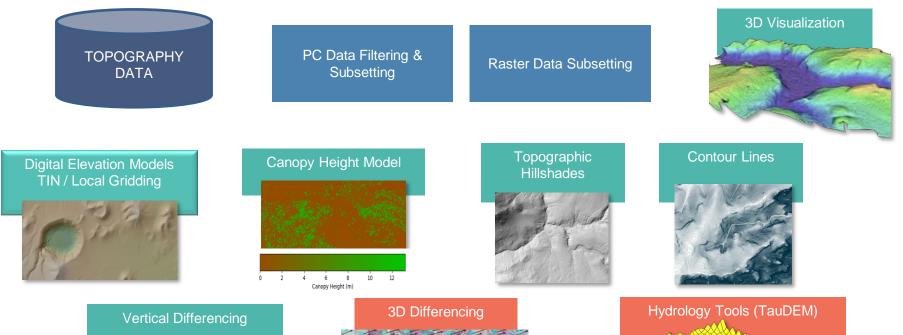
Interesting in making 3DEP datasets open? Let's talk!

Red- open access to all **Green**- 3DEP data currently for educators

Montrea

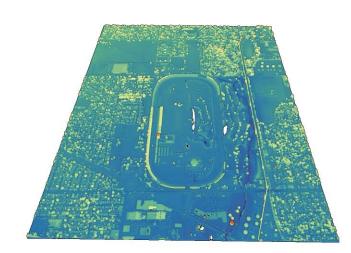
acano e

Torreón

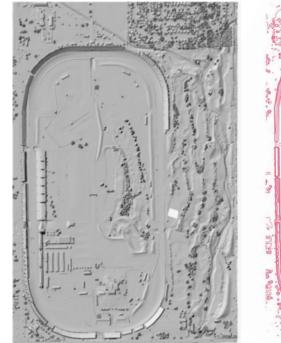

Monterre

DESERT

DATA SERVICES



DATA SERVICES



Indianapolis Motor Speedway

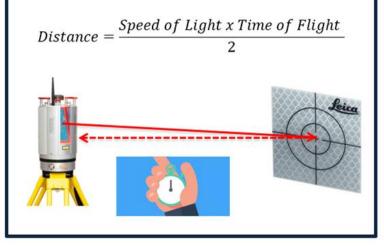
Point cloud (LAS, LAZ, EPT, COPC) Raster: DEMs, hillshade, slope (*GTIFF, IMG, etc.*)

Vector: contours

Where does the processing happen?

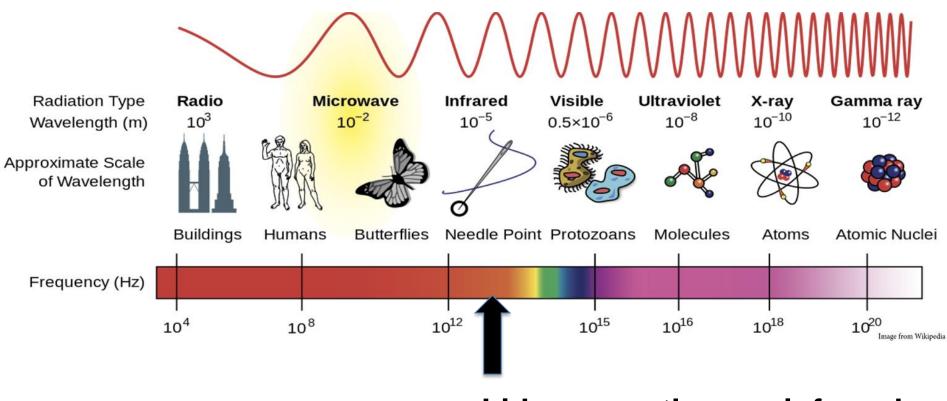
SDSC SAN DIEGO SUPERCOMPUTER CENTER

Supercomputer resources are available to all users via a user-friendly in a web browser interface


Light Detection And Ranging

- Distance is calculated by measuring the two-way travel time of a laser pulse
- Need very accurate clocks

Time of flight


Time it takes for emitted pulse to reflect off object and return to scanner.

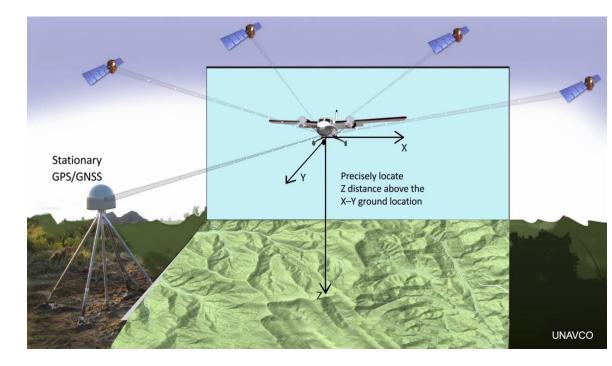
Lidar basics

Wavelength : ~905-1550 nm

Lidar – mostly near infrared

Various platforms:

- Terrestrial
- Airborne: planes, helicopters, drones
- Mobile: cars
- Satellite
- Handheld devices, phones



Georeferenced elevation measurements:

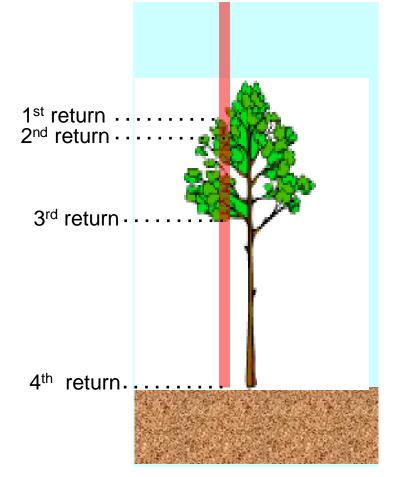
Laser & Sensor

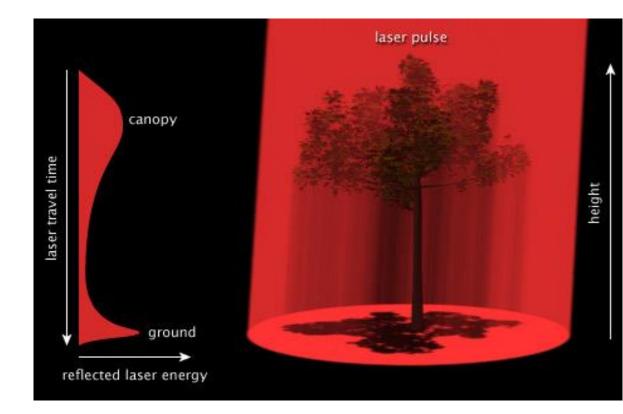
Inertial Measurement Unit (IMU): Accelerations and orientations

GPS/GNSS

Idealized Scenario:

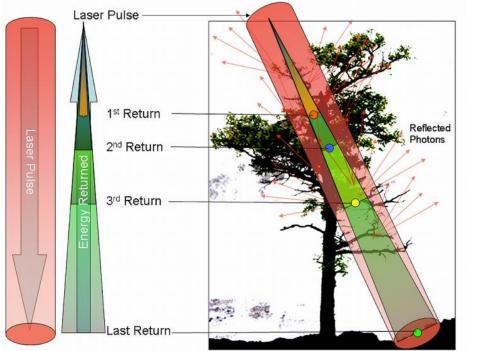
- Nadir pulse (observations directly below sensor)
- Photons intersect vegetation
- Photons return to detector

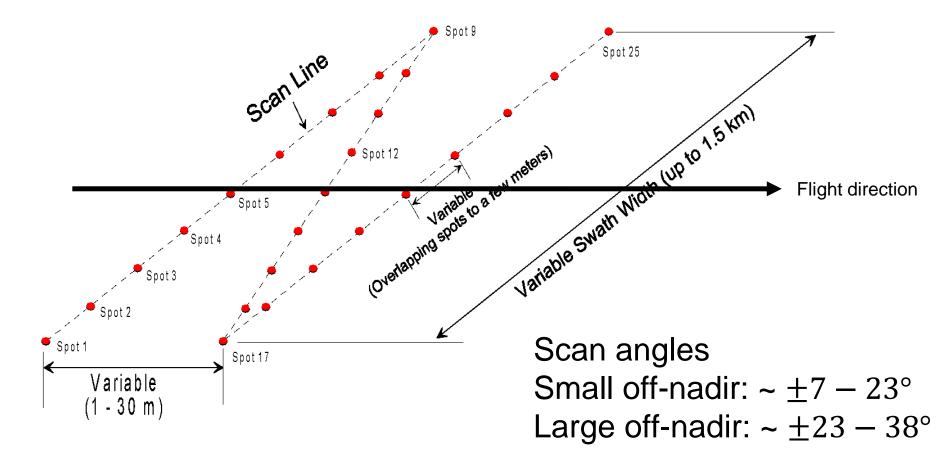



Image credit: Stoker/USGS

Realistic Scenario:

- "Flashlight" analogy with eye as sensor
- Laser is intense and coherent, but still diverges (increase in beam diameter)




Image credit: Stoker/USGS

- Off-Nadir pulse
- Pulse spreading and energy loss as beam travels to the ground
- Scattering of light most photons are reflected or absorbed and don't make it back to the detector.
- Some photons intersect vegetation and/or ground
- Some photons will return to detector
- Issues with water with both nadir and off nadir angles. Some roughness will help.

Flight lines and swaths

Not all lidar is created equal -range in quality, resolution, accuracy

Major source of uncertainty:

• Geolocation (GPS, IMU) uncertainty

Vegetation and terrain conditions also affect uncertainty

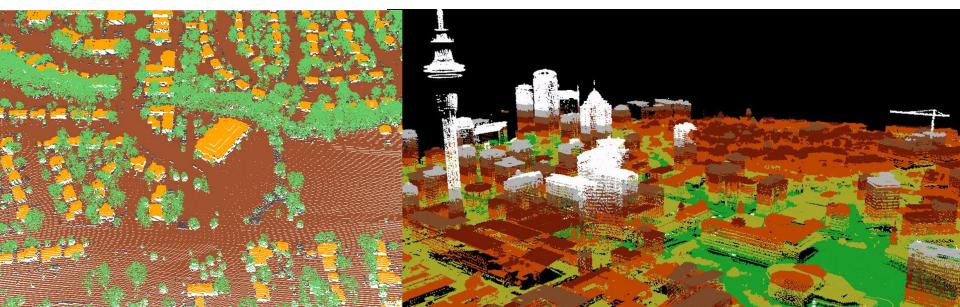
Evaluate lidar data quality by:

- Testing against ground control
- Quantifying swath to swath reproducibility

Read the metadata & survey report & expect errors

QUALI TY LEVE L	DAT A SOU RCE	VERTICAL ACCURACY RMSEz (cm)	NOMINAL PULSE SPACING (NPS) meters	NOMINAL PULSE SPACING (NPD) points per square meter	DIGITAL ELEVATION MODEL (DEM) cell size (meters)	
QLo	Lidar	5 cm	<= 0.35 m	>= 8 pts/square meter	0.5 m	
QL1	Lidar	10 cm	<= 0.35 m	>= 8 pts/square meter	0.5 m	
QL2	Lidar	10 cm	<= 0.71 m	>= 2 pts/square meter	1 m	
QL3	Lidar	20 cm	<= 0.35 m	>= 0.5 pts/square meter	2m	
QL4	Imag ery	139 cm	N/A	N/A	5 m	
QL5	IfSA R	185 cm	N/A	N/A	5 m	

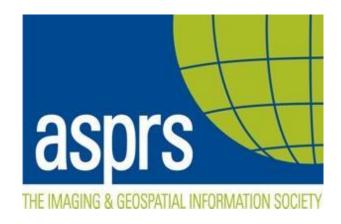
NPS: Spacing between first-return points a in single swath NPD: Nominal pulse density: Typically, the number of first-return pulses per swath Aggregate NPD: Total pulse density from multiple passes



Point cloud- discrete x,y,z points with attributes

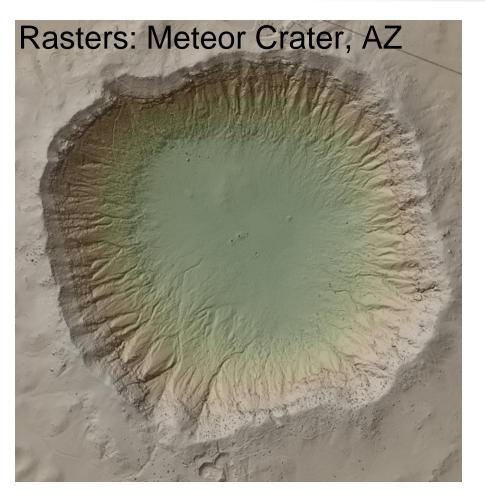
Attributes

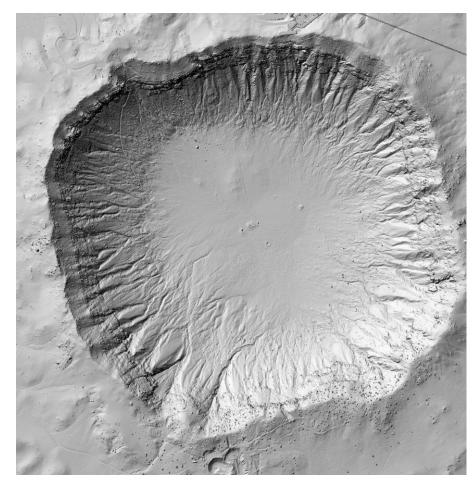
- Classification: Ground, vegetation, buildings, water, blunders etc.
- Intensity, return number & number of returns, GPS time, RGB...
- LAS, or compressed as a LAZ $% \left({{{\rm{LAS}}} \right)$



Point Clouds Classifications

Code	Description					
1	Processed, but unclassified					
2	Bare earth					
7	Low noise					
9	Water					
17	Bridge deck					
18	High noise					
20	Ignored ground (typically breakline proximity)					
21	Snow (if present and identifiable)					
22	Temporal exclusion (typically nonfavored data in intertidal zones)					


USGS classifications are based on the ASPRS standards



Deliverables

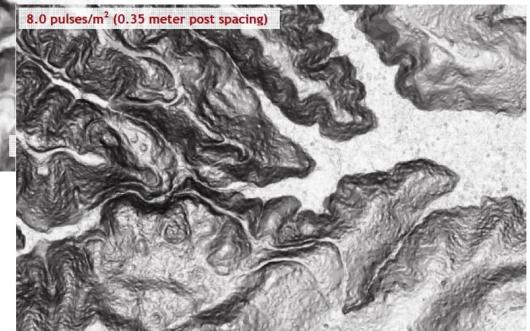
Raster-> Digital Elevation Models

Digital representation of topography

- A grid of squares or "pixels"
- Continuous surface where Z (elevation) is estimated on a regular X,Y grid
- Not True 3D "2.5D"
- Grid resolution is defined by the pixel size in the horizontal dimension
- 1 meter DEM has pixels 1 m x 1m assigned a single elevation value.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	0
0	50	100	100	100	100	100	100	100	100	100	100	100	100	100	50	0
0	50	100	150	150	150	150	150	150	150	150	150	150	150	100	50	0
0	50	100	150	200	200	200	200	200	200	200	200	200	150	100	50	0
0	50	100	150	200	250	250	250	250	250	250	250	200	150	100	50	0
0	50	100	150	200	250	300	300	300	300	300	250	200	150	100	50	0
0	50	100	150	200	250	300	350	350	350	300	250	200	150	100	50	0
0	50	100	150	200	250	300	350	400	350	300	250	200	150	100	50	0
0	50	100	150	200	250	300	350	350	350	300	250	200	150	100	50	0
0	50	100	150	200	250	300	300	300	300	300	250	200	150	100	50	0
0	50	100	150	200	250	250	250	250	250	250	250	200	150	100	50	0
0	50	100	150	200	200	200	200	200	200	200	200	200	150	100	50	0
0	50	100	150	150	150	150	150	150	150	150	150	150	150	100	50	0
0	50	100	100	100	100	100	100	100	100	100	100	100	100	100	50	0
0	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Source: http://www.ncgia.ucsb.edu/giscc/extra/e001/e001.html



1.2 pulses/m² (0.91 meter post spacing)

Pulse spacing impacts raster quality

Minimum LiDAR Considerations in the Pacific Northwest Watershed Sciences, Inc. http://www.oregongeology.org/sub/projects/olc/minimumlidar-data-density.pdf

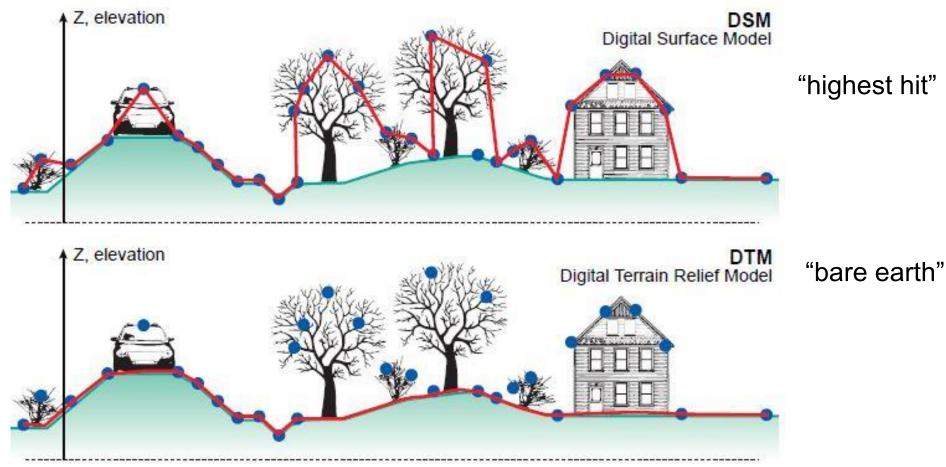


Image credit: charim.net

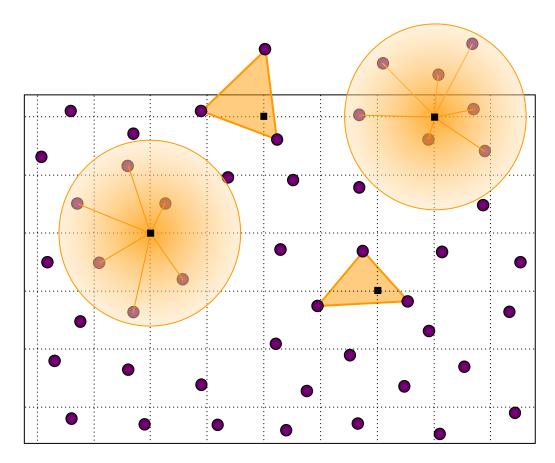
Make a DEM from a point cloud

Typically desire a 1 meter grid

Example from flat area with little or no vegetation so ground is sampled approx. 5+ times per square meter

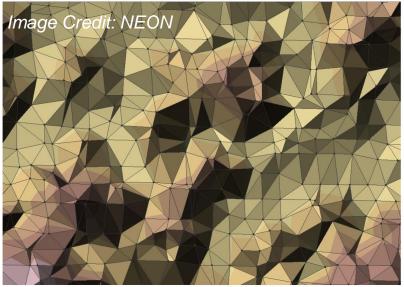
How do we best fit a continuous surface to these points?

Ultimately wish to represent irregularly sampled data on a regularized grid.


				-	
			•		
100 Aug. 100					
1. A.					
· ·					
	1 - C - C - C - C - C - C - C - C - C -				
· · · · ·					
•					
				· ·	
		1.1.1			
<u> </u>	· · .				
<u> </u>					
Ū .					
č					
• 두					
1 meter	$ \longrightarrow $:			
1	1	2			
•	1 mete	I. ·			
•				• •	
· · · · · · · · · · · · · · · · · · ·					
•					
· · ·					
1 A 4					
		1.1			

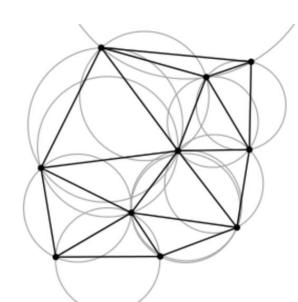
Deliverables

Rasters: Interpolation Methods


- Inverse Distance Weighting (IDW)
- Natural Neighbors
- Nearest Neighbor
- Kriging
- Splines
- Triangular irregular network

Isenburg, et al., 2006

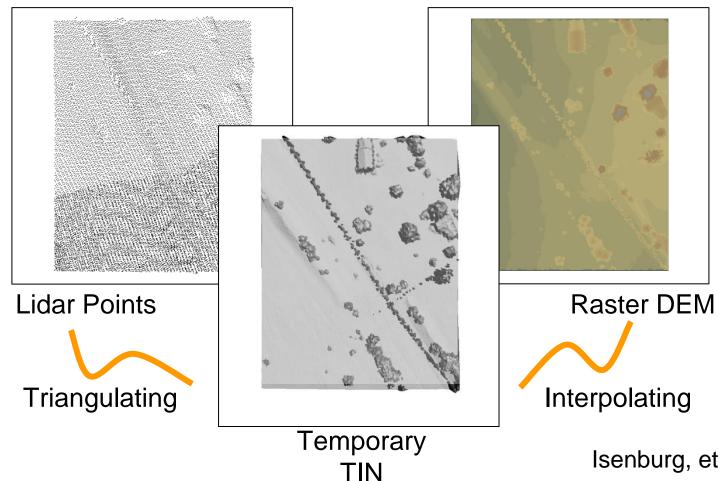
Triangulated Irregular Network



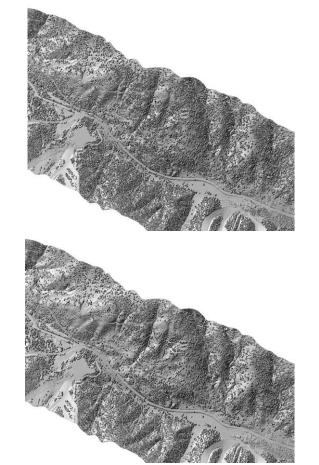
TINs:

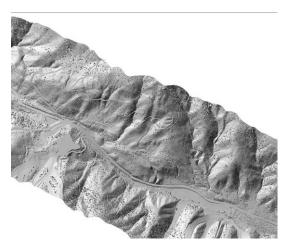
Vector format of a surface

Triangle network from Delauney Triangulation: no long thin triangles No vertex lies within the interior of any of the triangles in the network Features such as mountain peaks – TIN nodes

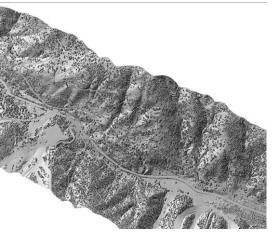

Deliverables

Isenburg, et al., 2006




Gridding

 Z_{max}

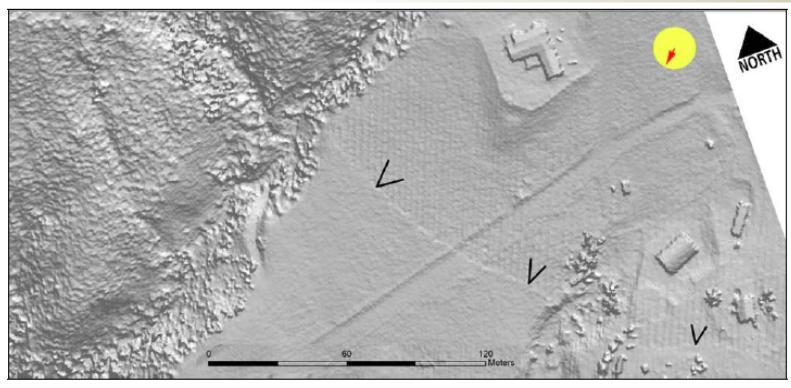


Z_{idw} Inverse distance weighting

Shots/3.14 sq meters High : 143 Low:1

Why?

Z_{density}


Flight direction

Swath overlap

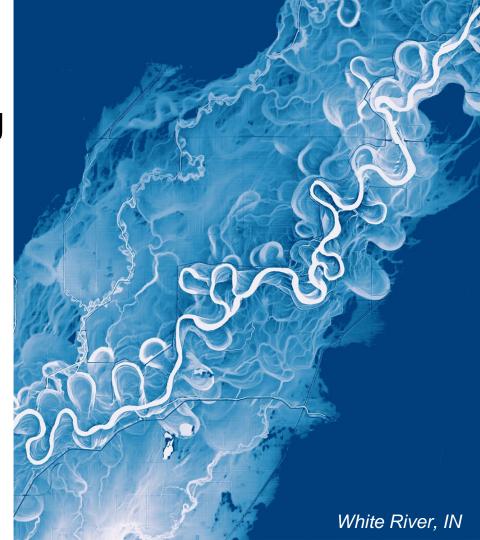
Errors in the data?

Treiman, Perez, & Bryant, 2010, USGS Award No. 08HQGR0096 Final Tech. Report

Figure 7a. LiDAR artifact (arrows) in the Yucaipa study area. The artifact appears as a linear highlight suggestive of an east-facing scarp. However, the evident "corduroy" texture on one side versus the other alerts one to the likelihood that this is an artifact. Indeed, it corresponds to the overlap margin between LiDAR swaths.

THANKS!

OpenTopography.org


Facebook.com/OpenTopography

@OpenTopogaphy

info@opentopography.org

Demo

Demo: Process a point cloud & raster dataset

Explore 3D viz already created

PLEASE: Process small datasets during the class today (at most 25 million points). 25+ jobs all started at the same time will take awhile to process. After the class, feel free to process larger datasets.